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Abstract: A number of results on claw-free, paw-free graphs have been presented in the literature. Although
the proofs of such results are elegant, sound and valid, it has gone unnoticed that all the results about
claw-free, paw-free graphs in the literature are a consequence of a result by Olariu [1]. The note, apart from
covering the aforementioned gap, also provides an alternate proof to a result by Faudree and Gould found in
[2] in that, an unnoticed consequence resulted in the characterization of claw-free, paw-free graphs.
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1. Introduction

Let G = (V, E) be a simple connected graph with vertex set V(G) and edge set E(G). A matching is a set of
pairwise disjoint edges. The order n of G is given by n = ∣V(G)∣. The degree, degG(v) of v ∈ V(G) is the number
of edges incident with v in G. If degG(v) = 1, then v is a pendant vertex. The minimum degree and maximum
degree of G are denoted, respectively by δ(G) and ∆(G). Moreover, they are given as δ(G) = min

v∈V(G)
{degG(v)}

and ∆(G) = max
v∈V(G)

{degG(v)}. The maximum number of pendant vertices in a spanning tree of G is the leaf

number, denoted L(G). If Pi is a u − v path of length i in G, then the distance between u and v in G, denoted
dG(u, v), is the minimum value of i for which Pi exists. Let S ⊂ V(G). Then S is an independent set, if no pair of
vertices in S are adjacent. Let X ⊆ V(G). The graph induced by X denoted by G[X], is the graph with vertex set
X and whose edges are all those in G each of which is incident with 2 vertices of X in G. A claw is the star K1,3,
complete bipartite graph. We may consider that K1,3 is given by {ww1, ww2, ww3}. Then any graph isomorphic
K1,3 ∪ {w2w3} is a paw. A paw is also called a K1,3 + {x} or Z1 (see [3,4]). Further, for distinct vertices x and y
not in K1,3, a graph isomorphic to K1,3 ∪ {w2w3, w2x, w3y} is called a net. See [5] for diagrams on claws, paws
and nets. For an integer k ≥ 2, a k-partite graph is the one whose vertex set can be partitioned into k different
independent sets, say V1, V2,⋯, Vk. If k = 2, it is a bipartite graph, for k = 3 it is a tripartite graph. In general, for
k ≥ 2 it is a multi-partite graph. A complete multi-partite graph is a multi-partite graph in which there exists an
edge between every pair of vertices from different independent sets. The complete graph Kn can be regarded
as a multi-partite graph in which every partite set is a singleton.

If G does not contain a particular graph H as an induced sub-graph where H is not a cycle, then G is said
to be H-free or equivalently, H is a forbidden sub-graph of G. Thus G is claw-free, if it does not contain a claw as
an induced sub-graph and G is paw-free if it has no induced sub-graph isomorphic to a paw. G is Hamiltonian
if it contains a spanning cycle and traceable if it has a spanning path. If G has a cycle of length l for each integer
l ∶ 3 ≤ l ≤ n, then G is a panclyclic graph. G is said to be pan-connected if for every l, where dG(u, v) ≤ l ≤ n−1 and
for each pair of distinct vertices u and v in G, there exist a u− v path of length l. For any pair of distinct vertices
u and v in G, if we can find a spanning u − v path of G, then G is Hamiltonian-connected. G is homogeneously

Open J. Discret. Appl. Math. 2023, 6(3), 26-29; doi:10.30538/psrp-odam2023.0090 https://pisrt.org/psr-press/journals/odam

https://pisrt.org/psr-press/journals/odam/
https://pisrt.org/psr-press
https://pisrt.org/psr-press/journals/odam


Open J. Discret. Appl. Math. 2023, 6(3), 26-29 27

traceable if for each vertex v in G there is a spanning path of G whose one of its pendant vertices is v. The
relationship,

pan-connectedÔ⇒ pancyclicÔ⇒HamiltonianÔ⇒ homogeneously traceable, (1)

is well known in the literature, see for instance [4]. However, the reverse implications fail to hold.
Pancyclicity, Hamiltonian-connectedness, Hamiltonicity, traceability, length of longest paths and cycles

are path- and cycle-related properties of a graph, see [4,6–10]. Studies date as far back as 1856, see [11]. In such
studies, many graph parameters as well as graphs with forbidden sub-graphs have been incorporated, see for
example [3,5–9].

Being a complex task to establish path- and cycle-related properties of a graph, Goodman and Hedetniemi
[3] succeeded in proving that every 2-connected claw-free, paw-free graph has a spanning cycle. Subsequently,
Duffus, Gould and Jacobson [7], showed that every 2-connected, claw-free, net-free graph is Hamiltonian.
They also, proved that every connected claw-free, net-free graph contains a spanning path. Later, as an
improvement of the previously mentioned result in [3], Gould and Jacobson [4] proved that every 2-connected,
claw-free, Z2-free graph is either pancyclic or a cycle, which implies that each 2-connected, claw-free, paw-free
graph is pancyclic or a cycle. In 1997, Faudree and Gould [2] proved that every 3-connected, claw-free,
paw-free graph G is a complete graph or a complete graph minus a matching and so G is pan-connected. In
their proof [2], they highlighted that a straight forward induction would be used to show that any connected,
claw-free, paw-free graph that has a vertex of degree at least 3 is a complete graph or a complete graph minus a
matching. This note provides an alternate proof to their result. An extension of the previously mentioned result
in [3] was given in [12], where it has been deduced that every connected, claw-free, paw-free graph G is either
Hamiltonian or is a path. Although the proofs on the results on claw-free, paw-free graphs were elegant (see
for example [2–4,12,13]), it being a complicated work to establish graph properties, it has gone unnoticed that
all results in the literature about claw-free, paw-free graphs are a mere consequence of a 1988 result by Olariu
[1] (see Theorem 1). This note covers this gap, in-fact all the aforementioned results on claw-free, paw-free
graphs are deduced as corollaries, since a characterization of the class is given.

A standard model in dealing with complicated objects is to decompose them into easier, more malleable
ones, see for instance [1,14]. For the purpose of the note, we recall the following result by Olariu [1]:

Theorem 1. [1] A graph G is a paw-free if and only if each component of G is triangle-free or complete multipartite.

Following Theorem 1, we realized that all simple, connected, claw-free, paw-free graphs can be specified
by applying easy but handy observations from it. Moreover, just like properties of the ubiquitous Petersen
graph have been presented in the literature [15], properties of pan-connectedness, Hamiltonian conncetedness,
pancyclicity and homogeneous traceability are deduced for claw-free, paw-free graphs. In fact, for readers who
are unfamiliar with the aforementioned properties, they would find it easier to track them using the derived
class. Although, the properties can be observed from the given class (see also [2]), we find it most convenient
to use the following results in order to verify some of the properties:

Theorem 2. [16] Let G be a simple connected graph of order n such that for any pair of non-adjacent vertices u and v in
G, we have degG(u)+degG(v) ≥ n. Then G is Hamiltonian connected or G ∈ G1 ∪G2.

Theorem 3. [10] Let G be the complete k-partite graph Kp1,p2,⋯,pk where p1 ≤ p2 ≤ ⋯ ≤ pk and k ≥ 3. Then the following
statements are equivalent:

(1) G is pan-connected.
(2) G is Hamiltonian-connected.

(3) n ≥ 2pk + 1, where n is the order of G, that is, n =
k
∑
i=1

pi.

Linial and Sturtevant [17] put forward the following conjecture which at the present moment has been
shown to be true only for δ ≤ 5, see [18] for more details:
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Conjecture 4. [17] Let G be a simple connected graph with minimum degree δ, leaf number L(G) and order n. Then

L(G) ≥ δ − 2
δ + 1

n + cδ, where cδ is a positive constant that depends on δ only.

In [13], attempts to confirm Conjecture 4 for some paw-free graphs and claw-free, paw-free graphs
was made. In fact, for claw-free, paw-free graphs it was pointed out that the authors were not sure as to
whether or not there are other graphs attaining the proved bounds apart from the complete graph. The
characterization given in this note confirms that every connected claw-free, paw-free graph satisfies the
premises and conclusion of Conjecture 4.

2. Results

The following result characterizes all connected, simple claw-free, paw-free graphs together with some of
their properties.

Theorem 5. A simple, connected, graph G of order n, minimum degree δ and maximum degree ∆ is claw-free and
paw-free if and only if G ∈ {Pn, Cn, Kn − tK2}, where Pn is a path, Cn is a cycle and Kn − tK2 is the graph formed by
deleting t disjoint edges from the complete Kn graph for 0 ≤ t ≤ ⌊ n

2 ⌋. Moreover, the following properties accompany a
simple, connected, claw-free, paw-free graph G:

(a) If G ∉ {Pn, Cn}, then G is Hamiltonian-connected.
(b) If G ∉ {Pn, Cn}, then G is pan-connected.
(c) If G ∉ {Pn, Cn}, then G is pancyclic.
(d) If G ≠ Pn, then G is homogeneously traceable.
(e) If G ∉ {Pn, Cn}, then L(G) = n − 2 or n − 1. Hence, every connected, simple, claw-free, paw-free graph satisfies

Conjecture 4.

Proof. It is clear that if G ∈ {Pn, Cn, Kn − tK2}, then G is a simple, connected, claw-free, paw-free graph. So, we
prove the other part. Assume G is a simple, claw-free, paw-free graph which is connected. If G is a path or a
cycle, then there is nothing to prove. Consider G being neither a path nor a cycle. Then ∆ ≥ 3. By Theorem 1,
G is triangle-free or a complete multipartite graph. So, in this instance, G is a complete k-partite graph or else
we obtain a claw as an induced sub-graph which is not allowed. Let V1, V2,⋯, Vk be the partite sets of G. Then
∣Vi∣ = 1 or 2 for all i ∶ 1 ≤ i ≤ k, otherwise, we obtain a claw is a induced sub-graph of G. Thus k ≥ 3 or else we
get a path or a cycle which contradicts the assumption of this case. Moreover, δ ≥ n − 2, since G is complete
multipartite and ∣Vi∣ ≤ 2 for all i. Hence, the maximum number of edges that can be deleted from the complete
graph to obtain G cannot exceed ⌊ n

2 ⌋, otherwise, we contradict δ. Likewise, only disjoint edges can be deleted
from the complete graph. Thus G = Kn − tK2 for 0 ≤ t ≤ ⌊ n

2 ⌋ as desired.
Note that if ∣Vi∣ = 1 for all i, then G = Kn and if ∣Vi∣ = 2 for all i, then G = Kn − n

2 K2. To deduce properties
(a)-(d). We realize that if G is neither a path nor a cycle, then G ∉ G1 ∪ G2 for in this instance every graph in
G1 has a paw as an induced sub-graph where as every graph in G2 has a claw as an induced sub-graph, see
Theorem 2. Further, since δ ≥ n − 2, we have n ≤ δ + 2 ≤ 2δ whenever G ∉ {Pn, Cn}. Hence, if G ∉ {Pn, Cn}, then
by Theorem 2, G is Hamiltonian-connected and Property (a) holds. So, Property (b) follows by an application
of Theorem 3, since k ≥ 3 and G is complete k-partite graph. Properties (c) and (d) follows directly from the
Implications 1 and the fact that a cycle is homogeneously traceable. Property (e) follows from the fact that the
graph Kn − tK2 has leaf number n− 2 or n− 1. That is, let v ∈ V(G) be such that degG(v) = ∆ and for some fixed
j, let Vj be the partite set containing v. If ∣Vj∣ = 1, then degG(v) = n − 1, since G is complete multipartite. This in
conjunction with δ ≥ n − 2 yield the result.

3. Conclusion

The characterization of claw-free, paw-free graphs also filled the gap between a result by Olariu [1] and
a result by Faudree and Gould [2] in that the note highlighted some properties of this class of graphs and
subsequently yields standard results in the relevant literature.

Acknowledgements

We acknowledge suggestions by the reviewers which improved the initial version of this note. Author



Open J. Discret. Appl. Math. 2023, 6(3), 26-29 29

Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final
manuscript.

Conflicts of Interest: “The authors declare no conflict of interest.”

References

[1] Olariu S. Paw-free graphs. (1988). Information Processing Letters., 28, 53–54.
[2] Faudree R.J., Gould R.J. (1997). Characterizing forbidden pairs for Hamiltonian properties. Discrete Mathematics., 173,

45–60.
[3] Goodman S. and Hedetniemi S. (1974). Sufficient conditions for a graph to be Hamiltonian, Journal of Combinatorial

Theory, Series B., 16, 175–180.
[4] Gould R.J. and Jacobson M.S. (1982). Forbidden sub-graphs and Hamiltonian properties of graphs. Discrete

Mathematics., 42, 189–196.
[5] Harris J.M. and Mossinghoff M.J. (2006). Traceability in small claw-free graphs. Utilitas Mathematica. 70, 263–271.
[6] Dirac G.A. (1952). Some theorems on abstract graphs. Proceedings of the London Mathematical Society., 2, 69-81.
[7] Duffus D., Gould R.J. and Jacobson M.S. (1981). Forbidden sub-graphs and the Hamiltonian theme. Chartrand et

al.,eds., The Theory and Applications of Graphs: Fourth International Conference (Wiley, New York), 297–316.
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