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Abstract: Coloring the arcs of biregular graphs was introduced with possible applications to industrial
chemistry, molecular biology, cellular neuroscience, etc. Here, we deal with arc coloring in some
non-bipartite graphs. In fact, for 1 < k ∈ Z, we find that the odd graph Ok has an arc factorization with
colors 0, 1, . . . , k such that the sum of colors of the two arcs of each edge equals k. This is applied to
analyzing the influence of such arc factorizations in recently constructed uniform 2-factors in Ok and in
Hamilton cycles in Ok as well as in its double covering graph known as the middle-levels graph Mk.
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1. Introduction

L et 0 < k ∈ Z, let n = 2k + 1 and let Ok be the k-odd graph [1], that we consider as the graph whose
vertices are the k-subsets of the cyclic group Zn over the set [0, 2k] = {0, 1, . . . , 2k} having an edge,

denoted uv, between each two vertices u, v if and only if u ∩ v = ∅.
Coloring the arcs of biregular graphs was considered in [2], with potential applications to the design of

experiments for industrial chemistry, molecular biology, cellular neuroscience and solving 3-dimensional
puzzles like the one known as Great Circle Challenge. It would be also valuable to find likewise applications
of arc coloring to graphs other than bipartite graphs, like the odd graphs, for example, and any other
similar graphs in that all vertices have departing arcs with all weights (colors) from 0 to k such that the
sum of oppositely oriented arcs is constantly k. In this work, coloring the arcs of Ok occupies the place of
missing 1-factorizations, since the Petersen graph O3 is 4-edge-colorable and if k is a power of 2 then Ok
is k + 1-edge-colorable [1]. Resulting arc-factorizations in Section 4 are seen in Section 5 to influence recent
uniform 2-factors and Hamilton cycles of Ok [3,4].

In fact, we recur in Section 4 to an edge-supplementary 1-arc factorization Ak of Ok, meaning that the two
oppositely oriented arcs (1-arcs, in [5, p. 59]) of each edge of Ok are assigned colors a, b ∈ {0, . . . , k} = [0, k]
by means of Ak such that a+ b = k (so a, b are said to be k-supplementary or supplementary in k), in such a way
that the arcs departing from each vertex are in one-to-one correspondence with [0, k].

To define the claimed edge-supplementary 1-arc factorization Ak of Ok, we consider in Section 4 a
partition of V(Ok) into Zn-classes, namely the cyclic equivalence classes mod n.

To get these Zn-classes, we take each vertex u of Ok expressed as the characteristic vector of the subset
u ⊂ Zn it represents. Each such vector is a binary string, or bitstring, namely a sequence of digits 0 and 1
said to be 0-bits and 1-bits, respectively.

The number of bits (resp., 1-bits) of a bitstring u is said to be its length (resp., its weight). Each u ∈ V(Ok)
can be seen as a bitstring of length n said to be an n-bitstring.
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Example 1. In O1, the subsets {i} of Z3, (i = 0, 1, 2) are denoted 100, 010, 001, respectively.

We also consider the vertices of Ok as corresponding polynomials mod xn + 1 in the ring Z[x], [6,7],
namely in Example 1: x0, x1 and x2 mod x3 + 1.

The Zn-classes of Ok are obtained by successive multiplication of such polynomials by x mod xn + 1.
The resulting equivalence relation defines a quotient graph of Ok whose vertices are those Zn-classes. In
Example 1, O1 has just one such equivalence class, and O2 has two.

Theorem 2 below asserts that there is a bijection between the Zn-classes of Ok and the Dyck words
of length 2k, defined in Subsection 3.2 via Example 4 (to Subsection 3.1), namely with the roles of 0- and
1-bits exchanged with respect to the Dyck words of [4]. This allows to determine Ak in Section 4 and an
arc-coloring analysis through Ak (not covered in [4]) of:

(i) the uniform 2-factors of Ok [3] (as in Theorem 3, via Subsections 4.1-5.2) and the Hamilton cycles [4]
of Ok, for k > 2 (as in Theorem 4, via Subsections 5.1-6.1);

(ii) the double covering graph Mk of Ok, namely the middle-levels graph of the Boolean lattice Bn induced
by the levels Lk and Lk+1 of Bn, formed by the n-bitstrings of weight k and k+ 1 (with Hamilton cycles
lifted from those in item (i), see Corollary 6);

(iii) the explicit modular 1-factorization of the graphs Mk [8], with factor colors in [1, k + 1] obtained from
the color set [0, k] in Section 4 by uniformly adding 1.

The modular 1-factorization of Mk cited in item (iii) differ from the lexical 1-factorization of Mk [13].
For example, there are at least two different approaches to Hamilton cycles in Mk, namely: via the
modular 1-factorization [3] for Ok in [4], these represented below in Corollary 6, as well as via the lexical
1-factorization for Mk (never Ok) in [9,10].

2. Restricted growth strings and k-germs

To unify presentation of the odd graphs Ok, let us consider the sequence S
(∞)

[14, A239903] of

restricted-growth strings (RGS) [11, p. 325] and the k-th Catalan number Ck =
(2k)!

k!(k+1)! [14, A000108]. The
first Ck terms of S

(∞)
form a set S

(u) [12, p. 222] equivalent to the set S
(i) of Dick paths from (0, 0) to (2k, 0)

[12, p. 221]. Both S
(u) and S

(i) are items in [12, ex. 6.19].
The sequence S

(∞)
is expressible as S

(∞)
= (β(0), β(1), β(2), . . . , β(17), . . .) =

(0, 1, 10, 11, 12, 100, 101, 110, 111, 112, 120, 121, 122, 123, 1000, 1001, 1010, 1011, . . .),

with the lengths of any two contiguous terms β(m − 1) and β(m) (1 ≤ m ∈ Z) constant unless m = Ck, for
some integer k > 1, in which case β(m − 1) = β(Ck − 1) = 12⋯k has length k and β(m) = β(Ck) = 10k = 10⋯0
has length k + 1.

To manipulate Ok and Mk (k > 1) in relation to their Hamilton cycles [3,9,10], we dress the RGS’s
β = β(m)with length(β) ≤ k as strings of fixed length k− 1 that we call k-germs [6, p. 138] [7, p. 8] in order to
show (via the nested castling of Theorem 1 and Subsection 3.1) that k-germs form the domain of a bijection
f onto the Dyck words of length 2k. Concretely, we make the k-germ of any such RGS β = β(m) to be the
(k − 1)-string α = α(m) = ak−1ak−2⋯a2a1 obtained from β by prefixing k−length(β) zeros to it. This makes a
k-germ to be a (k − 1)-string α = ak−1ak−2⋯a2a1 such that:

(1) the leftmost position of α, namely position k − 1, has entry ak−1 ∈ {0, 1};
(2) given 1 < i < k, the entry ai−1 at position i − 1 satisfies 0 ≤ ai−1 ≤ ai + 1.

Note that every k-germ ak−1ak−2⋯a2a1 yields a (k + 1)-germ 0ak−1ak−2⋯ a2a1.
To undress a k-germ α = α(m) = ak−1ak−2⋯a1 ≠ 00⋯0 means that a non-null RGS is obtained by stripping

α of its null entries to the left of its leftmost entry equal to 1, in which case we denote such a non-null RGS
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also by α = α(m). To complement this notion, we say that the null RGS α = α(0) = 0 corresponds to all null
k-germs α = α(0), for 0 < k ∈ Z.

We consider also the empty RGS, denoted α = ϕ, that yields for k = 1 the only empty k-germ α = 0k−1 =
01−1 = ϕ, using the same notation ϕ both for the empty RGS and the empty 1-germ and extending this way
the general notation α = 0k−1 (k > 1) to every k > 0.

There are exactly Ck k-germs α = α(m) < 10k, ∀k > 0. Given two k-germs α = ak−1⋯a2a1 and β =
bk−1⋯b2b1, (α ≠ β), α is said to be less than β, written α < β, if

(i) either 0 = ak−1 < bk−1 = 1
(ii) or ∃i ∈ [2, k − 1] such that ak−i < bk−i with ak−j = bk−j, ∀j ∈ [1, i − 1].

The resulting order on k-germs α(m) corresponds bijectively with the natural order of the integers
m ∈ [0, Ck], via the assignment m → α(m).

3. Ordered trees of k-germs and Dyck words

We recall from [6, Theorem 3.1] or [7, Theorem 1] that the k-germs are the nodes of an ordered tree Tk
rooted at 0k−1 and such that each k-germ α = ak−1⋯a2a1 ≠ 0k−1 with rightmost nonzero entry ai (1 ≤ i = i(α) <
k) has parent β(α) = bk−1⋯b2b1< α in Tk with bi = ai − 1 and aj = bj, for every j ≠ i in [1, k − 1].

Example 2. By representing Tk with each node β having its children α enclosed between parentheses
following β and separating siblings with commas, we can write:

T4 = 000(001, 010(011(012)), 100(101, 110(111(121)), 120(121(122(123))))).

Theorem 1. (i-nested castling) To each k-germ α = ak−1⋯a1 corresponds an n-string F(α) whose entries are the
numbers 0, 1, . . . , k, once each, and k “=" signs. Moreover,

F(0k−1) = “012⋯(k − 2)(k − 1)k = ⋯ = ”, (e.g, F(0) = “01 = ”, F(00) = “012 == ”).

Furthermore, if α ≠ 0k−1, let

1. Wi and Zi be the leftmost and rightmost, respectively, substrings of length i = i(α) in F(β), where β is the
parent of α in Tk;

2. c > 0 be the leftmost entry of F(β)∖ (Wi ∪ Zi), and
3. F(β)∖ (Wi ∪ Zi) be the concatenation X∣Y, where Y starts at the entry c + 1 of F(β).

Then F(α) = Wi∣Y∣X∣Zi is the i-nested castling of F(β) = Wi∣X∣Y∣Zi. In addition, if an entry b′ ∈ [0, k] of F(α) is
followed immediately to its right by an entry b ∈ [0, k], then k ≠ b′ < b. Also, Wi is an ascending number i-substring,
Zi is formed by i signs“=", and “k = ” is a substring of F(α), but “ = k” is not.

Proof. It was proved in [6, Theorem 3.2], as well as in [7, Theorem 2], where asterisks, “∗”, were used
instead of the present “=” signs. Examples 3 and 4 yield ideas on the proof.

Example 3. Figure 1 shows each tree Tk (k = 1, 2, 3, 4), with its root 0k−1 represented in a box containing
the order ord(0k−1) = 0, the root 0k−1 and F(0k−1). Each other node α of Tk is represented by a box of two
levels: the top level contains the order ord(β(α)), the parent β(α) and F(β(α)); the lower level contains the
order ord(α), α and F(α). In these presentations of β(α) and α, the entries bi and ai are colored red and the
remaining entries black. In all boxes, F(β(α)) = “Wi∣X∣Y∣Zi” and F(α) = “Wi∣Y∣X∣Zi” have X and Y colored
blue and red, respectively, while Wi and Zi are left black. In addition, the edge leading from β(α) to α is
labeled with its subindex i.
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Figure 1. Exemplifying Theorem 1 for the ordered trees Tk (k = 1, 2, 3, 4)

3.1. Bitstring forms out of nested castling

For each k-germ α (k > 1), let us define the bitstring form f (α) of F(α) by replacing each number entry
of F(α) by a 0-bit and each “=" sign by a 1-bit. (0-bits and 1-bits here correspond respectively to the 1-bits
and 0-bits of [4]). Such f (α) is an n-bitstring of weight k whose support supp( f (α)) is in V(Ok). So, we
consider both F(α) and the characteristic vector f (α) of supp( f (α)) to represent the vertex supp( f (α)) of
Ok.

Example 4. We can recover F(α) from f (α), exemplified for k = 1, 2, 3 in Figure 2. In it, for each one of the
1 + 2 + 5 = 8 cases in the figure, a piecewise-linear curve PLC(α) is constructed iteratively that starts at the
shown origin O in the Cartesian plane Π by replacing successively the 0-bits and 1-bits of f (α) by up-steps
and down-steps, namely diagonal segments (x, y)(x + 1, y + 1) and (x, y)(x + 1, y − 1), respectively. To each
down-step of PLC(α), we assign the “="- sign. We assign the integers in the interval [0, k] in decreasing
order (from k to 0) to the up-steps of PLC(α), from the top unit layer of PLC(α) in Π to the bottom one and
from left to right at each pertaining unit layer between contiguous lines y, y + 1 ∈ Z. Then, by reading and
successively writing the number entries and “=" signs assigned to the steps of PLC(α), the n-tuple F(α) is
obtained. Figure 2 is provided, underneath each instance, with the corresponding k-germ α followed by
F(α) and its (underlined) order of presentation via Theorem 1. We assume that all elements of V(Ok) are
represented by means of such piecewise-linear curves, for each fixed integer k > 0.

Theorem 1 is exemplified in Figure 2 too, where i-nested castling is occurring via layer polygons (either
isosceles trapezoids or triangles) with their interiors pairwise disjoint, as follows. For k = 2: between the
blue layer polygon (delimited by the up-step “1” on the left and the down-step “=” on the right) and the
yellow layer polygon (delimited by the up-step “2” on the left and the down-step “=” on the right). For
k = 3: between the blue, green and yellow layer polygons (delimited on the left by the up-steps “1”, “2” and
“3”, respectively, and corresponding down-steps “=” on their right).

Specifically in Fig 2: For k = 2, the 1-nested castling from the root 2-RGS (0) to the 2-RGS (1) is depicted
as a permutation of the contiguously labelled up-steps of the (possibly shortened) layer polygons. For k = 3,
the 1- and 2-nested castlings from the root RGS (00) to the RGS’s (01) and (10), respectively, permute the
order of the contiguously labelled up-steps of the (possibly shortened) layer polygons as indicated in the
figure. Similarly for the 1-nested castlings from (10) to (11) and from (11) to (12).
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3.2. Dyck paths

Figure 2. Recovering F(α) from f (α): PLC(α) for triples ((α) [F(α)], ord(α)), k = 1, 2, 3

Let 0 < k ∈ Z and let α be a k-germ. The curve PLC(α) (Example 4 and Figure 2) yields a Dyck path
DP(α) via the removal of its first up-step (0, 0)(1, 1) and a change of coordinates from (1, 1) to (0, 0). Such
Dyck path DP(α) represents a corresponding Dyck word DW(α) = “0⋯1” of length 2k, a particular case for
ℓ = k of a Dick word of length 2ℓ (0 < ℓ ∈ Z), defined as a 2ℓ-bitstring of weight ℓ such that in every prefix
the number of 0-bits is at least the number of 1-bits (differing from the Dyck words of [4], in which, on the
contrary, the number of 1-bits is at least equal to the number of 0-bits). The concept of empty Dyck word ϵ also
makes sense here and is used for example in Section 5, display (1). The Dyck paths DP(α) corresponding to
the curves PLC(α) in Figure 2 are represented in the lower-left quarter of Figure 4, with notation specified
in Examples 6 and 8, and preserving the colors of Figure 2. In Subsection 5.2, the down-steps on the right
of the layer polygons of Fig 2 will have their labels “=” changed to “j”, if “j” is the label of the associated
up-step. This takes F(α) into an n-string F(α), whose substrings [j, j] project in f (α) as Dyck subwords.

Theorem 2. There exists a bijection λ from the Zn-classes of V(Ok) onto the Dyck words of length 2k. In fact, each
Zn-class Γ of V(Ok) has a Dyck word f (α) of length 2k as sole representative. The other n-tuples in Γ are obtained
by translations f (α).j mod n of f (α), where j ∈ [0.2k] is the position of the null entry in f (α).j. Also, f (α) may
be interpreted as its corresponding F(α) and the other n-tuples f (α).j above may be interpreted as the corresponding
translations F(α).j mod n.

Proof. The n-tuples F(α) were obtained via the i-nested castlings of Theorem 1 associated to the indices
i = i(α) of the oriented edges βα of the tree Tk of Section 3 from the parent β of each non-root k-germ α

to α. Note that there are just Ck Dick words of length 2k (Subsection 3.2) corresponding bijectively to the
n-tuples F(α), and to their binary versions f (α) (Subsection 3.1). Also, there are exactly Ck Zn-classes Γ in
V(Ok). Then, each Zn-class Γ of Ok contains a sole f (α), which correspond to a sole F(α) by the approach
in Example 4. As a result, the correspondence from the Zn-classes Γ onto such Dyck words is a bijection λ

with λ(Γ) = f (α), as claimed, and we may write Γ = Γα = λ−1( f (α)).
With respect to the last two sentences in the statement, note that Zn acts on Ok yielding, for each k-germ

α, the orbit of f (α), including the translations of f (α), namely:

f (α) = f (α).0 = f0 f1⋯ f2k, f (α).1 = f1 f2⋯ f2k f0, f (α).2 = f2 f3⋯ f2k f0 f1, . . . ,
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Figure 3. Illustration for Examples 5 and 7 and Subsection 4.1

where f j = f j(α) ∈ {0, 1} (j ∈ [0, 2k]), with general term given by

f (α).j = f j f j+1⋯ f2k f0 f1⋯ f j−1,

and ending up with f (α).2k = f2k f0 f1⋯ f2k−1.
Similar treatment holds by taking F(α) = F(α).0 = F0F1⋯F2k, where Fj = “ = ” if f j is a 1-bit and Fj ∈ [0, k]

if f j is a 0-bit (the value of Fj provided by the said approach in Example 4), with general translation term
given by

F(α).j = FjFj+1⋯F2kF0F1⋯Fj−1.

This covers all the vertices of Zn-classes of V(Ok), seen either from the f (α) point of view or from the F(α)
point of view.

Example 5. In this and subsequent examples, we express integers in their hexadecimal form (e.g., a =
10, b = 11, etc.). To clarify concepts, let us determine the n-germ α1 (n = 21) corresponding to the bitstring
f (α1) = 00110100001110100111. We proceed by determining PLC(α1) (as indicated in Example 4), drawn
in the upper-right of Figure 3, where the black hexadecimal number entries and “=" signs form the n-string
F(α1), while the red symbols are the first twenty positive hexadecimal numbers, (that appear in that order
in the expression h0(α) = h0(α1) of Subsection 4.1, item 2). To associate the k-germ α1 to the n-string F(α1),
we build a list L(α1) shown on the left of Figure 3. The first lines of L(α1) contain data concerning the path
P(α1) from α1 to the root 020 = α21 in T21, namely: F(αi), αi, ord(αi)− ord(αi+1) and ord(αi), for i = 1, 2, . . . , 20.
The first sublist L′(α1) in L(α1), composed successively by F(α1), . . . , F(α21), shows each of the 21-strings
F(αj), (j = 1, . . . , 20), as a concatenation “Wij ∣X∣Y∣Zij ”, where ij is the first index in F(αj) = c0c1⋯c20 such
that cj > j with blue X, red Y, and black for both Wij and Zij , showing in the following line the 21-string
F(αj+1) = “Wij ∣Y∣X∣Zij ”, just under F(αj). To the right of L′(α1) and starting at the red α21 = 0k−1 in line
21, we went up and built a sublist L′′(α1) by reconstructing each αj = ak−1⋯a1, setting in red the terminal
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substring aij⋯a1 and in black the initial substring ak−1⋯aij+1. To the right of L′′(α1), we constructed an
accompanying blue sublist L′′′(α1) formed by Catalan numbers taken as increments that determine the
corresponding orders of the vertices in P(α1). These orders, appearing in the final sublist L′′′′(α1), are
obtained as the partial sums of Catalan numbers. This takes to ord(α1) = 3715 < 4862 = ∣V(T21)∣. The
blue sublist L′′′(α1) arises from the red entries in the first nine lines of Catalan’s triangle in the lower part
of Figure 3 with entries τ

j
i as in [6, pp. 139–140] represented as pairs ij to the right of the said nine lines,

(i ∈ [0, 8], j ∈ [1, 8]).

4. Edge-supplementary arc factorizations

Each arc (u, v) of Ok (u, v ∈ V(Ok)) is represented by translations F(αu).ju and F(αv).jv mod n of the
n-strings F(αu) and F(αv). Looking u and v upon as u = F(αu).ju and v = F(αv).jv and comparing, we see
that apart from a specific number entry i ∈ [0, 2k] in both u and v, all other number entries of one of them
correspond to “=" sign entries of the other one, and vice versa. Moreover, the entries ui of u and vi of v
satisfy ui + vi = k, so they are said to be k-supplementary. Then, the edge-supplementary 1-arc factorization Ak
of Ok claimed in Section 1 is given by the values of those entries ui and vi taken as colors of the arcs (u, v)
and (v, u), respectively, for all pairs of adjacent vertices u and v of Ok.

Figure 4. Illustration for Section 4 and Examples 6 and 8

Example 6. Edge-supplementarity is illustrated for k = 1, 2 in Figure 4. In it, the n-tuples F(α) are shown
as the initial lines of corresponding vertical lists L(α) in which arcs (u, v) of Ok appear as ordered pairs
(F(αu).ju, F(αv).jv) disposed on contiguous lines, except for all arcs from bottom lines, taken as n-tuples
F(αu).ju, to corresponding top lines, taken as associated n-tuples F(αv).0, thus closing the lists L(α) into
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oriented cycles C(α). In each such pair (F(αu).ju, F(αv).jv), the i-entries ui and vi are colored respectively
blue in F(αu).ju and red in F(αv).jv (the other entries in black) with the exception of the bottom and top
n-tuples in each list: these are also adjacent, with the entry ui = u0 holding blue value k on the bottom
n-tuple u and the entry vi = v0 holding red value 0 on the top n-tuple v = F(αv) = F(αv)0. The position i
of the blue entry ui in each line of the lists is cited underlined (“i”) to the right of its n-tuple u; the vertex
u ∈ Ok represented in such a line is still cited to the right of its “i” as “ord(α).ju”, where ord(α) refers to
the Zn-class Γα (so denoted in the proof of Theorem 2) of u in Ok. Such vertical lists are used in Section 5
(Figure 5, 6, 7) in order to yield Hamilton cycles of Ok, for k > 2, as in [3,4]; (k = 2 is excluded; indeed, O2 is
the hypohamiltonian Petersen graph).

4.1. String reversals in properly nested parentheses

Assignment of a 2k-permutation π(α) to each k-germ α.
Consider the Dyck path DP(α) obtained from PLC(α) by the removal of its first up-step and subsequent
change of coordinates from (1, 1) to (0, 0).

1. Let f ′ (resp., F′) be the 2k-string obtained from f (resp. F) by removing its first entry. Set parentheses
or commas between each two entries of f ′, so that the four substrings

“01” , “10” , “00” and “11” are transformed into the substrings
“0, 1” , “1)(0” , “0(0” and “1)1” , respectively, resulting in a string f ′′.

Add a terminal parenthesis to f ′′, so that the last “1" in f ′′ is transformed into “1)". Denote by g the
string resulting from such addition of a closing parenthesis to f ′′.

2. By proceeding from left to right, replace the bits of g by the successive integers from 1 to ∣g∣, keeping
all pre-inserted parentheses and commas in g unchanged in position. This yields a version h0 of g.

3. Note h0 is a concatenation (w1)∣(w2)∣⋯∣(wt) of expressions (wi), (i ∈ [1, t]), for some t ≥ 1, each (wi)
with terminal “)" being the closing “)" nearest to its opening “(". Let w′i be the number string obtained
from wi by removal of parentheses and commas. For i = 1, . . . , t, perform a recursive stepR consisting
in transforming w′i into its reverse substring w′′i and then resetting w′′i in place of w′i in (wi), with the
parentheses and commas of (wi) kept in place. Denote the resulting expression byR(wi). This yields
a string h1 =R(w1)∣R(w2)∣⋯∣R(wt).

4. For i ∈ [1, t], let R(wi) = (a1
i,1η1

i,1b1
i,1)∣(a

1
i,2η1

i,2b1
i,2)∣⋯∣(a

1
i,ti

η1
i,ti

b1
i,ti
). Apply item 3 to each (wi,j) = ηi,j ≠“,"

with terminal “)" being the closing “)" nearest to its opening “(", for j ∈ [1, ti]. Replace the resulting
strings R(wi,j) in place of the corresponding (wi,j) in R(wi), yielding a modified version R2(wi) of
R(wi). Let h2 =R2(w1)∣R2(w2)∣⋯∣R2(wt).

5. Each R(wi,j) is a concatenation of terms of the form a2
I η2

I b2
I with I = {i, j1, j2}, where j1 = j. In each

such concatenation, the strings η2
I ≠“," are of the form (wI) and must be treated as (wi,j) is in item

4 (or (wi) in item 3), producing a modified string R(wI) that forms part of the subsequent string h3.
Eventually ahead, to pass from hℓ−1 to hℓ (ℓ > 3), eachR(wI) in hℓ−1 with I = {i, j1, . . . , jℓ−2}would be a
concatenation of terms of the form aℓ−1

I′ ∣η
ℓ−1
I′ ∣b

ℓ−1
I′ with I′ = {i, j1, . . . , jℓ−1}. In each such concatenation,

those ηℓ−1
I′ ≠“," would be of the form (wI′), to be treated again as in items 3–4.

6. A sequence (h0, . . . , hs+1) is eventually obtained for some s ≥ 0 when all innermost expressions (wI) =
(a, a ± 1) with a, a ± 1 ∈ [1, 2k] are already processed. Disregarding parentheses and commas in hs+1

yields a 2k-string g′ and an assignment i → p(i), for i ∈ [1, 2k], by corresponding the places i ∈ [1, 2k] of
g′ to the values in the places of g′. Define π = p−1, the inverse 2k-permutation of p = (p(1)p(2)⋯p(2k))
[4].

Example 7. (Continuation of Example 5) The middle right of Figure 3 (just under the upper-right
representation of the curve PLC(α1)) contains a list, call it ℓ, whose first line represents g(α1)
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(Subsection 4.1, item 1), with α1 as in Example 5, and whose second line represents h0(α1) (Subsection 4.1,
item 2), in an hexadecimal-notation continuation. In this representation of h0(α1), the red substrings
w1 = “1(2, 3)4′′, w2 = “5, 6′′ and w3 = “7(8(9(a, b)c)d)(e, f )(g, h, i)j)k′′ are to be reversed according to the
first instances of R(w) in Subsection 4.1. This yields the third line, representing h1(α1) in the list ℓ. In
h1(α1), the red substrings are to be reversed according to the next instances ofR(w), and so on. In the end,
the sixth line of ℓ, represents h4(α1) =

p(α1) = (4, 3, 2, 1, 6, 5, 20, 14, 18, 16, 17, 15, 19, 12, 13, 8, 10, 9, 11, 7).

The inverse of this is π(α1) =

p−1(α1) = (4, 3, 2, 1, 6, 5, 20, 16, 18, 17, 19, 14, 15, 8, 12, 10, 11, 9, 13, 7),

represented as a blue string under the mentioned sixth line h4(α1) = p(α1) and in a similar format with
inserted parentheses and commas.

Example 8. (Continuation of Example 6) Figure 4 contains one oriented 3-cycle for O1 and two oriented
5-cycles for O2. Their lists L(α) are headed by two lines: a first line reading “ord(α):F(α); π(α)", with
“F(α)” as the first line of the cycle and “π(α)" (as in Subsection 4.1), formed by the different entries at
which a blue-to-red k-supplementation takes place in the cycle; the second line contains the (underlined)
positions 0 to 2k of the vertices (as n-tuples) in the cycle, followed by “Ok". The arcs of Ok receive colors in
the set [0, k] so that the edge between each two adjacent vertices in those cycles has its two composing arcs
bearing k-supplementary colors b (for blue) and r (for red), meaning that b, r ∈ [0, k] are such that b + r = k. To
the immediate right of each of these three cycles, for lists L(ϵ), L(0), L(1) of respective lengths 3, 5, 5, are
also represented vertical lists LM(ϵ), LM(0), LM(1), (occupying two contiguous columns each) closing into
corresponding cycles CM(ϵ), CM(0), CM(1) of respective double lengths 6, 10, 10, obtained by replacing the
“=" signs by the “>" signs and “<" signs uniformly on alternate lines. These cycles can be interpreted as
cycles in the middle levels graphs M1, M2, obtained by reading the subsequent lines in the concatenation
of two subsequent columns as follows: from left to right if they bear “>” signs, and from right to left if
they bear “<” signs. In addition, the graphs O1, O2, M1, M2 are represented in Figure 4 in thick trace for
the edges containing the arcs of the oriented cycles C(α); recalling Ak from Section 1, each vertex (resp.,
edge) of O1, O2 is denoted by the support of its corresponding bitstring f (α) (resp., denoted centrally by
its underlined color in Ek and marginally by its blue-red arc-color pair in Ak). In M1, M2, a plus or minus
sign precedes each such support indicating respectively a vertex in level Lk or in level Lk+1 of Bn; if in
Lk+1, as the complement f (α,<) of the right-to-left reading f (α,<) of the bitstring f (α) = f (α,>); if in Lk, as
f (α) = f (α,>) itself. The resulting readings of n-tuples of M1, M2 inherit the mentioned arc colors for O1, O2,
corresponding to the modular matchings of [8], only that the colors in [8] are in [1, k + 1]with supplementary
sum k + 1 while our colors are in [0, k]with supplementary sum k.

5. Uniform 2-factors and Hamilton cycles

Let k > 1. A vertical list L(α) as in Examples 6 and 8, illustrated in Fig 4, can be formed for each k-germ
α. In fact, there are Ck such lists L(α) = (L0(α), L1(α), . . . , L2k(α))t, where t stands for transpose, each L(α)
representing in Ok an oriented n-path P(α)whose end-vertices L0(α) = F(α) and L2k(α), are adjacent in Ok,
thus completing an oriented cycle C(α) in Ok by the addition of the arc (L2k(α), L0(α)).

Those paths P(α) arose in [3, Theorem 4] and [4, Lemma 4], in the latter case leading to Hamilton
cycles in Ok and Mk. Construction of these L(α) is controlled by the 2k-permutation π(α) assigned to α via
the procedure contained in items 1–6 of Subsection 4.1, as will be established in Theorem 3.
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Figure 5. Illustration for Section 5 and Example 10

5.1. Flippable tuples and flipping cycles

Figure 5 for k = 3 and Figure 7 for k = 4 (Example 11) contain the lists L(α) assembled in triples
and/or quadruples. For k = 3, Figure 5 shows two such triples, that we call τ0 = (L(α0), L(α1), L(α2))
on the upper-left of the figure and τ1 = (L(α0), L(α3), L(α4)) on the upper-right, where each list L(αi) is
distinguished on its upper-left corner with the subindex i of its k-germ αi. Two concepts from [4] are used
here:

1. Flippable tuples: In each such L(αi), there is at least one pair of contiguous red lines, apart from,
or including, its first red line, F(αi), except for their initial black entries and the unique vertical pair
of number k-supplementary blue entries (Section 4). These unique colored-line pairs FT(αi, j), where
j ∈ [0, 2k] are the respective positions counted from the right at which the k-supplementary pairs
determining adjacency in Ok occurs, are said to be flippable tuples [4].

2. Flipping κ-cycles: For j = 0, 1, the three pairs FT(αi, j) with L(αi) ∈ τj are combined into a 6-cycle
F6C(τj) in O3, which for κ = 2k = 6, is an example of a flipping κ-cycle [4], that we denote FκC(τj). Such
flipping 6-cycle F6C(τj) is shown in the middle left of the respective upper-left part and upper-right
part, respectively, in Figure 5, sided each on its right and below by its three participating lists L(αi).
Above such flipping 6-cycle F6C(τj) (j = 0, 1), a triple of Dyck words of length 6 headed each by the
subindex i ∈ {0, 1, 2} or i ∈ {0, 3, 4} of the corresponding L(αi) is shown in red except for one blue entry
at the position of the blue k-supplementary number entries in the two contiguous red-blue substrings
of the corresponding flippable tuples FT(αi, j).

For any k > 1, red-blue flippable tuples as those six in this subsection (see Fig 5) were shown to exist in [4,
pp. 1261–1265]. These six flippable tuples were shown to form part of a bitstring family [4, display (3.3)]
(see displays (1) and (3) in Subsection 6.1 below). They were used in the construction of Hamilton cycles in
[4], reconsidered below.
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Figure 6. Illustration for Subsection 5.2 and Example 11
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Example 9. For k = 3, Figure 5 contains, on the right of each of the two cases of τj in Subsection 5.1, the
symmetric difference of the corresponding flipping 6-cycle F6C(τj) and the union of the three 7-cycles C(αi),
for each i ∈ (0, 1, 2) or i ∈ (0, 3, 4), yielding a 21-cycle in each case. The two 21-cycles are then recombined
into a Hamilton cycle of O3, shown on the lower part of Figure 5 as a list sectioned from left to right into five
sublists. To the left of these five sublists, there is a drawing of an hypergraph as defined in Subsection 6.1
below.

5.2. Modified n-tuples

Each n-tuple F(α) gives place to a modified n-tuple F(α) formed by the number entries j ∈ [0, k] of
F(α) set in the same positions they have in F(α) together with k underlined number entries j in place of
the “=" signs, where j ∈ [1, k] (or j ∈ {1, . . . , k}), in a fashion determined by the fact that a nonempty Dyck
word is expressible uniquely as a string 0u1v = 0v

uu1v
uv (modified from 1u0v [4, p. 1260]), where u and v are

(possibly empty) Dyck words. Each number entry j ∈ [0, k] in F(α) corresponds to the starting entry 0v
u of a

Dyck word 0v
uu1v

uv in f (α), with its 1v
u represented in F(α) by an “=" sign. Its F(α) has each number entry j

(≠ j) in its same position as in F(α), with a corresponding entry 0v
u of a Dyck word 0v

uu1v
uv in f (α).

Moreover, F(α) has each “=" sign of F(α) replaced by a corresponding underlined integer j in the
position of an accompanying 1v

u. As an example, the right side of Figure 3 contains, under the list ℓ of
Example 7 and the blue string containing π(α1) = p−1(α1), a red line repeating the first line g(α1) of ℓ, and
a subsequent red line with the 0-bits and 1-bits of g(α1) replaced by the respective number entries j and j
of F(α1).

For k = 4, Figure 6 contains vertical lists L(α) = (L0(α), L1(α), . . . , L2k(α))T similar to the lists L(α)
but corresponding instead to the n-strings F(α) = L0(α), L1(α), . . ., L2k(α), where α runs over the total of
fourteen 4-germs and the only non-black entries are those corresponding to the 4-supplementary vertical
blue-red pairs realizing the adjacency of each pair of contiguous lines, including the pair formed by the
initial blue “4" in the last line L8(α) and the initial red 0 in the first line L0(α) in each list. All the first
columns of the fourteen lists form the same column vector, with transpose row vector (0, 4, 1, 3, 2, 2, 3, 1, 4).

The sole representative f (α) of a Zn-class of V(Ok), as in Theorem 2, may not only be interpreted as
the n-tuple F(α) but also as the corresponding F(α), so the other n-tuples of that class may be interpreted
as its translations mod n. The lines of each L(α) and the lines of its associated L(α) are translations mod
n of respective n-tuples F(αι) and F(αι) that depend on the orders ι ∈ [0, 2k] of such lines. These facts are
used in the statement of Theorem 3, where the subindex j is j = 2k − ι in relation to the subindex ι.

6. Iterative generation of modified n-tuples

Theorem 3. For each k-germ α:

(i) L(α) is generated by transforming iteratively for j = 2k, 2k − 1, . . . , 2, 1 and with initial n-tuple L0(α) = F(α)
the n-tuple L2k−j(α) into the uniquely feasible next n-tuple, L2k−j+1(α), via k-supplementation of its π(j)-th
entry and exchange of its k remaining number entries by its k “=" sign entries;

(ii) the first column of L(α) has transpose row vector

(0, k, 1, k − 1, 2, k − 2,⋯, 3, k − 2, 2, k − 1, 1, k),

obtained by alternating the entries of the vectors

(0, 1, 2, . . . , k − 1, k) and (k, k − 1, . . . , 2, 1);

moreover, kk and 10 are substrings mod n of each Lj(α).

The resulting lists L(α) and L(α), yield a uniform 2-factor of Ok formed by Ck n-cycles.
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Proof. Item (i) is an adaptation of [4, Lemma 5] to the k-germ setting of Subsections 3.1-3.2 and 4.1-5.2 as
well as the following argument.

The Dyck path of length 2k defined in Subsection 3.2 corresponds to the Dyck paths with 2k steps and
0 flaws of [3], presented in each list L(α) as L0(α).

In the same way, L2(α), L4(α), . . . , L2k(α) correspond respectively to the Dyck paths with 2k steps and
1, 2, . . . , k flaws of [3], obtained in our cases again as in Subsection 4.1 by the removal of its first up-step and
change of coordinates from (1, 1) to (0, 0).

In fact, passing from each L2i(α) to L2i+1(α) corresponds to applying the function g defined in the
second paragraph of [3, Subsection 1.1].

Passing from L2i+1(α) to L2k+2(α) corresponds to applying the function h composing the mapping
f = h ○ g of Theorem 2 [3].

For item (ii), note that the n-tuples Lj(α) having a common initial entry in [0, k]∪ [1, k] are at the same
height j in all vertical lists L(α) so that the entries of the first column (a0, b0, a1, b1, . . . , ak, bk, ak+1)T of each
such L(α) satisfy both ai + bi = k and bi + ai+1 = k + 1, for i ∈ [0, k].

Thus, the alternating first-entry column in each vertical list characterizes and controls the formation of
the claimed uniform 2-factor.

6.1. Dyck-word collections

Consider the following Dyck-word collections (triples, quadruple, etc.):

S1(w) = {ξ1
1(w) = 0w00111, ξ2

1(w) = 0w01101, ξ3
1(w) = 0w01011 },

S2 = {ξ1
2 = 00110011, ξ2

2 = 00100111, ξ3
2 = 00010111 },

S3 = {ξ1
3 = 000111, ξ2

3 = 010011, ξ3
3 = 010101 },

S4 = {ξ1
4 = 000111, ξ2

4 = 001011, ξ3
4 = 010011, ξ4

4 = 010101},

(1)

(based on [4, display (4.2)]) where w is any (possibly empty) Dyck word. Consider also the sets S1(w), S2,
S3, S4 obtained respectively from S1(w), S2, S3, S4 by having their component Dyck paths ξ j

1(w)
, ξ j

2
, ξ j

3
, ξ j

4

defined as the complements of the reversed strings of the corresponding Dyck paths ξ
j
1(w), ξ

j
2, ξ

j
3, ξ

j
4. Note

that each Dyck word in the subsets of display (1) has an underlined entry. By denoting

ξ
j
i(w) = xsxs−1⋯x2x1x0 and ξ

j
i = xsxs−1⋯x2x1x0, for i = 2, 3, 4, (2)

where j = 1, 2, 3 for i = 1, 2, 3 and j = 1, 2, 3, 4 for j = 4 and adequate s in each case, the underlined positions
in (1) are the targets of the following correspondence Φ:

Φ(ξ1
1(w)) = 1, Φ(ξ2

1(w)) = 4, Φ(ξ3
1(w)) = 0,

Φ(ξ1
2) = 6, Φ(ξ2

2) = 0, Φ(ξ3
2) = 2,

Φ(ξ1
3) = 0, Φ(ξ1

3) = 1, Φ(ξ3
3) = 5,

Φ(ξ1
4) = 0, Φ(ξ2

4) = 1, Φ(ξ3
4) = 3, Φ(ξ4

4) = 5.

(3)

The correspondence Φ is extended over the Dyck words ξ j
1(w)

, ξ j
2
, ξ j

3
, ξ j

4
with their barred positions taken

reversed with respect to the corresponding barred positions in ξ
j
1(w), ξ

j
2, ξ

j
3, ξ

j
4, respectively.

Recall the ordered tree Tk from Theorem 1. Adapting from [4], we define an hypergraph Hk with
V(Hk) = V(Tk) and having as hyperedges the subsets {αj; j ∈ {1, 2, 3}} ⊂ V(Hk) and {αj; j ∈ {1, 2, 3, 4}} ⊂
V(Hk) whose member k-germs αj have associated bitstrings f (αj), for j = 1, 2, 3 or j = 1, 2, 3, 4, containing
respective Dyck words in {ξ j

1(w), ξ
j
2, ξ

j
3, ξ

j
4, ξ j

1(w)
, ξ j

2
, ξ j

3
, ξ j

4
} in the same 6 or 8 fixed positions xi (for
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specific indices i ∈ {0, 1, . . . , s} in (2)) and forming respective subsets {ξ j
1(w)(w); j = 1, 2, 3}, {ξ j

1(w)
; j = 1, 2, 3},

{ξ j
4; j = 1, 2, 3, 4}, {ξ j

4
; j = 1, 2, 3, 4}, {ξ j

i ; j = 1, 2, 3} and {ξ j
i
; j = 1, 2, 3}, for both i = 2 and 3.

Example 10. Two hyperedges h0, h1 of H3 are shown heading on the upper-left and upper-right sides of
Figure 5, respectively, with strings ξ

j
1(ϵ) or ξ

j
i (j = 3, 4) having their constituent entries in red except for

one barred entry, in blue. For h0 (resp., h1), f (α0), f (α1), f (α2), (resp., f (α0), f (α3), f (α4)), represented
by the respective subindices 0, 1, 2 (resp., 0, 3, 4), are shown stacked in the upper-left (-right) of the figure,
those subindices indicating (each via a colon) respectively the Dyck words ξ1

1(ϵ), ξ2
3
, ξ3

1(ϵ) (resp., ξ3
1(ϵ), ξ2

3,

ξ3
4), with their entries in red except for the entries in positions Φ(ξ1

1(ϵ)) = 1, Φ(ξ2
3
) = 4, Φ(ξ3

1(ϵ)) = 0 (resp.,

Φ(ξ3
1(ϵ)) = 0, Φ(ξ2

3) = 1, Φ(ξ3
4) = 5), which are blue. Then H3 contains the connected subhypergraph H′3

depicted on the lower-left of the figure. This is used to construct the shown Hamilton cycle. The hyperedges
of H′3 are denoted by the triples of subindices i of their composing 4-germs αi. So, the hyperedges of H′3 are
taken to be h0 = (0, 1, 2) and h1 = (0, 3, 4). This type of notation is used in Example 11, as well.

Example 11. For k = 4, let us represent each k-germ αi by its respective order i = ord(αi). In a likewise
manner to that of Example 10. Figure 7 shows on its lower-left corner a depiction of a subhypergraph H′4
of H4 with the hyperedges

h0 = (0, 2, a), h1 = (8, 7, 5), h2 = (7, 6, a), h3 = (1, 4, 6), h4 = (1, 9, d), h5 = (3, b, c, d).

The respective triples of Dyck words ξ
j
1(w) or ξ j

1(w)
or ξ

j
i or ξ j

i
(j = 2, 3, 4) may be expressed as follows by

replacing the Greek letters ξ by the values of the correspondence Φ:

(51
3, 42

3, 03
3), (6

1
2, 02

2, 23
2), (1

1
1(01), 42

1(01), 03
1(01)), (1

1
1(ϵ), 42

1(ϵ), 03
1(ϵ)), (0

1
3, 12

3, 53
3), (0

1
4, 12

4, 33
4, 54

4),

where we can also write (51
3, 42

3, 03
3) = (01

3, 12
3, 53

3). From top to bottom in Figure 7, excluding the said
depiction of H′4, the vertical lists corresponding to the composing 4-germs of those six hyperedges are
presented side by side, in a fashion similar to that of Figure 5, except that the first line in each such vertical
list has its corresponding substring ξ (a member of one of the sets presented in display (3)) in red but for its
blue entry Φ(ξ) to stress their roles in the respective L(α) and FT(α, j). The flippable tuples FT(α, j) allow
to compose five flipping 6-cycles and one flipping 8-cycle, presented to the right of each triple or quadruple
of vertical lists, allowing to integrate, by symmetric differences, a Hamilton cycle comprising all the vertices
in the cycles provided by the vertical lists. Below those 6- or 8-cycles, the corresponding red-blue substrings
ξ

j
i appear separated by a hyphen in each case from the associated (multicolored) first lines.

We represent Hk as a simple graph ψ(Hk)with V(ψ(Hk)) = V(Hk) by replacing each hyperedge e of Hk
by the clique K(e) = K(V(e)) so that ψ(Hk[e]) = K(e), being such replacements the only source of cliques of
ψ(Hk). A tree T of Hk is a subhypergraph of Hk such that: (a) ψ(T) is a connected union of cliques K(V(e));
(b) for each cycle C of ψ(Hk), there exist a unique clique K(V(e)) such that C is a subgraph of K(e). A
spanning tree T of HK is a tree of Hk with V(T) = V(Hk). Clearly, the subhypergraphs H′k of Hk depicted in
Figure 5 and 7 for k = 3 and 4 are corresponding spanning trees.

A subset G of hyperedges of Hk is said to be conflict-free [4] if: (a) any two hyperedges of G have at most
one vertex in common; (b) for any two hyperedges g, g′ of G with a vertex in common, the corresponding
images by Φ (as in display (3)) in g and g′ are distinct. A proof of the following final result is included, as
our viewpoint and notation differs from that of [4].
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Figure 7. Illustration for Section 5 and Example 11
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Theorem 4. ([4]) A conflict-free spanning tree of Hk yields a Hamilton cycle of Ok, for every k ≥ 3. Moreover,
distinct conflict-free spanning trees of Hk yield distinct Hamilton cycles of Hk, for every k ≥ 6.

Proof. Let Dk be the set of all Dyck words of length 2k and, recalling display (1), let

E2 = {0101} E3 = S4 Ek = 01Dk−1,∀k > 3
F2 = {0011} F3 = D3 ∖ E3 = {001101} Fk = Dk ∖ 01Dk−1,∀k > 3

(4)

In particular, 0101(01)k−2 ∈ Ek and 0011(01)k−2 ∈ Fk. Now, let

E2 = ∅ E3 = {S4} T3 = {S1(ϵ), S3} Ek = 01Tk−1,∀k > 3
F2 = ∅ F3 = ∅ F4 = {S1(01), S2, 0S31, S1(ϵ)01}

(5)

Let us set Fk as a function of E2, . . . ,Ek−1,F2, . . . ,Fk−1,Tk−2, as follows: For 1 < j ≤ k, let Fj
k = ∪

j
i=2{0u1v; u ∈

Di−1, v ∈ Dk−1}. Since Fk = Fk
k , then the following implies the existence of a spanning tree of Hk[Fk].

Lemma 5. For every 1 < j ≤ k, there exists a spanning tree F j
k of Hk[F

j
k].

Proof. Lemma 7 [4] asserts that if τ is a flippable tuple and u, v are Dyck words, then: (i) uτv is a flippable
tuple if ∣u∣ is even; (ii) uτv is a flippable tuple if ∣u∣ is odd. Lemma 8 [4] insures that the collections in (1) are
flippable tuples. Using those two lemmas of [4], we define Ψ as the set of all the flippable tuples uτv and
uτv arising from (1). Moreover, we define Ψ2 = ∅ and Ψk = Ψ ∩Dk, for k > 2.

Since F2
k = 0011Dk−2, we let F2

k = 0011Tk−2. Assuming 2 < j ≤ k, since Dj−2 = Ej−1 ∪ Fj−1 is a disjoint
union, then we have the following partition:

Fj
k = Fj−1

k ∪v∈Dk−j (0Dj−11v) = Fj−1
k ∪v∈Dk−j ((0Ej−11v)∪ (0Fj−11v)). (6)

For every v ∈ Dk−j, the elements of τ(v) = S1((01)j−3)v ∈ Ψk are:

0(01)j−300111v ∈ 0Fj−11v 0(01)j−301011v ∈ 0Ej−11v 0(01)j−301101v ∈ Fj−1
k (7)

Now, we let

F j
k = F

j−1
k ∪ (∪v∈Dk−j({τ(v)}∪ (0E j−11v)∪ (0F j−11v))), (8)

which defines a spanning tree of Hk[F
j
k].

Now, the elements of τ = S3(01)k−3 ∈ Ψk are:

000111(01)k−3 ∈ Fk, (k > 3) 010011(01)k−3 ∈ 01Ek−1 010101(01)k−3 ∈ 01Fk−1 (9)

The sets Fk, 01Ek−1 and 01Fk−1 form a partition of Dk. We take the spanning trees of the subhypergraphs
induced by these three sets and connect them into a single spanning tree of Hk by means of the triple τ, that
is:

H′k = Fk ∪ {τ}∪ 01Ek−1 ∪ 01Fk−1. (10)
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Example 12. Example 10 uses T3 in display (5), with S1(ϵ) = 012 and S3 = 034 yielding the hypergraph T3

depicted in the lower left of Figure 5. Example 11 uses H′k in display (10) for k = 4, F4 and E3 in display (5)
and τ in display (9), with S1(01) = 67a, S2 = 875, 0S31 = 02a, S1(ϵ) = 146, being these four triples the
elements in F4; 01S4 = 3bcd, this one as the only element of 01E3, (while F3 = ∅); and τ = 02a, yielding the
hypergraph H′4 depicted at the lower left corner of Figure 7.

Corollary 6. To each Hamilton cycle in Ok produced by Theorem 4 corresponds a Hamilton cycle in Mk.

Proof. For each vertical list L(α) provided by Theorem 3, let LM(α) be a vertical list as exemplified in
Example 8 and Figure 4, which is obtained from L(α) by replacing its “=" signs by: (a) “>" signs (meaning
left-to-right string-reading) for the strings L2j(α) (j ∈ [0, k]) of L(α) and (b) “<" signs (meaning right-to-left
string-reading) for the strings L2j+1(α) (j ∈ [0, k − 1]) of L(α). Then, Theorem 4 can be adapted to producing
Hamilton cycles in the Mk by repeating the argument in its proof in replacing the lists L(α) by lists LM(α),
since they have locally similar behavior, being the cycles provided by the lists LM(α) twice as long as the
corresponding lists L(α), so the said local behavior happens twice around opposite (rather short) subpaths.
Combining Dyck-word triples and quadruples as in display (1) into adequate pullback liftings (of the
covering graph map Mk → Ok associated to item (ii), Section 1) in the lists LM(α) of those parts of the
lists L(α) in which the necessary symmetric differences take place to produce the Hamilton cycles in Ok
will produce corresponding Hamilton cycles in Mk.

Historical Note. The k-edge ordered trees appearing in [12, p. 221, item (e)] as “plane trees with" k + 1
vertices and in [9] as “ordered rooted trees", represent Dyck paths of length 2k (see Subsection 3.2). These
trees are equivalent to k-strings 0bk−1⋯b1 called k-RGS’s in [6] and tailored from the RGS’s of Section 2 via
items (r) and (u) in [12, p. 222] in a different way from that of the k-germs of Section 2. An equivalence of
these k-germs and those k-RGS’s was presented in [6] via their distinct relation to the k-edge ordered trees,
whose purpose in [9,10] was using their plane rotations toward Hamilton cycles in Mk, not related to the
odd-graph approach to Hamilton cycles of [4] to which we applied our ideas in Section 5.
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