
Article

Introduction to total chromatic vertex stress of graphs

Johan Kok

Independent Mathematics Researcher, City of Tshwane, South Africa &
Visiting Faculty at CHRIST (Deemed to be a University), Bangalore, India.
* Correspondence: jacotype@gmail.com; johan.kok@christuniversity.in; Tel.: +27646547285

Communicated by: Abolape Deborah Akwu
Received: 13 March 2023; Accepted: 05 July 2023; Published: 23 October, 2023

Abstract: This paper introduces the new notion of total chromatic vertex stress of a graph. Results for certain
tree families and other 2-colorable graphs are presented. The notions of chromatically-stress stability and
chromatically-stress regularity are also introduced. New research avenues are also proposed.

Keywords: Chromatic vertex stress; chromatic equivalent coloring; chromatically-stress stable;
chromatically-stress regular.

MSC: 05C12, 05C38, 05C69

1. Introduction

I t is assumed that the reader is familiar with the basic notions and notation of graph theory. However,
useful definitions will be recalled when necessary. Reference reading can be found in [1,2]. Only

non-trivial, finite, undirected and connected simple graphs are considered. Unless stated otherwise, reference
to vertices u, v (or vi, vj) will mean that u and v (or vi and vj) are distinct vertices.

Alfonso Shimbel [3] introduced the notion of vertex stress in a graph G. This graph parameter is denoted
by SG(v), v ∈ V(G). The vertex stress of vertex v ∈ V(G) is the number of times v is contained as an internal
vertex in all shortest paths between all pairs of distinct vertices in V(G)/{v}. Formally stated,

SG(v) = ∑
u≠w≠v

σ(v)

with σ(v) the number of shortest paths between vertices u, w which contain v as an internal vertex. Such a
shortest uw-path is also called a uw-distance path. See [3,4]. The total vertex stress of G is given by,

S(G) = ∑
v∈V(G)

SG(v), [5].

The work in [3] has been extended significantly in [6,7].

Hereafter it will be assumed that the vertices of a graph G are labeled so that V(G) = {vi ∶ 1 ≤ i ≤ n, n ≥ 2
the order of G}. For a set of (distinct) colors C = {c1, c2, c3, . . . , cℓ} a vertex coloring of a graph G is an
assignment φ ∶ V(G) ↦ C. A vertex coloring is said to be a proper vertex coloring of a graph G if no two distinct
adjacent vertices have the same color. The cardinality of a minimum set of distinct colors in a proper vertex
coloring of G is called the chromatic number of G and is denoted by, χ(G). We call such a coloring a χ-coloring
or a chromatic coloring of G. A chromatic coloring of G is denoted by, φχ(G). Generally a graph G of order n
is k-colorable for χ(G) ≤ k ≤ n. Furthermore, the number of distinct k-colorings (permutations permitted) is
enumerated by the corresponding chromatic polynomial of a graph. For k-colorings the chromatic polynomial
is denoted by, PG(k, n). It implies that for a specific graph G (so specific order n) and a specific value k thus,
say PG(k, n) = ℓ, there exist ℓ distinct k-colorings denoted by, φ1

k , φ2
k , . . . , φℓ

k. Hence, a k-coloring of a graph G is
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not necessarily unique. See [8,9] for a good overview of chromatic polynomials.

Vertex stress as defined by Shimbel [3] allocates a stress count of 1 to a vertex each time it is an internal
vertex on some shortest path (distance path) in graph G. Hence, it is a 0 − 1 binary function. In some
applications, transiting different vertices could present different stress. In this study differentiation of stress is
represented by coloring. Also the incremental stress induced along a colored distance path is allocated to the
departure vertex vi in respect of all shortest paths along a shortest vivj-path. Furthermore, internal vertices of the
same color as the departure vertex do not present any stress to the departure vertex vi. Consider a graph G and
any φt

k(G), 1 ≤ t ≤ ℓ as well as any two vertices vi, vj ∈ V(G). The coloring vertex stress in respect of vi along
all shortest vivj-paths for all j = 1, 2, 3, . . . , i − 1, i + 1, . . . , n is the sum of the number of times a color cl ≠ c(vi)

appears as an internal vertex color on each shortest vivj-path. This parameter is denoted by sφt
k(G)
(vi). Note

that in respect of a particular vivj-path and the inverse vjvi-path, the values sφt
k(G)
(vi) and sφt

k(G)
(vj) are not

necessarily equal. Finally, the total coloring vertex stress of a graph G in respect of φt
k(G) is defined by,

Sφt
k
(G) =

n
∑
i=1

sφt
k(G)
(vi).

For a graph G of order n, bounds which are a direct consequence from the definitions above are stated as
a corollary for k-colorings, χ(G) ≤ k ≤ n. It requires no further proof.

Corollary 1. For a k-coloring of a graph G of order n,

S(G) ≤ Sφt
k
(G) ≤ 2S(G), 1 ≤ t ≤ ℓ.

Note that for any specific value of k (specific k-coloring) there is no obvious relationship between S
φ

t1
k (G)

and S
φ

t2
k (G)

, 1 ≤ t1, t2 ≤ ℓ. It is evident that for the general range 1 ≤ t ≤ ℓ a maximum and minimum value may

exist. Hence, the vast variety of colorings for each possible k-coloring of a graph in general requires coded
computational algorithms for in-depth research of coloring vertex stress.

2. Total chromatic vertex stress

By setting k = χ(G) the number PG(χ, n) = ℓ of distinct χ-colorings of a graph can be enumerated.

Definition 2. Consider a graph G for which PG(χ, n) ≥ 2 and any two χ-colorings say, φ1
χ(G) and φ2

χ(G). If
sφ1

χ(G)
(vi) = sφ2

χ(G)
(vi), ∀φ1

χ, φ2
χ then G is said to be chromatically-stress stable in respect of a χ-coloring.

Definition 2 implies that if a graph G is chromatically-stress stable then all χ-colorings are chromatically
equivalent meaning that color classes may simply be interchanged sufficiently to obtain all possible
χ-colorings. A trivial example is a complete graph Kn, n ≥ 2. It is known that the chromatic polynomial is
given by,

PKn(n, n) =
n−1
∏
i=0
(n − i).

Equally easy it follows that all φt
n(Kn), 1 ≤ t ≤

n−1
∏
i=0
(n − i) are chromatically equivalent and for any vi ∈ V(Kn),

sφt
n(Kn)

(vi) = 0. Hereafter the paper will be restricted to certain 2-colorable graphs. Researching the range of
values of total chromatic vertex stress for graphs G with χ(G) ≥ 3 remains open.

Theorem 3. For a connected, 2-colorable graph G all χ-colorings are chromatically equivalent. Therefore, 2-colorable
graphs are chromatically-stress stable.

Proof. All graphs under consideration are connected. The result follows from the fact that, without loss of
generality (interchanging colors c1, c2 is permitted) and up to isomorphism of labeled graphs a connected
2-colorable graph has a unique coloring.
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It is known that a graph is 2-colorable if and only if it is a bipartite graph. Hence, a connected 2-colorable
graph G has a unique vertex partition say V(G) = X ∪Y such that if vertices vi, vj ∈ X then edge vivj ∉ E(G)
and if vertices ui, uj ∈ Y then edge uiuj ∉ E(G). For 2-colorable graph the contributory chromatic vertex stress of
vertex vi and denoted by φχ(G)(vi) is the proportional chromatic vertex stress induced by vertex vi in respect

of only vertices vj, i + 1 ≤ j ≤ n. Then Sφχ(G) = 2 ×
n
∑
i=1

φχ(G)(vi). The aforesaid is efficient for CIT-coding in

respect of large graphs.

2.1. Certain classes of trees.

The classification below is not a partition hence, some categories (or families) are sub-categories of others.
It is merely the specialization of structure which motivates the classification. When k, k ≥ 1 leafs (or pendent
vertices) are attached to a selected vertex vi it is said that a k-bunch of leafs has attached to vi.

(a) A non-trivial path Pn, n ≥ 2 is a tree with exactly two leafs. By convention a path will have its vertices
consecutively labeled from left to right as v1, v2, v3, . . . , vn.
(b) A star S1,n, n ≥ 3 (sub-category of spiders) has a central vertex v0 with n leafs adjacent to v0.
(c) A ℓ-star Sℓ,n⋆m, ℓ ≥ 2, n, m ≥ 2 has a path Pℓ = v1v2v3⋯vℓ with a n-bunch of leafs attached to say, v1 and a
m-bunch of leafs attached to vℓ.
(d) A spider S∗n , n ≥ 3 is a starlike tree with one vertex v0 of degree n and all other vertices have degree at most
2. Clearly, S∗n , n ≥ 3 has n pendent vertices. Hence in this context n does not mean the order of a spider. Put
differently, a spider has a central vertex v0 which is attached with an edge to exactly one end-vertex of each
path Pm1 , Pm2 , . . . , Pmt , t ≥ 3.
Note that for a given n, all possible paths Pn are isomorphic (both the graph structure and the resultant graph
are well-defined). Similarly, for a given n, m, ℓ a star and a ℓ-star are well-defined in respect of both the graph
structure and the resultant graph. For given k and d a (k, d)-regular tree is also well-defined in respect of
both the graph structure and the resultant graph. Therefore, closed results or efficient algorithms for the total
chromatic vertex stress can be determined. On the contrary, spiders, caterpillars and lobsters are considered
to be well-defined only in respect of graph structure. In this section results for the total chromatic vertex
stress of paths, stars, ℓ-stars and spiders will be presented. The purpose is to establish important enumeration
techniques.

Proposition 4. A non-trivial path Pn, n ≥ 2 has:

Sφχ(Pn) =

⎧⎪⎪
⎨
⎪⎪⎩

t(t+1)(4t+5)
3 , t = n

2 − 1, if n is even;
t(t+1)(4t−1)

3 , t = ⌊ n
2 ⌋, if n is odd.

Proof. Part 1. For path P2 it is easy to see that φχ(P2)
(v1) = φχ(P2)

(v2) = 0. Therefore Sφχ(P2) = 0. For path
P4 it is easy to see that φχ(P4)

(v1) = φχ(P4)
(v4) = 2. Also φχ(P4)

(v2) = φχ(P4)
(v3) = 1. Therefore Sφχ(P4) = 6.

Through immediate induction it follows that if n ≥ 4 and sφχ(Pn)(v1) = k1 then φχ(Pn+2)
(v1) = k1 + n. Similarly,

if φχ(Pn)(v2) = k2 then φχ(Pn+2)
(v2) = k2 + (n − 1) and so on. For n ≥ 2 the aforesaid patterns yield the sequence

0, 3, 13, 34, 70, 125, 203, . . . for the values of Sφχ(Pn). It corresponds to the closed formula a(i) = i(i+1)(4i+5)
6 ,

i = 0, 1, 2, 3, . . . . See integer sequence A016061 listed in the On-line Encyclopedia of Integer Sequences. Hence,
for the application to paths Pn, n ≥ 2 and n is even the transformation formula t = n

2 − 1 is required. This settles
the first result, i.e. n ≥ 2 and even.
Part 2. The reasoning we utilize is the fact, that each odd path say Pn+1 can be associated with a preceding
even path Pn. From Part 1 and through similar reasoning to extend an even path Pn to an odd path Pn+1, the
sequence 0, 1, 7, 22, 50, 95, 161, . . . develops in respect of Sφχ(Pn+1) for odd paths. This sequence corresponds to
the sequence A002412. By letting n = 3, 5, 7, . . . and using the transformation formula t = ⌊ n

2 ⌋ the second result
is settled, i.e. n ≥ 1 and odd.

Remark: Admittedly some readers might not find the argument of immediate induction in the proof of
Proposition 4 sufficiently rigorous. The substitution of that reasoning with a formal induction approach is left
to the reader.
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Corollary 5. A path Pn, n ≥ 2 has sφχ(Pn)(v1) = 2⌊ (n−1)2

4 ⌋.

Proof. The result is a direct consequence of the proof of Proposition 4.

Proposition 6. A star S1,n, n ≥ 3 has Sφχ(S1,n) = n(n − 1).

Proof. Let the n leafs be colored c(vi) = c1, i = 1, 2, 3, . . . , n and c(v0) = c2. It follows easily that each leaf has

φχ(S1,n)
(vi) = n − 1. Also φχ(S1,n)

(v0) = 0. By definition Sφχ(S1,n) = n(n − 1).

Proposition 7. Let t = ℓ
2 − 1 if ℓ is even, and t = ⌊ ℓ2 ⌋ if ℓ is odd. Then a ℓ-star Sℓ,n⋆m, ℓ ≥ 2, n, m ≥ 2 has:

Sφχ(Sℓ,n⋆m) =

⎧⎪⎪
⎨
⎪⎪⎩

n(n − 1) +m(m − 1) + 2(A1 + B1) +
t(t+1)(4t+5)

3 if ℓ is even;

n(n − 1) +m(m − 1) + 2(A2 + B2) +
t(t+1)(4t−1)

3 if ℓ is odd.

where A1 = A2 = n⌊ (ℓ+1)2

4 ⌋ + n(m − 1)⌈ ℓ2 ⌉, B1 = B2 = m⌊ ℓ
2

4 ⌋.

Proof. Note that the induced subgraphs ⟨N[v1]/{v2}⟩ and ⟨N[vℓ]/{vℓ−1}⟩ are stars. Using Proposition 6 the
first two terms in both parts follow. Label the n-bunch of leafs at vertex v1 say, ui, i = 1, 2, 3, . . . , n and the
m-bunch of leafs at vertex vℓ say, wj, j = 1, 2, 3, . . . , m.

Part 1. The term A1 is obtain from firstly, the chromatic vertex stress induced by vertex ui along the
uiw1-paths ∀ i. The aforesaid follows from Corollary 5. Since all shortest paths between ui to each vertex vj,
j = 1, 2, 3, . . . , ℓ have been accounted for, the only paths to further consider are the 1-count along paths uiwj,
i = 1, 2, 3, . . . , n j = 2, 3, 4, . . . , m. The aforesaid yields the value n(m − 1)⌈ ℓ2 ⌉.

Part 2. The term B1 follows from the m, wiv1-distance paths. Proposition 6 is applied to obtain the
chromatic vertex stress induced by each wi. Therefore, the term B1 is established.

Finally, the last term accounts for the total chromatic vertex stress for the v1vℓ-path. The distinction

between odd and even ℓ follows from Proposition 4. The fact that Sφχ(G) = 2 ×
n
∑
i=1

φχ(G)(vi) settles the result.

Proposition 8. A spider S∗n„ n ≥ 3 has:

Sφχ(S
∗

n , ) = 2× [
t−1
∑
i=1

t
∑

j=i+1
Sφχ(P(mi+mj+1)) − (t − 2)

t
∑
k=1
Sφχ(P(mk+1))].

Proof. Clearly, to account for all shortest paths in S∗n the t(t−1)
2 paths of order (mi +mj + 1), i = 1, 2, 3, . . . , (t− 1)

and j = i + 1, i + 2, i + 3, . . . , t must be accounted for. However, multi counting of chromatic vertex stress in
respect of paths P

(mk+1), k = 1, 2, 3, . . . , t occurs. The multi-counting is corrected by the subtraction of the
second term. Thus the result follows from the utilization of Proposition 4 and the fact that Sφχ(G) = 2 ×
n
∑
i=1

φχ(G)(vi).

3. Certain 2-colorable graphs which are not trees

We provide the result for even cycles.

Proposition 9. A cycle Cn, n ≥ 4 and n is even has:

Sφχ(Cn) = n⌊
(t − 1)2

4
⌋, t =

n + 2
2

.
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Proof. Since n is even, χ(Cn) = 2. From Corollary 5 it follows that for t ≥ 3, φχ(Pt)(v1) = ⌊
(t−1)2

4 ⌋. For an even
cycle, diam(Cn) =

n+2
2 . The fact that a cycle is a vertex-transitive graph read with the definition of the total

chromatic vertex stress of a graph yields the result, Sφχ(Cn) = n⌊ (t−1)2

4 ⌋, t = n+2
2 .

Complete bipartite graphs Kn,m, n ≥ 2, m ≥ 3 will be considered. Those complete bipartite graphs which
are excluded have been dealt with under a category either trees or the cycle C4.

Proposition 10. A complete bipartite graph Kn,m, n ≥ 2, m ≥ 3 has:

Sφχ(Kn,m) = nm(m − 1) +mn(n − 1).

Proof. By definition a connected bipartite graph G has an unique vertex partition say, sets X and Y such
that both X, Y are independent sets. Let ∣X∣ = n, ∣y∣ = m. Furthermore, a complete bipartite graph Kn,m is a
connected 2-diam graph. Let X = {ui ∶ 1 ≤ i ≤ n} and Y = {vj ∶ 1 ≤ j ≤ m}. It follows that ∀ i and ∀ j all the
shortest uivj-paths are edges. Hence, along all the shortest uivj-paths the total induced chromatic vertex stress
is 0. There are (n2) pairs of distinct vertices ui, uk and for each pair there are m shortest uiuk-paths of distance
2. Similarly, there are (m2) pairs of distinct vertices vj, vt and for each pair there are n shortest vjvt-paths of
distance 2. Since, Kn,m is 2-colorable each such shortest path induces chromatic vertex stress of 1. Hence by the
definition,

Sφχ(Kn,m) = nm(m − 1) +mn(n − 1).

3.1. Generalization: Complete m-partite graphs

The result of Proposition 10 permits an immediate generalization.

Corollary 11. A complete m-bipartite graph Kn1,n2,...,nm , ni ≥ 1 ∀ i, m ≥ 2 has:

Sφχ(Kn1,n2,...,nm) =
m
∑
i=1

m
∑
j=1
j≠i

njni(ni − 1).

Note that for ni = 1 ∀ i the graph Kn1,n2,...,nm ≅ Km.

4. Conclusion

This paper introduced the notion of total chromatic vertex stress in a graph. In particular, results for
certain 2-colorable graphs were presented. New avenues for research are suggested.

Definition 12. Consider a graph G and a specific χ-coloring say, φt
χ(G). If sφt

χ(G)
(vi) = sφt

χ(G)
(vj), ∀vi, vj ∈

V(G) then G is said to be chromatically-stress regular in respect of the specific χ-coloring.

If Definition 12 is valid ∀ φt
χ(G), 1 ≤ t ≤ ℓ then G is said to be strongly chromatically-stress regular.

An example of a strongly chromatically-stress regular graph is any even cycle Cn. These new notions are
considered worthy research avenues.

It is known that the Petersen graph P⋆ has,

PP⋆(k, 10) = k(k − 1)(k − 2)(k7 − 12k6 + 67k5 − 230k4 + 529k3 − 814k2 + 775k − 352).

Proposition 13. The Petersen graph is chromatically-stress stable and strongly chromatically-stress regular.

Proof. Part 1. It is known that the Petersen graph is geodetic, 3-regular and of diameter 2 and χ(P⋆) = 3.
Therefore, for any proper 3-coloring and a distance d(vi, vj)-path of length 2 the internal vertex say, vk is in
N(vi) (and in N(vj)). Thus over all shortest paths, sφ1

χ(P⋆)
(vi) = sφ2

χ(P⋆)
(vi) for all χ-colorings. Hence, P⋆ is
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chromatically-stress stable.
Part 2. Each vertex vi ∈ V(P⋆) has 3 neighbors (distance paths of length 1) and 6 distance paths of length
2. Thus, over all χ-colorings we have sφt

χ(P⋆)
(vi) = 6, vi ∈ V(P⋆). This settles the claim that P⋆ is strongly

chromatically-stress regular.

Proposition 13 indicates that despite the complexity of a corresponding chromatic polynomial of certain
graphs, the results related to chromatically-stress regularity and chromatically-stress stability can be
straightforward. In fact, Proposition 13 is valid for all geodetic graphs G for which diam(G) ≤ 2. A salient
fact of Corollary 11 is that all complete m-partite graphs Kn1,n2,...,nm , ni ≥ 1 ∀ i, m ≥ 2, χ(Kn1,n2,...,nm) = m are
chromatically-stress stable in respect of all χ-colorings.
Exercise 1. Prove that a m-partite graph Kn1,n2,...,nm , ni ≥ 1 ∀ i, m ≥ 2, is chromatically-stress stable in respect of
all χ-colorings.

The intuitive complexity of this new graph variant can be illustrated by recalling that the chromatic
polynomial of cycles is,

PCn(k, n) = (k − 1)n + (−1)n(k − 1).

For odd cycles let k = 3. Thus PC5(3, 5) = 30. Since, C5 is geodetic with diam(C5) = 2 the value of chromatic
vertex-stress is easy to obtain. Clearly, for Cn, n ≥ 7 the exhaustive enumeration to find say, lower and upper
bounds is not very efficient. For an odd cycle Cn, n ≥ 7 and without loss of generality, consider the following
χ-colorings.
Case 1. If n is odd, let φ1

χ ∶ V(Cn) ↦ {c1, c2, c3} be: c(v1) = c1, c(v2) = c2, c(v3) = c1, c(v4) = c2,⋯, c(vn−1) = c2

and c(vn) = c3.
Case 2. If n = 3t1, t1 ≥ 3 and t1 is odd, let φ2

χ ∶ V(Cn) ↦ {c1, c2, c3} be: c(v1) = c1, c(v2) = c2, c(v3) = c3,
c(v4) = c1,⋯, c(vn) = c3.
Case 3. If n = 3t2 + 2, t2 ≥ 1 and t2 is odd, let φ3

χ ∶ V(Cn) ↦ {c1, c2, c3} be:
c(v1) = c1, c(v2) = c2, c(v3) = c3, c(v4) = c1,⋯, c(vn−2) = c3 and c(vn−1) = c1, c(vn) = c2.
Case 4. If n = 3t3 + 1, t3 ≥ 2 and t3 is even, let φ4

χ ∶ V(Cn) ↦ {c1, c2, c3} be:
c(v1) = c1, c(v2) = c2, c(v3) = c3, c(v4) = c1,⋯, c(vn−1) = c3 and c(vn) = c2.

Conjecture 14. An odd cycle Cn, n ≥ 7 has:

Sφ1
χ
(Cn) ≤ Sφχ(Cn) ≤ Sφ2

χ
(Cn)

or
Sφ1

χ
(Cn) ≤ Sφχ(Cn) ≤ Sφ3

χ
(Cn)

or
Sφ1

χ
(Cn) ≤ Sφχ(Cn) ≤ Sφ4

χ
(Cn).

Problem 1. Prove or disprove Conjecture 14.

The χ-colorings which by conjecture yield the bounds in Conjecture 14 are called extremal chromatic stress
colorings and for brevity, ECS-colorings. The concept of ECS-colorings in graphs offers a wide scope for
further research.
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