Article

On the product of Sombor and modified Sombor indices

Ivan Gutman ${ }^{1, *}$, Izudin Redžepović ${ }^{\mathbf{~}}$ and Boris Furtula ${ }^{1}$
1 Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; gutman@kg.ac.rs; (I. G.) furtula@uni.kg.ac.rs (B. F.)
2 State University of Novi Pazar, 36300 Novi Pazar, Serbia; iredzepovic@np.ac.rs (I.R.)
* Correspondence: gutman@kg.ac.rs

Communicated by: Muhammad Kamran Jamil
Received: 22 May 2023; Accepted: 4 August 2023; Published: 23 October, 2023

Abstract

The Sombor index (SO) and the modified Sombor index (${ }^{m} S O$) are two closely related vertex-degree-based graph invariants. Both were introduced in the 2020s, and have already found a variety of chemical, physicochemical, and network-theoretical applications. In this paper, we examine the product $S O \cdot{ }^{m} S O$ and determine its main properties. It is found that the structure-dependence of this product is fully different from that of either $S O$ or ${ }^{m} S O$. Lower and upper bounds for $S O \cdot{ }^{m} S O$ are established and the extremal graphs are characterized. For connected graphs, the minimum value of the product $S O \cdot{ }^{m} S O$ is the square of the number of edges. In the case of trees, the maximum value pertains to a special type of eclipsed sun graph, trees with a single branching point.

Keywords: Sombor index; modified Sombor index; topological index; degree (of vertex).

MSC: 05C07, 05C09.

1. Introduction

In this paper, we are concerned with simple graphs. In order to avoid unnecessary complications, the graphs considered will be assumed to be connected. Let G be such a graph with vertex set $\mathbf{V}(G)$ and edge set $\mathbf{E}(G)$, with $|\mathbf{V}(G)|=n$ vertices and $|\mathbf{E}(G)|=m$ edges. By $e=u v \in \mathbf{E}(G)$ we denote the edge of G, connecting the vertices u and v. The degree of the vertex u (= the number of first neighbors of u) will be denoted by $d(u)$. For other graph-theoretical notions, the readers are referred to [1].

In contemporary discrete mathematics and mathematical chemistry, a class of graph invariants of the form

$$
T I=T I(G)=\sum_{u v \in \mathbf{E}(G)} F(d(u), d(v))
$$

attracted much attention and is studied in detail [2-4]. Here F is a suitably chosen function with properties $F(x, y)=F(y, x)$ and $F(x, y) \geq 0$. These invariants are usually referred to as "vertex-degree-based topological indices", or shorter: VDB indices. Nowadays, several dozens of VDB indices are being examined in the literature, and their number is increasing.

A few years ago, based on geometric considerations, a new vertex-degree-based graph invariant was introduced [5-7], named Sombor index, defined as

$$
S O=S O(G)=\sum_{u v \in \mathbf{E}(G)} \sqrt{d(u)^{2}+d(v)^{2}}
$$

where, of course, $d(u)^{2}$ denotes the square of the degree of the vertex u. In a short time, this index gained much popularity, and its applicability in chemistry and network science was soon recognized. The mathematical properties [6,8-18] and the various applications [19-25] of the Sombor index have been studied in detail.

A short time after the invention of the Sombor index, its modified version

$$
{ }^{m} S O={ }^{m} S O(G)=\sum_{u v \in \mathbf{E}(G)} \frac{1}{\sqrt{d(u)^{2}+d(v)^{2}}}
$$

Figure 1. Correlation between Sombor and modified Sombor indices for the 47 nine-vertex trees.
was put forward [26], and studied in a few consecutive papers [27-29].
The Sombor and modified Sombor indices have a number of analogous (opposite) properties. For instance,

$$
S O(G+e)>S O(G) \quad ; \quad{ }^{m} S O(G+e)<{ }^{m} S O(G)
$$

where $G+e$ is the graph obtained by inserting a new edge to G;

$$
S O(G) \leq S O\left(K_{n}\right) \quad ; \quad{ }^{m} S O(G) \geq{ }^{m} S O\left(K_{n}\right)
$$

where K_{n} is the complete graph and where the equalities hold if and only if $G \cong K_{n}$;

$$
S O\left(P_{n}\right)<S O\left(T_{n}\right)<S O\left(S_{n}\right) \quad ; \quad{ }^{m} S O\left(P_{n}\right)>{ }^{m} S O\left(T_{n}\right)>{ }^{m} S O\left(S_{n}\right)
$$

where P_{n} and S_{n} are the n-vertex path and star, respectively, and T_{n} is any n-vertex tree different from P_{n} and S_{n}.

The close correlation between $S O$ and ${ }^{m} S O$ is seen in the example depicted in Figure 1.
Bearing in mind the close analogy between Sombor and modified Sombor indices, we got interested in their product,

$$
\pi S O=\pi S O(G)=S O(G) \cdot{ }^{m} S O(G)
$$

i.e.,

$$
\begin{equation*}
\pi S O=\pi S O(G)=\left(\sum_{u v \in \mathbf{E}(G)} \sqrt{d(u)^{2}+d(v)^{2}}\right)\left(\sum_{u v \in \mathbf{E}(G)} \frac{1}{\sqrt{d(u)^{2}+d(v)^{2}}}\right) \tag{1}
\end{equation*}
$$

which we will refer to as the π-Sombor index.
Interestingly, the π-Sombor and the Sombor indices are completely uncorrelated, as shown by the example depicted in Figure 2.

In what follows we establish a few basic properties of $\pi S O$. First, however, we prove a pair of more general results.

2. Two general properties of product-topological indices

As before, G is a connected simple graph possessing n vertices and m edges.
Theorem 1. Let $f(u)$ be any quantity, defined for a vertex $u \in \mathbf{V}(G)$, such that $f(u)>0$ for all $u \in \mathbf{V}(G)$. Then,

$$
\begin{equation*}
\left(\sum_{u \in \mathbf{V}(G)} f(u)\right)\left(\sum_{u \in \mathbf{V}(G)} \frac{1}{f(u)}\right) \geq n^{2} . \tag{2}
\end{equation*}
$$

Equality holds if and only if $f(u)$ are mutually equal for all $u \in \mathbf{V}(G)$.

Figure 2. The absence of any correlation between the Sombor and π-Sombor indices, in the case of 9 -vertex trees.

Theorem 2. Let $g(e)$ be any quantity, defined for an edge $e \in \mathbf{E}(G)$, such that $g(e)>0$ for all $e \in \mathbf{E}(G)$. Then,

$$
\begin{equation*}
\left(\sum_{e \in \mathbf{E}(G)} g(e)\right)\left(\sum_{e \in \mathbf{E}(G)} \frac{1}{g(e)}\right) \geq m^{2} . \tag{3}
\end{equation*}
$$

Equality holds if and only if $g(e)$ are mutually equal for all $e \in \mathbf{E}(G)$.
Proof. According to the Cauchy-Schwarz inequality,

$$
\begin{equation*}
\left(\sum_{i=1}^{p} a_{i} b_{i}\right)^{2} \leq \sum_{i=1}^{p} a_{i}^{2} \sum_{i=1}^{p} b_{i}^{2} \tag{4}
\end{equation*}
$$

holds for any positive-valued a_{i} and b_{i}, with equality if and only if

$$
a_{1}=a_{2}=\cdots=a_{p} \quad \text { and } \quad b_{1}=b_{2}=\cdots=b_{p} .
$$

Setting in (4), $a_{i}=\sqrt{f(u)}$ and $b_{i}=1 / \sqrt{f(u)}$, after summation over all $u \in \mathbf{V}(G)$, we arrive at inequality (2). For $a_{i}=\sqrt{g(e)}$ and $b_{i}=1 / \sqrt{g(e)}$, after summation over all $e \in \mathbf{E}(G)$, we arrive at inequality (3).

3. Estimating the π-Sombor index

Setting $g(e)=\sqrt{d(u)^{2}+d(v)^{2}}$ into Theorem 2, we immediately arrive at:
Theorem 3. Let G be a connected graph with $n \geq 2$ vertices and m edges, and let its π-Sombor index be defined via Eq. (1). Then,

$$
\begin{equation*}
\pi S O(G) \geq m^{2} \tag{5}
\end{equation*}
$$

Equality holds if G is either a regular graph or a complete bipartite graph $K_{p, q}$.
Remark 1. Inequality (5) holds also for non-connected graphs. However, the equality case is somewhat more complicated. First of all, in a trivial manner, if equality holds for a graph G, then equality holds also for the graph obtained by adding to G any number of isolated vertices.

Because of $1^{2}+7^{2}=5^{2}+5^{2}$, equality in (3) will hold for a graph whose components are the 8 -vertex star and any regular graph of degree 5 . Examples of this kind can be constructed ad libitum.

Theorem 3 has a number of noteworthy consequences.
Corollary 4. For $n=1,2,3$, there exists a single n-vertex tree. For all $n \geq 4$, the unique n-vertex tree with minimum π-Sombor index is the star S_{n} (identical to the complete bipartite graph $K_{1, n-1}$).

Figure 3. The eclipsed sun graph $E S(n, k)$ with $n=11$ and $k=3$.

Figure 4. The 12- and 17 -vertex trees with maximum π-Sombor index; these are the eclipsed sun graphs $E S(12,3)$ and $E(17,5)$.

Corollary 5. For $n=3$, there exists a single n-vertex connected unicyclic graph. For all $n \geq 4$, the unique n-vertex connected unicyclic graph with minimum π-Sombor index is the cycle C_{n} (the regular graph of degree 2).

Corollary 6. Among connected bicyclic graphs, equality in (5) holds only if $n=5$ and $G \cong K_{3,2}$.
Corollary 7. Among connected tricyclic graphs, equality in (5) holds only if either $n=4$ and $G \cong K_{4}$ or $n=6$ and $G \cong K_{4,2}$.

Corollary 8. Among connected tetracyclic graphs, equality in (5) holds only if either $n=6$ and G is one of the two regular graphs of degree 3 (of which one is $K_{3,3}$) or $n=7$ and $G \cong K_{5,2}$.

Corollary 9. Among connected pentacyclic graphs, equality in (5) holds only if $n=8$ and either $G \cong K_{6,2}$ or G is a regular graph of degree 3 .

Corollary 10. Among connected hexacyclic graphs, equality in (5) holds only if either $n=5$ and $G \cong K_{5}$ or $n=9$ and $G \cong K_{7,2}$ or $n=10$ and G is a regular graph of degree 3 .

Because of the absence of correlation between Sombor and π-Sombor indices (cf. Figure 2), characterizing the graphs with maximum $\pi S O$-value appears to be a much more difficult task. We tried to shed some light on this problem in the case of trees. For this end, we made a computer search of all trees up to $n=17$ vertices.

In order to describe our findings, we need some preparation.
Definition 11. The sun graph is a tree having a central vertex to which 2-vertex branches are attached. The eclipsed sun graph is a tree having a central vertex to which 2 -vertex branches and pendent vertices are attached. The eclipsed sun graph with n vertices and $k 2$-vertex branches will be denoted by $E S(n, k)$, see Figure 3.

Recall that if $k=0$, then $E S(n, k)$ coincides with the star S_{n}. If n is odd and $k=(n-1) / 2$, then $E S(n, k)$ coincides with the ordinary sun graph.

All calculations (up to $n=17$) showed that the tree with maximum $\pi S O$-value is an eclipsed sun graph. Two characteristic examples are depicted in Figure 4.

Moreover, we found that the respective eclipsed sun graphs are:

- $E S(n, 1)$ for $n=5,6,7$
- $E S(n, 2)$ for $n=8,9,10$
- $E S(n, 3)$ for $n=11,12,13$
- $E S(n, 4)$ for $n=14,15,16$
- $E S(n, 5)$ for $n=17$.

This encourage us to state the following:
Conjecture 12. For $n \geq 5$, the n-vertex tree with maximum π-Sombor index is the eclipsed sun graph $E(n, k)$ for $k=\lfloor(n-2) / 3\rfloor$.

Bearing in mind that

$$
\begin{aligned}
S O(E S(n, k)) & =\sqrt{5} k+k \sqrt{4+d^{2}}+(n-2 k-1) \sqrt{1+d^{2}} \\
{ }^{m} S O(E S(n, k)) & =\frac{k}{\sqrt{5}}+\frac{k}{\sqrt{4+d^{2}}}+\frac{n-2 k-1}{\sqrt{1+d^{2}}}
\end{aligned}
$$

we can re-formulate Conjecture 12 as
Conjecture 13. Let T_{n} be an n-vertex tree, $n \geq 5$. Then,

$$
\pi S O\left(T_{n}\right) \leq\left[\sqrt{5} k+k \sqrt{4+d^{2}}+(n-2 k-1) \sqrt{1+d^{2}}\right]\left[\frac{k}{\sqrt{5}}+\frac{k}{\sqrt{4+d^{2}}}+\frac{n-2 k-1}{\sqrt{1+d^{2}}}\right]
$$

for $k=\lfloor(n-2) / 3\rfloor$. Equality holds if and only if $T_{n} \cong E S(n,\lfloor(n-2) / 3\rfloor)$.

4. Conclusion

The result stated as Conjectures 12 and 13 were verified by direct calculation up to $n=17$. Establishing if these are generally valid (or are violated for some larger value of n) remains a task for the future. Bearing in mind the structure of the eclipsed sun graph, this task appears to be difficult. It will stay as a challenge to mathematicians better than the present authors.

What also remains to be done is to study additional properties of the π-Sombor index, especially of its correlating properties with regard to physicochemical parameters of chemical substances, first of all of alkanes. Results along these lines are expected to be achieved in a reasonable future.
Acknowledgments: Boris Furtula and Izudin Redžepović thank for financial support by the Serbian Ministry of Science, Technological Development, and Innovation (Grant No. 451-03-47/2023-01/200122). The latter author also acknowledges financial support by the State University of Novi Pazar.
Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Conflicts of Interest: "The authors declare no conflict of interest."

References

[1] Bondy, J. A., \& Murty, U. S. R. (1976). Graphs and subgraphs. Graph Theory With Applications, The Macmillan Press, New York.
[2] Gutman, I. (2013). Degree-based topological indices. Croatica chemica acta, 86(4), 351-361.
[3] Kulli, V. R. (2020). Graph indices, in: Pal, M., Samanta, S., \& Pal, A. (Eds.), Handbook of Research of Advanced Applications of Graph Theory in Modern Society. Hershey: Global, pp. 66-91.
[4] Todeschini, R., \& Consonni, V. (2009). Molecular descriptors for chemoinformatics: volume I: alphabetical listing/volume II: appendices, references. John Wiley \& Sons.
[5] Gutman, I. (2021). Geometric approach to degree-based topological indices: Sombor indices. MATCH Communications in Mathematical and in Computer Chemistry, 86(1), 11-16.
[6] Gutman, I. (2021). Some basic properties of Sombor indices. Open Journal of Discrete Applied Mathematics, 4(1), 1-3.
[7] Gutman, I. (2022). Gutman, I. (2022). Sombor indices-back to geometry. Open Journal of Discrete Applied Mathematics, 5(2), 1-5.
[8] Devaragudi, V., \& Chaluvaraju, B. (2023). Block Sombor index of a graph and its matrix representation. Open Journal of Discrete Applied Mathematics, 6, 1-11.
[9] Horoldagva, B., \& Xu, C. (2021). On Sombor index of graphs. MATCH Communications in Mathematical and in Computer Chemistry, 86, 793-713.
[10] Liu, H., Gutman, I., You, L., \& Huang, Y. (2022). Sombor index: review of extremal results and bounds. Journal of Mathematical Chemistry, 60(5), 771-798.
[11] Liu, H., You, L., \& Huang, Y. (2023). Sombor index of c-cyclic chemical graphs. MATCH Communications in Mathematical and in Computer Chemistry, 90, 495-504.
[12] Naz, K., Ahmad, S., \& Bashier, E. (2022). On computing techniques for Sombor index of some graphs. Mathematical Problems in Engineering, 2022. Article, 1329653
[13] Oboudi, M. R. (2023). Mean value of the Sombor index of graphs. MATCH Communications in Mathematical and in Computer Chemistry. 89, 733-740.
[14] Oboudi, M. R. (2023). On graphs with integer Sombor index. Journal of Applied Mathematics and Computing, 69, (2023) 941-952.
[15] Rada, J., Rodríguez, \& J. M., Sigarreta, J. M. (2021). General properties on Sombor indices. Discrete Applied Mathematics, 299, 87-97.
[16] Reja, S., \& Nayeem, A. (2023). On Sombor index and graph energy. MATCH Communications in Mathematical and in Computer Chemistry. 89, 451-465.
[17] Ünal, S. O. (2022). Sombor index over the tensor and Cartesian product of monogenic semigroup graphs. Symmetry, 14(5), Article, 1071.
[18] Deng, H., Tang, Z., \& Wu, R. (2021). Molecular trees with extremal values of Sombor indices. International Journal of Quantum Chemistry, 121(11), Article, e26622.
[19] Fang, X., You, L., \& Liu, H. (2021). The expected values of Sombor indices in random hexagonal chains, phenylene chains and Sombor indices of some chemical graphs. International Journal of Quantum Chemistry, 121(17), Article, e26740.
[20] Alikhani, S., \& Ghanbari, N. (2021). Sombor index of polymers. MATCH Communications in Mathematical and in Computer Chemistry, 86, 715-728.
[21] Asif, F., Zahid, Z., Husin, M. N., Cancan, M., Tas, Z., Alaeiyan, M., \& Farahani, M. R. (2022). On Sombor indices of line graph of silicate carbide $S_{2} C_{3}--I[p, q]$. Journal of Discrete Mathematical Sciences and Cryptography, 25, 301-310.
[22] Divyashree, B. K., Jagadeesh, R., \& Siddabasappa (2022). Sombor indices of TUAC 6 and $T U Z C_{6}$ nanotubes. Journal of Applied Chemical Science International, 13(4), 70-79.
[23] Liu, H., Chen, H., Xiao, Q., Fang, X., \& Tang, Z. (2021). More on Sombor indices of chemical graphs and their applications to the boiling point of benzenoid hydrocarbons, International Journal of Quantum Chemistry, 121(17), Article, e26689.
[24] Redžepović, I. (2021). Chemical applicability of Sombor indices. Journal of the Serbian Chemical Society, 86, $445-457$.
[25] Shashidhara, A. A., Ahmed, H., Nandappa, D. S., \& Cancan, M. (2023). Domination version: Sombor index of graphs and its significance in predicting physicochemical properties of butane derivatives. Eurasian Chemical Communications, 5, 91-102.
[26] Hunag, Y., \& Liu, H. (2021). On the modified Sombor indices of some aromatic compounds. Journal of South China Normal University (Natural Science Edition, 53(4) 91-99 (in Chinese).
[27] Huang, Y., \& Liu, H. (2021). Bounds of modified Sombor index, spectral radius and energy. AIMS Mathematics, 6(10), 11263-11274.
[28] Shooshtari, H., Sheikholeslami, S. M., \& Amjadi, J. (2023). Modified Sombor index of unicyclic graphs with a given diameter, Asian-European Journal of Mathematics. https://doi.org/10.1142/S1793557123500985.
[29] Zuo, X., Rather, B. A., Imran, M., \& Ali, A. (2022). On some topological indices defined via the modified Sombor matrix. Molecules, 27, Article, 6776.

