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Abstract: Coronoids are nice chemical structures that may be represented mathematically in the planar
hexagonal lattice. They have been well-studied both for their chemical properties and also their enumerative
aspects. Typical approaches to the latter type of questions often include classification and algorithmic
techniques. Here we study one simple class of coronoids called hollow hexagons. Notably, hollow
hexagons may be represented with a collection of partitions on the set {2, 3, 4, 6}. The hollow hexagons
are used to classify another family of primitive coronoids, which we introduce here, called lattice path
coronoids. Techniques from lattice path enumeration are used to count these newly-defined structures within
equivalence classes indexed by enclosing hollow hexagons.
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1. Introduction

C hemical structures can provide interesting opportunities for mathematicians to study geometric,
topological, or enumerative properties outside of the structures’ chemical significance. Here, we will

consider hydrocarbon molecules, specifically, coronoid hydrocarbons. As planar objects, these are particularly
nice to study mathematically. By deleting the carbon-hydrogen bonds, the molecules can be represented by
chains of hexagons on the planar hexagonal lattice with an internal corona hole. In particular, we want to
look at a class of coronoid systems called primitive coronoids. Primitive coronoids are single cyclic chains
of hexagons connected along edges. These have been studied prominently in various papers by Bergan,
Brendsdal, Brunvoll, Cyvin, Cyvin, Gutman, Kovačević, and Tošić [1–4], for example. Throughout this
paper, we examine enumerative aspects of a class of coronoids associated with another kind of well-studied
combinatorial objects - lattice paths.

Section 2 will make precise the definitions of the chemical structures of interest and provide some
vocabulary. Section 3 provides a bijection between the class of primitive coronoids known as hollow hexagons
and a set of partitions with restricted part size. In Section 4, we introduce lattice path coronoids: these are
considered in two cases and enumerative results are given in the next two sections. In Section 5, we look at the
first case where there is no overlap of lattice paths in the structure, and Section 6 considers the more involved
case with overlap. We conclude with some questions.

2. Chemical structures

The hexagonal lattice is a planar lattice of identical regular hexagons where each hexagon is simply
connected to six other hexagons. Many chemical structures can be represented on the hexagonal lattice
including a benzenoid, which is a planar set of simply connected regular hexagons that is defined by a cycle of
edges called the perimeter. Algorithmic and enumerative results on benzenoids are due to Vöge, Guttmann,
and Jensen [5] for example, or also see Gutman and Cyvin’s more comprehensive text [6]. Single coronoids or
simply coronoids are similar to benzenoids in that they are composed of simply connected hexagons on the
hexagonal lattice, but a coronoid must have an interior hole of at least two hexagons. (Single refers to the
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Figure 2. Examples of Hollow Hexagons

single corona hole in the interior of the coronoid. All structures in this paper will have a single corona hole,
but generalizations to molecules with multiple holes exist.) Thus coronoids are defined by two cycles on the
lattice, that is, the inner perimeter and the outer perimeter, where the inner perimeter is completely contained
within the outer. Here we want to further consider a subset of coronoids called primitive coronoids. Coronoids
(and benzenoids) have an interior vertex when the vertex is a vertex for three hexagons in the molecule.
From the dual perspective, interior vertices exist when there is a triangle in the dual graph. Coronoids and
benzenoids that do not have any interior vertices are called catacondensed. (Those with interior vertices are
called pericondensed.) See Brunvoll, Cyvin, and Cyvin [7] for a historical discussion on the classification and
study of these objects. We define primitive coronoids to be the coronoids consisting of a single cyclic chain of
hexagons without any interior vertices; also described as unbranched catacondensed coronoids. See Figure 1
for examples of each of these structures, and note, there is no expectation of convexity. Further, benzenoids and
coronoids are not usually considered fixed objects, so rotations and reflections of a benzenoid are not distinct.
When counting, each coronoid we count represents the equivalence class of its fixed rotations and reflections.

Finally, because primitive coronoids are catacondensed chains, each hexagon is connected to exactly two
other hexagons. If three hexagons appear in a line, the middle hexagon is said to be linearly annulated, otherwise
the middle hexagon is angularly annulated. More simply, we will refer to angularly annulated hexagons as
corners. A corner may be protruding or intruding, respectively, if it has three edges on the outer perimeter or
inner perimeter, respectively. We note, all primitive coronoids must have at least six protruding corners. In
fact, hollow hexagons are defined to be the primitive coronoids that that contain only six corners (all of which
must be protruding). These are aptly named because exactly six protruding corners implies exactly six edges.
Figure 2 displays some examples of hollow hexagons.

Before introducing the main object of this paper, another subset of primitive coronoids, we first look at
the class of hollow hexagons.

3. Hollow hexagons

Hollow hexagons are the simplest class of primitive coronoids, and enumerative results are known. Cyvin
et al. [4] and Cyvin, Brunvoll, and Cyvin [3], provide computer generated counts of hollow hexagons and exact
numerical results in terms of formulas and a generating function.

For our purposes, we wish to utilize the relationship of hollow hexagons with certain kind of integer
partition which was observed in entry A029136 of the Online Encyclopedia of Integer Sequences [8] by Arndt.
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Figure 3. Standard examples of hollow hexagons

In order to define a correspondence between a hollow hexagon and a partition, we provide a bijective proof of
this known result.

Theorem 1. Given an integer n > 6, the set of hollow hexagons with area n hexagons is in bijection with the set of integer
partitions of n into parts of size 2, 3, 4, or 6 with at least one 6.

Proof. First, let us identify each hollow hexagon h with (a, b, c, d, e, f )where this ordered 6-tuple is the cycle of
lengths of the edges of the dual graph of h, thus the edge lengths are determined by the number of hexagons
along that side minus one. We may construct a hexagon with area equal to 6 hexagons (see Figure 3a), but
technically because the corona hole must consist of at least two interior hexagons, this is not a primitive
coronoid. We use this hexagon h6 = (1, 1, 1, 1, 1, 1) as the foundational object in the proof. For any integer
partition, we grow the edges of this minimal hexagon based on the integers in the partition.

Given an integer partition λ of n > 6 composed of parts from the set {2, 3, 4, 6} with at least one 6, let ki
be the number of i’s in the partition for i ∈ {2, 3, 4, 6}. Define a map from the set of partitions {λ} to the set of
hollow hexagons {h} as follows:

λ ↦ hλ = (a, b, c, d, e, f ),

where

a = k2 + k3 + k4 + k6,

b = k4 + k6,

c = k3 + k6,

d = k2 + k4 + k6,

e = k3 + k4 + k6,

f = k6.

We claim that every such integer partition creates a unique hexagon. Given any two partitions λ1 and λ2,
suppose hλ1 = hλ2 , that is, (a1, b1, c1, d1, e1, f1) = (a2, b2, c2, d2, e2, f2). Because f1 = f2, using the equations above,
it must be the case that k61 = k62 , so we know λ1 and λ2 have the same number of 6’s. Because b1 = b2 and
c1 = c2, we have that k41 = k42 and k31 = k32 . But now this implies k21 = k22 and consequently λ1 = λ2. Therefore
the map is injective.

The process may be reversed. We utilize the identities that pairs of adjacent opposite sides must be equal,
that is, a + b = d + e, b + c = e + f , and c + d = a + f . Then starting with a hexagon h = (a, b, c, d, e, f ) oriented
so that a is a maximum length edge, the identity a + b = d + e implies b ≤ d and b ≤ e. Similarly, the identity
a + f = c + d implies f ≤ c and f ≤ d. Therefore either b or f is minimum. Thus we may orient the cycle so
the edge with maximum length is a and the edge with minimum length is f . We will shrink the edges of the
hexagon in steps, first observing that the edges must have lengths a, b, c, d, e, f ≥ 1.

1. Start with an empty partition λ = 0.
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2. Shrink all sides of the hexagon by the distance f − 1 and add f − 1 6’s into λ. Because f is the minimum
length edge, the remaining sides all have length at least 1.

3. Our new hexagon has the form (a− f + 1, b− f + 1, c− f + 1, d− f + 1, e− f + 1, 1). Shrink sides with lengths
originally labeled by a, c, and e by c − f thus reducing the side originally labeled with c to length 1. We
have (b − f + 1) + (c − f + 1) = (e − f + 1) + 1, so b − f + 1 = (e − f + 1) − (c − f ). Similarly, (d − f + 1) + (c −
f + 1) = (a − f + 1) + 1, that is d − f + 1 = (a − f + 1) − (c − f ). Therefore because sides b, d ≥ 1, we may
subtract c − f from a − f + 1 and e − f + 1 while still preserving positive side lengths. We add c − f 3’s to
the partition λ.

4. Now we have a hexagon with side lengths (a − c + 1, b − f + 1, 1, d − f + 1, e − c + 1, 1). Next, shrink sides
originally labeled with lengths a, b, d, and e by b − f . Applying the identities, we know b − f = e − c and
d − f = a − c. Therefore we may subtract b − f from edges originally labeled with b and e to get edge
lengths of 1 and because a ≥ e, we also preserve positive edge lengths along edges originally labelled
with a and d. Add b − f 4’s into λ.

5. Finally, we are left with the hexagon with sides (a − e + 1, 1, 1, d − b + 1, 1, 1). Our identities imply that
a − e + 1 = d − b, thus we may shrink both sides in positions originally labelled with a and d by d − b,
leaving the hexagon (1, 1, 1, 1, 1, 1). We add d − b 2’s to the partition as well as one 6 for the remaining
minimal hexagon.

It is not difficult to see that this process is the inverse of the first, and it is also injective. Suppose we have
two hexagons hλ1 and hλ2 where λ1 = λ2. Namely, starting with the edge of minimum length, if f1 /= f2, then
the partitions will have a different number of 6′s which contradicts are assumption so f1 = f2. Next if c1 /= c2,
the partitions would have a different number of 3’s and could not be equal. Similarly, if we assume b1 /= b2, we
get a contradiction in the number of 4’s in the partition. Assuming f1 = f2, c1 = c2, and b1 = b2, we may also
conclude that e1 = e2 because of the identity in Step 3 of the function. Last, if d1 /= d2 we would have a different
number of 2’s in our partitions. Thus we have arrived at a contradiction and the map must be injective.

Throughout this paper when we refer to the correspondence between λ and hλ, it will always be via the
map described in Theorem 1. Next, we formalize our discussion of lattice path coronoids.

4. Lattice path coronoids

We begin by describing the lattice path steps on a hexagonal lattice. From any hexagon, one may step
over an edge to another hexagon through a choice of six steps. We call these steps north (N), northeast (NE),
southeast (SE), south (S), southwest (SW), and northwest (NW). Now we define the primary object of interest.

Definition 2. A lattice path coronoid is a primitive coronoid whose cycle always has a protruding corner
between any pair of intruding corners.

Lattice path coronoids are so named because they can be described as an ordered 6-tuple of lattice paths
(L1, L2, L3, L4, L5, L6) where the lattice paths are in bijection with traditional lattice paths on a rectangular
lattice, that is, each lattice path consists of only two types of steps. In particular, L1 will consist of only N
and NE steps, L2 consists of only NE and SE sets, L3 consists of only SE and S steps, L4 consists only S and
SW steps, L5 consists of only SW and NW steps, and L6 consists of only NW and N steps. Because intruding
corners must be followed by protruding corner, we may never have more than two directions in each lattice
path. See Figure 4 for an example and Figure 1c for a non-example. The idea is that locally we are bending each
corner of a hollow hexagon into a lattice path in such a way that none of the lattice paths overlap and a single
corona hole remains in the middle of the coronoid. Brunvoll, Cyvin, and Cyvin [1] utilize a somewhat similar
process of bending corners with multiple steps where protruding corners are moved to intruding corners.

Before moving on to the results, we need a few standard conventions. Throughout we will use the same
labeling and orientation for the hexagons. The hexagons will have edges labeled A, B, C, D, E and F whose
lengths are a, b, c, d, e, and f , respectively, where a is maximum and f is minimum. The vertices in the cycle
are (v1, v2, v3, v4, v5, v6) with v1 between edges A and B, v2 between edges B and C, and so on. The edges will
always be ordered by the cycle (a, b, c, d, e, f )with side A of length a fixed as the left vertical edge as is the case
in Figure 3b. Note that the length of an edge will be given by the length of the corresponding dual edge, that
is, the length of the line segment from the center of the first hexagon to the center of the last hexagon along that
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Figure 4. Lattice path coronoid inside its enclosing hollow hexagon

edge. This means the length is not equal to the number of hexagons, but rather the number of hexagons minus
one. With this metric, the perimeter is equal to the number of hexagons in the chain and so both perimeter and
area are given by h = a + b + c + d + e + f . Further, lattice path Li around vertex vi is oriented so vi = (0, 0) with
the lattice paths typically starting at (xi, 0) and ending at (0, yi) under this orientation. For convenience, we
often denote the start as xi and the finish as yi with the assumed coordinates.

Next, we describe the relationship between lattice path coronoids and hollow hexagons.

Lemma 3. The set of lattice path coronoids can be partitioned into area-preserving equivalence classes indexed by hollow
hexagons.

Proof. Given any lattice path coronoid, we can identify the unique minimal size hollow hexagon which
contains the primitive coronoid. This is done by enclosing the coronoid in any larger hexagon and shrinking
by rows in each of the six dimensions until the hexagon cannot be any smaller without uncovering part of
the coronoid. Any rotation or reflection of this coronoid will result in rotation or reflection of the enclosing
minimal hollow hexagon, so equivalent coronoids remain in the same equivalence class of hollow hexagons.
Because a lattice path on the rectangular lattice has the same length as two adjacent sides of the enclosing
rectangle, it may always be extended out to this rectangle. Similarly, the lattice paths placed on each vertex
v of the enclosing hollow hexagon, more precisely the lattice path placed from one adjacent vertex of v to the
other, are restricted to the directions of the of the edges meeting at v, so these may also be extended out to the
minimal enclosing hexagon with the same perimeter as the lattice path coronoid.

Our aim is to count lattice path coronoids using these partition-indexed equivalence classes of hollow
hexagons. To that end we define some simple piece-wise functions.

Definition 4. Let s ∶ N×NÐ→ N be an integer-valued piecewise function where

s(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x+y−2
y−1 ) if x, y > 0

1 if x = y = 0

0 otherwise

We will to use s(x, y) to count the number of lattice paths that may be placed on a particular corner of a
hollow hexagon.

Proposition 5. The function s enumerates the number of lattice paths L that may be placed on a corner v starting at x
and ending at y.

Proof. Let the x and y variables correspond to distances away from a vertex v in each of its two directions
(either N and NE, NE and SE, SE and S, S and SW, SW and NW, and NW and N). In particular, if we place
a two-coordinate axis along these two directions with v at (0, 0), then (x, 0) and (0, y) are the two positions
where the lattice path from one of the vertices adjacent to v to the other vertex adjacent to v changes directions
for the first and last time, respectively. (See Figure 5.) These points are the starting and ending points of the
lattice path. It is well known that the number of lattice paths on a rectangular lattice with k E steps and n N
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(x, 0) = (4, 0)

v

(0, y) = (0, 2)

Figure 5. Lattice path L at corner v

steps is (n+k
k ), so applying a transformation of the plane, the number of lattice paths from (x, 0) to (0, y) on

the hexagonal lattice starting with a step in the first direction and ending with a step in the second direction is
s(x, y) for x, y > 0, that is, after discounting the fixed first and last steps we have x− 1 steps in the first direction
and y−1 steps in the second direction. When the distances x and y are zero, we are not altering the edges of the
hexagon around vertex v. Further, we cannot have exactly one of x and y equal to zero, because if the lattice
path takes a step in the first direction it must also take a step in the second direction.

(Note, throughout the binomial coefficient (nk) represents the ordinary combinatorial binomial coefficient
and thus is zero when k > n or when n or k is negative.)

We will also need to consider a specific type of lattice path.

Definition 6. Given lattice path L with steps s1s2⋯sk in direction d1 or direction d2, the reverse of L is

rev(L) = s̄k⋯s̄2 s̄1

where s̄ is a step in direction d1 if and only if s is a step in direction d2. We say a lattice path L is symmetric, if
L = rev(L).

The count for symmetric lattice paths from (x, 0) to (0, x) is also well-known.

Lemma 7. For x > 0, the number of symmetric lattice paths on the rectangular lattice from (x, 0) to (0, x) is 2x.

Proof. We know si = s̄2x−i+1, so the lattice path is totally determined by the first x steps. Summing over all
lattice paths from (x, 0) to (i, i), a point on the line y = x, that is, we sum ((x−i)+i

i ) over 0 ≤ i ≤ x concludes the
proof.

Thus we define another piecewise function to take into consideration for the fact that if x, y > 0 paths from
(x, 0) and (0, x) begin and end with a fixed step in different directions as well as to deal with the case where
x = 0 or y = 0.

Definition 8. Let t ∶ NÐ→ N be an integer-valued piecewise function where

t(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2x−1 if x > 0
1 if x = 0
0 otherwise

Thus we have the following corollary:

Corollary 9. The function t enumerates the number of symmetric lattice paths L that may be placed on a corner v
starting at x and ending at x.

Now we wish to use these piecewise functions in general formulas to count lattice path coronoids.
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5. Lattice path coronoids in equivalence classes of partitions without a 4

We begin by stating a result with much historical attribution; see Neumann [9]. Sometimes known as
Cauchy-Frobenius Lemma, it was cited and proved in Burnside’s book Theory of Groups of Finite Order [10]
and became mistakenly known as Burnside’s Lemma. The result is also the basis for the Pólya Enumeration
Theorem. We state the lemma using modern notation.

Lemma 10 (Cauchy-Frobenius). Given a finite group G acting on a finite set X, let Xg be the elements in the set that
are fixed by the group element g and let X/G be the set of orbits of X under G. Then

∣X/G∣ = 1
∣G∣ ∑g∈G

∣Xg∣.

It is not unusual to apply versions of this lemma in counting questions on chemical molecules; see for
instance Rosenfeld, Klein, and Oliva [11] who apply a version of Pólya’s result to enumerate molecules whose
structure is represented by bridged pairs of icosahedra.

We will use the group actions of the dihedral group

D12 = ⟨1, r, r2, r3, r4, r5, q, qr, qr2, qr3, qr4, qr5⟩

where r is a 60○ rotation and q is the reflection across the line bisecting A and D. The aim is to define functions
for enumerating the number of lattice path coronoids in the equivalence class of a hexagon fixed by each of the
groups actions, that is, for each action g ∈ D12 define fg(a, b, c, d, e, f ) such that f is the number of lattice path
coronoids whose enclosing hollow hexagon is fixed by the action of g.

We observe the following about hollow hexagons whose corresponding partitions do not contain a four.

Remark 1. If the corresponding partition to a hollow hexagon does not contain a four, any pair of lattice paths
placed on opposite corners are always non-adjacent. This is not necessarily true if the partition does contain a
four.

Because lattice path coronoids are catacondensed, that is, intruding adjacent corners are forbidden, the
farthest towards the center that a corner vertex of a hollow hexagon could go is by using the L-shaped lattice
path that bends where x and y are equal to their respective side lengths minus one. In the case of an equilateral
hollow hexagon, this is at x = a − 1 and y = a − 1. Therefore lattice paths on opposite corners are always at least
one hexagon apart as illustrated in Figure 6a. Furthermore, if the hollow hexagon corresponds to a partition of
only 2’s, 3’s, and 6’s, then the lattice paths on opposite corners are also always separated. This is because when
you add a 2 into the partition sides A and D increase by one, so either the maximum bend on opposite corners
doesn’t increase or the size of the L-shaped lattice path on each opposite increases by one, but in parallel
directions, so the lattice paths remain horizontally the same distance apart (although they are pulled farther
apart along the vertical direction). If a 3 is added into the partition, sides A, C, and E increase by one. But at
each corner, the maximum bend in the lattice path is limited by the sides that do not increase and so cannot
move closer together and cause an intersection. However, this is not true when a 4 is added to the partition. In
this case, the opposing corners at v1 and v4 can now have lattice paths that move further to the center in both
of its two directions. See Figure 6b for an example of this.

For the whole of Section 4, we assume the structure of the hollow hexagon is such that no opposite lattice
paths may be adjacent and consequently the corresponding partition does not contain a 4. We now separate
our discussion into rotations and reflections where we will set up functions to count the number of distinct
lattice path coronoids fixed under each action. With these functions we may then apply Cauchy-Frobenius to
count all such coronoids.

5.1. Rotations

Define fr1 to be the enumeration function of lattice path coronoids that are fixed by r1, the rotation by 60○.
Given a lattice path coronoid with lattice paths (L1, L2, L3, L4, L5, L6) that is in the equivalence class indexed by
hλ for some partition λ, we see that hλ is fixed by r1 if and only if each lattice path is equal to the path to the
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(a) Lattice paths on opposite corners cannot meet in an
equilateral hexagon. Here λ = 6+ 6+ 6.

(b) Lattice paths in opposite corners can meet in a
hollow hexagon if the partition contains a 4. Here
λ = 6+ 4+ 4+ 4.

Figure 6. Examples of disjoint and overlapping opposite lattice paths in a hollow hexagon

left of it, in other words, we have L1 = L2 = L3 = L4 = L5 = L6. Therefore we only need to find one lattice path
to determine the entire coronoid. Lattice path L1 starts on edge A and ends on edge B. We choose the ending
point along edge B as 0 ≤ y1 ≤ b− 1. However, the beginning x1 of L1 on A must not conflict with the end of L6,
but because L1 = L6, we have 0 ≤ x1 ≤ a − 1− y1.

b−1
∑

y1=0

a−1−y1

∑
x1=0

s(x1, y1) = 1+
b−1
∑

y1=1

a−1−y1

∑
x1=1

(x1 + y1 − 2
x1 − 1

)

Of course the only way that an element can be fixed in this case is if a = b and applying a change of variables
where s is the sum x1 + y1 where x1 ranges from 1 to s − 1, we have

fr1(a) = 1+
a−1
∑

y1=1

a−1y2

∑
x1=1

s(x1, y1) = 1+
a−1
∑
s=2

s−1
∑

x1=1
( s − 2

x1 − 1
) = 1+

a−1
∑
s=2

2s−2 = { 2a−2 if a > 1
1 if a = 1

(1)

We note that the set of lattice path coronoids fixed by r1 is the same as the set of lattice path coronoids fixed by
the rotation r5 = r5

1, because a rotation of 60○ to the right has the same effect as a rotation of 60○ to the left and
also implies L1 = L2 = L3 = L4 = L5 = L6. Thus we have

fr5(a) = fr1(a). (2)

Next, we will look at lattice path coronoids fixed by the rotation r2 = r2
1, that is, a clockwise rotation of

120○. In this case, we have L1 = L3 = L5 and L2 = L4 = L6, so we need to choose the two lattice paths, L1

and L2 to determine the coronoid. As before, we choose 0 ≤ y1 ≤ b − 1 as the ending point of L1 along edge
B and we also choose 0 ≤ y2 ≤ c − 1 as the ending point of L2 along the edge C. If the lattice path coronoid is
fixed by r2, we must have that a = c = e and b = d = f , consequently 0 ≤ y2 ≤ a − 1. Then, because the starting
point of L1 along edge A must not overlap the ending of L6 which is equal to L2, so we choose this point as
0 ≤ x1 ≤ a − 1− y2. Further, the starting point for L2 must be 0 ≤ x2 ≤ b − 1− y1. We have the equation

fr2(a, b) =
b−1
∑

y1=0

a−1
∑

y2=0

a−1−y2

∑
x1=0

b−1−y1

∑
x2=0

s(x1, y1)s(x2, y2). (3)

In this case, we also have another rotation whose set of fixed points is equivalent, namely rotating 240○ is the
same as rotating −120○, so

fr4(a, b) = fr2(a, b) (4)

where r4 = r4
1.
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The final rotation r3 = r3
1 is the rotation by 180○. Here L1 = L3, L2 = L4, and L3 = L6. Now we need to select

lattice paths L1, L2, and L3. Following a similar strategy to the case above, we see

fr3(a, b, c) =
b−1
∑

y1=0

c−1
∑

y2=0

a−1
∑

y3=0

a−1−y3

∑
x1=0

b−1−y1

∑
x2=0

c−1−y2

∑
x3=0

s(x1, y1)s(x2, y2)s(x3, y3). (5)

Before looking at actions by reflections, we also need to count the entire class of lattice path coronoids,
that is, those fixed by the identity element 1. We will need to choose each of the six lattice paths
(L1, L2, L3, L4, L5, L6), all of which could be distinct, along with starting and ending points.We have the function
f1(a, b, c, d, e, f ) =

b−1

∑
y1=0

c−1

∑
y2=0

d−1

∑
y3=0

e−1

∑
y4=0

f−1

∑
y5=0

a−1

∑
y6=0

a−1−y6
∑

x1=0

b−1−y1
∑

x2=0

c−1−y2
∑

x3=0

d−1−y3
∑

x4=0

e−1−y4
∑

x5=0

f−1−y5
∑

x6=0
s(x1, y1)s(x2, y2)s(x3, y3)s(x4, y4)s(x5, y5)s(x6, y6) (6)

Now we consider reflections in the actions of D12.

5.2. Reflections

The six reflections in a hexagon are of two types: reflections over lines through vertices and reflections
over lines bisecting edges. Because q is the horizontal reflection across the line bisecting edges A and D, qr2 is
the reflection across the line bisecting edges B and E, and qr4 is the reflection across the line bisecting C and F.
Further qr1, qr3, and qr5, respectively, are reflections across the lines through vertices v1 and v4, v2 and v5, and
v3 and v6, respectively. We will enumerate the former cases first.

Without loss of generality, we consider the reflection over the line bisecting A and D. (The other two
cases are easily generated by substitutions in the formula of a and d with either b and e or c and f .) To find
lattice-path coronoids that are fixed by a reflection across the line bisecting A and D, we know L1 = rev(L6),
L2 = rev(L5) and L3 = rev(L4). Thus the lattice path coronoid is determined by the choice of L1, L2, and L3.

As we have done in the case of reflections, we first choose the ending point of each of the lattice paths.
The ending point of L1 is 0 ≤ y1 ≤ b − 1, and the ending point of L2 is 0 ≤ y2 ≤ c − 1. Because L3 = rev(L4),
the ending point of L3 must be strictly less than half the length of D, so we have 0 ≤ y3 ≤ ⌊ d−1

2 ⌋. We may then
choose the three starting points with the restrictions of the choices of ending points, so 0 ≤ x2 ≤ b − 1 − y1 and
0 ≤ x3 ≤ c − 1 − y2. Because y6 = x1, we also have that x1 must be less than half of a, and thus 0 ≤ x1 ≤ ⌊ a−1

2 ⌋.
Putting this together, we have

fq(a, b, c, d) =
b−1
∑

y1=0

c−1
∑

y2=0

⌊ d−1
2 ⌋

∑
y3=0

⌊ a−1
2 ⌋

∑
x1=0

b−1−y1

∑
x2=0

c−1−y2

∑
x3=0

s(x1, y1)s(x2, y2)s(x3, y3), (7)

and
fqr2(b, c, d, e) = fq(b, c, d, e) and fqr4(c, d, e, f ) = fq(c, d, e, f ). (8)

Finally, we need to enumerate lattice path coronoids fixed by reflections across lines through opposing
pairs of points. Without loss of generality, we consider the reflection across the line through the vertices v1 and
v4. In this case lattice paths L1 and L4 must be symmetric, that is L1 = rev(L1) with x1 = y1 and L4 = rev(L4)
with x4 = y4. Further L2 = rev(L6) and L3 = rev(L5). We choose the ending points for L2 and L3 as 0 ≤ y2 ≤ c − 1
and 0 ≤ y3 ≤ d − 1. Because L1 is symmetric, we choose L1 in t(y1) ways for 0 ≤ y1 ≤ b − 1. Similarly, we choose
L4 in t(x4) ways for 0 ≤ x4 ≤ d − 1 − y3. We choose the other two starting points for L2 and L3 as before with
0 ≤ x2 ≤ b − 1− y1 and 0 ≤ x3 ≤ c − 1− y2. Thus, the function is

fqr1(b, c, d) =
b−1
∑

y1=0

c−1
∑

y2=0

d−1
∑

y3=0

b−1−y1

∑
x2=0

c−1−y2

∑
x3=0

d−1−y3

∑
x4=0

t(y1)s(x2, y2)s(x3, y3)t(x4). (9)

We also have
fqr3(c, d, e) = fqr1(c, d, e) and fqr5(a, b, c) = fqr1(a, b, c). (10)

Collectively Equations 1-10, impart the following result:
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(c) λ = 6+ 6+ 3+ 3+ 3

Figure 7. Hollow hexagons whose partitions do not contain a 4

Proposition 11. Given a hollow hexagon hλ = (a, b, c, d, e, f ) where λ does not contain a 4, the number of lattice path
coronoids in the equivalence class indexed by hλ and fixed under the action of the g ∈ D12 is fg(hλ).

We create counting functions indexed by the parts of a partition.

5.3. Partitions of 2’s, 3’s, or 6’s

There are four cases for the edge lengths of hollow hexagons whose partitions, λ, contain 2’s, 3’s, and 6’s.
(Some examples of such hollow hexagons are shown in Figure 7.) Each has a different set of symmetric group
actions, so we consider them individually starting with the case that the partition only contains 6’s.

Proposition 12. Given a partition λ of n.

1. If λ contains 6’s, the corresponding hollow hexagon is equilateral and so has the form hλ = (a, a, a, a, a, a). The
number of distinct lattice path coronoids, up to rotation and reflection, in the equivalence class indexed by hλ is

g6(a) =
1

12
( f1(a, a, a, a, a, a)+ 2 fr1(a)+ 2 fr2(a, a)+ fr3(a, a, a)+ 3 fq(a, a, a, a)+ 3 fqr1(a, a, a))

2. If λ contains only 2’s and 6’s with at least one of each, the corresponding hollow hexagon has the form hλ =
(a, b, b, a, b, b), and the number of distinct lattice path coronoids, up to rotation and reflection, in the equivalence
class indexed by hλ is

g6,2(a, b) = 1
4
( f1(a, b, b, a, b, b)+ fr3(a, b, b)+ fq(a, b, b, a)+ fqr1(b, a, b))

3. If λ contains only 3’s and 6’s with at least one of each, the corresponding hollow hexagon has the form hλ =
(a, b, a, b, a, b), and the number of distinct lattice path coronoids, up to rotation and reflection, in the equivalence
class indexed by hλ is

g6,3(a, b) = 1
6
( f1(a, b, a, b, a, b)+ 2 fr2(a, b)+ 3 fq(a, b, a, b))

4. If λ contains only 2’s, 3’s, and 6’s with at least one of each, the corresponding hollow hexagon has the form hλ =
(a, b, c, d, c, b), and the number of distinct lattice path coronoids, up to rotation and reflection, in the equivalence
class indexed by hλ is

g6,3,2(a, b, c, d) = 1
2
( f1(a, b, c, d, c, b)+ fq(a, b, c, d))

Proof. The first result follows directly from the application of Lemma 10 and Proposition 11. For the next, a
2 in the partition implies the relationships a = d > b = c = e = f . There are four group elements acting on this
figure: the identity 1, r3, a rotation by 180○, q, the reflection across the horizontal line bisecting the hexagon,
and qr3, the reflection across a vertical line bisecting the hexagon. The result follows from Lemma 10. Then,
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when the partition contains only 3’s and 6’s, we have that a = c = e > b = d = f . In this case our group consists
of the identity 1, a rotation by 120○, a rotation by 240○, the reflection over the horizontal line bisecting edges A
and D, as well as compositions of these which give the reflections across the lines bisecting edges B and E and
C and F. Note, fq(a, b, a, b) = fq(b, a, b, a), so the two rotations and three reflections are counted by the same
functions respectively, and the third result follows. Last, when there is a 2 and a 3 in the partition, we know
a > c = e and d > b = f , so we need possibly four distinct variables to define the function. Here the reflection
group has only one line of symmetry, that is, through the edges A and D. We again apply Lemma 10.

In the next section, we will allow partitions with parts of size four. In this case we will have to adjust the
counting functions to avoid placing adjacent lattice paths on opposite corners of a hexagon as these adjacent
paths will damage the single corona hole.

6. Lattice path coronoids in equivalence classes of partition containing a 4

Partitions containing a four can be more involved that those that do not contain a four because it is
possible for lattice paths on opposing vertices of the hexagon to meet in the center and create more than one
corona hole or interior vertices. To prevent this, we modify the function s(x, y) to avoid not only intersections
between the opposing lattice paths but also pairs of lattice paths that are adjacent with no hexagon between
them.

Definition 13. Given a hollow hexagon h = (a, b, c, d, e, f ), let u ∶ N ×N ×N ×N Ð→ N be an integer-valued
piecewise function where

u(x1, y1, x4, y4) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x1+y1−2
y1−1 )(

x4+y4−2
y4−1 )− (

x1+x4+b−d−2
b+c−3 )(y1+y4−b+d−2

c+d−3 ) if x1, y1, x4, y4 > 0

(x1+y1−2
y1−1 ) if x1, y1 > 0 and x4 = y4 = 0

(x4+y4−2
y4−1 ) if x4, y4 > 0 and x1 = y1 = 0

1 if x1 = y1 = x4 = y4 = 0

0 otherwise

Note, the function u is also dependent on the edge lengths of the enclosing hollow hexagon.

Proposition 14. The function u enumerates the number of pairs of non-adjacent lattice paths, L1 and L4, that can be
placed on the opposite corners, v1 and v4, of a hollow hexagon hλ = (a, b, c, d, e, f ) where L1 and L4, respectively, start at
x1 and x4 respectively, and end at y1 and y4, respectively.

Before proving Proposition 14, we state a result due to Lindström [12]. This result appears in various
forms in the literature of physics, chemistry, and mathematics. See Krattenthaler [13] for an interesting
discussion of this history. Here we only give the simplified version of the theorem needed for this paper.

Proposition 15 (Lindström). Let P(A, B) count the number of lattice path from A to B, and let Q((A, B), (C, D))
count the number of pairs of lattice paths (A, B) and (C, D) that do not intersect. Then

∣det [P(A, B) P(A, D)
P(C, B) P(C, D)]∣ = Q((A, B), (C, D))−Q((A, D), (C, B)).

We are now ready to prove Proposition 14.

Proof of Proposition 14. Given a hexagon hλ = (a, b, c, d, e, f ), we want to choose lattice paths L1 and L4 to be
non-adjacent, that is, there is at least one hexagon between every pair of points with one point in the pair on
each path. If there is no change to the hollow hexagon at either one or both of the corners with lattice path L1

and L4, then there can be no overlap between the two paths and thus s(x, y) can be applied in this case. Now
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(0, 0)

S1 = (x1, 0)

E1 = (0, y1)

E4 = (c +d − x4, b + c)

S4 = (c +d, b + c − y4)

a

b
c

d

e

f

Figure 8. Intersecting opposite lattice paths

suppose x1, y1, x4, y4 > 0. In order to enumerate these paths we utilize a coordinate system on the hexagonal
lattice. Orient the coordinate system so that the point (0, 0) lies on the corner of the hexagon at vertex v1

between edge A and edge B. Lattice path L1 consists of Northeast steps (NE) at an angle of 60○ from side A
of the hexagon and North steps (N) at an angle of 120○ from the NE steps. Further, L1 is a lattice path from
S1 = (x1, 0) to E1 = (0, y1) which begins with an NE step and ends with a N step. Lattice path L4 consists of
similarly defined Southwest and South steps under this orientation. In order to use a consistent set of sets,
we reverse the standard direction of L4 and assume the lattice path begins along edge E and ends along edge
D. So the lattice path L4 is from S4 = (c + d, b + c − y4) to E4 = (c + d − x4, b + c) beginning with a N step and
ending with a NE step. See Figure 8. Because L1 must begin with an NE step and end with a N step in order
to have the coronoid start and finish at x1 and y1 respectively, all possible paths L1 are in bijection with all
lattice paths from (x1, 1) to (1, y1). Similarly for L4, we can count lattice paths from Ŝ4 = (c + d − 1, b + c − y4) to
Ê4 = (c + d − x4, b + c − 1).

Further, we need pairs of lattice paths that not only do not intersect, but also are such that at least one
point in the lattice (that is one hexagon) is between any pair of points with one point from each path. This is
important to preserve a single corona hole and to prevent the creation of an interior vertex. We apply a simple
transformation to a lattice path from (x1, 1) to (1, y1) where all points are shifted south one step and to the
northeast one step, creating a path from Ŝ1 = (x1 + 1, 2) to Ê1 = (2, y1 + 1). Now, any pair of non-intersecting
lattice paths L̂1 and L̂4 where the first path is from Ŝ1 to Ê1 and the second is from Ŝ4 to Ê4 can be transformed
by reversing the map and by adding the appropriate N and NE steps to the beginning and end of the maps into
the desired non-adjacent paths L1 and L4 which are separated for every pair of points by at least one hexagon.
(This transformation is illustrated in Figure 9.)

Finally, we claim if we consider the other pair of paths, (Ŝ1, Ê4) and (Ŝ4, Ê1), these paths always intersect
and thus Q((Ŝ1, Ê4), (Ŝ4, Ê1)) = 0. We look at the relative positions of pairs of starting and ending points.
First, we note that each of the points Ŝ1 and Ŝ4 must have x-coordinates greater and y-coordinates less that
those of the ending points Ê1 and Ê4, because otherwise there is no path using the allowable N and NE steps.
Using the orientation where a larger x-coordinate implies a point is to the right and a larger y-coordinate
implies a point is above, we see that starting points are always to the right and below ending points. Next,
consider the relative positions of Ŝ1 and Ŝ4. Because x1 ≤ a − 1 and y4 ≤ e − 1 we have for the x-coordinates
x1 + 1 ≤ a ≤ a + f − 1 = c + d − 1 and for the y-coordinates 2 ≤ f + 1 ≤ e + f − y4 = b + c − y4. Therefore Ŝ1 is
always to the left and below Ŝ4. Similarly, because x4 ≤ d − 1 and y1 ≤ b − 1, we know the x-coordinates are
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(0, 0)

Ê4 = (c +d − x4, b + c − 1)

Ŝ4 = (c +d − 1, b + c − y4)
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f

Ŝ1 = (x1 + 1, 2)

Ê1 = (2, y1 + 1)

Figure 9. Transformations of lattice paths

2 ≤ c + 1 ≤ c + d − x4 and the y-coordinates are y1 + 1 ≤ b ≤ b + c − 1, so Ê1 is to the left and below Ê4. Because
the y-coordinate of Ê4 is above all other starting or ending points, and the y-coordinate of Ŝ1 is below all other
points, the x-coordinate of Ê1 is to the left and the x-coordinate of Ŝ4 is to the right of all other points, there is
no way for a path from Ŝ4 to Ê1 to fail to intersect a path from Ŝ1 to Ê4.

We can now count the number of lattice paths between these pairs of vertices.

Lattice paths Ŝ1 to Ê1 ∶ (
(x1 + 1− 2)+ (y1 + 1− 2)

y1 + 1− 2
) = (x1 + y1 − 2

y1 − 1
)

Lattice paths Ŝ1 to Ê4 ∶ (
((x1 + 1)− (c + d − x4))+ (b + c − 1− 2)

b + c − 1− 2
) = (x1 + x4 + b − d − 2

b + c − 3
)

Lattice paths Ŝ4 to Ê1 ∶ (
(c + d − 1− 2)+ (y1 + 1− (b + c − y4))

c + d − 1− 2
) = (y1 + y4 − b + d − 2

c + d − 3
)

Lattice paths Ŝ4 to Ê4 ∶ (
(c + d − 1− (c + d − x4))+ (b + c − 1− (b + c − y4))

b + c − 1− (b + c − y4)
) = (x4 + y4 − 2

y4 − 1
)

(We stated before that the starting points must always have greater x-coordinates and smaller y-coordinates
than the ending points in order for a path to exist. This is also indicated by the binomial coefficients being zero
if this is not the case.)

Applying Proposition 15, the determinant is

det

⎡⎢⎢⎢⎢⎢⎢⎣

(x1+y1−2
y1−1 ) (x1+x4+b−d−2

b+c−3 )

(y1+y4−b+d−2
c+d−3 ) (x4+y4−2

y4−1 )

⎤⎥⎥⎥⎥⎥⎥⎦

=

(x1 + y1 − 2
y1 − 1

)(x4 + y4 − 2
y4 − 1

)− (x1 + x4 + b − d − 2
b + c − 3

)(y1 + y4 − b + d − 2
c + d − 3

),
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as desired. We note, because a + f = c + d and b + c = e + f , we may equivalently write this expression in terms
of a, e, and f as follows:

(x1 + y1 − 2
y1 − 1

)(x4 + y4 − 2
y4 − 1

)− (x1 + x4 − a + e − 2
e + f − 3

)(y1 + y4 + a − e − 2
a + f − 3

)

The possible group actions on a hexagon whose corresponding partition contains at least one 4 are the
identity 1, the rotation of 180○, the reflection across the line through edges C and F, and the reflection over the
line through vertices a and d. Because there is a 4 in the partition, it is not possible for edges A, B, D, or E to
equal edge F. Thus we cannot have rotations by 60○, 120○, 240○, or 300○. Nor can there be reflection across the
lines through vertices v4 and v5 or v3 and v6 or reflections across lines bisection edges A and D or B and E.

6.1. Rotations with a 4

We begin with the identify function. Using our new function u, it is straight-forward to replace our
counting function f1 with f̄1 to enumerate the total number of coronoids fixed by the identity 1. We have
f̄1(a, b, c, d, e, f ) =

b−1
∑

y1=0

c−1
∑

y2=0

d−1
∑

y3=0

e−1
∑

y4=0

f−1

∑
y5=0

a−1
∑

y6=0

a−1−y6

∑
x1=0

b−1−y1

∑
x2=0

c−1−y2

∑
x3=0

d−1−y3

∑
x4=0

e−1−y4

∑
x5=0

f−1−y5

∑
x6=0

u(x1, y1, x4, y4)s(x2, y2)s(x3, y3)s(x5, y5)s(x6, y6)

Remark 2. Note the function u(x1, y1, x4, y4) on the opposite corners with vertices v1 and v4 is the same as
s(x1, y1) ⋅ s(x4, y4) in the case that any pair of lattice paths could not be adjacent, because in that case either
x1 + 1 < c + d − x4 or y1 + 1 < b + c − y4 and the subtrahend in u is zero.

Next we look at coronoids fixed by the rotation of 180○, that is, r3. As before, we see that L1 = L4, L2 = L5,
and L3 = L6. We introduce another function.

Definition 16. Given a hollow hexagon h = (a, b, c, d, e, f ), let v ∶ N ×N Ð→ N be an integer-valued piecewise
function where

v(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x+y−2
x−1 ) if x ≤ ⌊ c+d

2 ⌋, y > 0

∑⌊
b+c

2 ⌋−1
z=1 (x+z−⌊ a+c

2 ⌋−1
z−1 )(y−z+⌊ a+c

2 ⌋−1
y−z )− if x > ⌊ a+c

2 ⌋, y > 0,

(x−z+b+c−⌈ a+c
2 ⌉−1

b+c−z−2 )(y+z−b−c+⌈ a+c
2 ⌉−1

y+z−b−c+1 ) and a + c odd

∑⌊
b+c

2 ⌋−1
z=1 (x+z−⌊ a+c

2 ⌋−1
z−1 )((y−z+⌊ a+c

2 ⌋−1
y−z )− (y+z−⌈ a+c

2 ⌉−b+d−1
y+z−b−c )) if x > ⌊ a+c

2 ⌋, y > 0,

−((x−z+b+c+⌈ a+c
2 ⌉−1

b+c−z−2 )− (x+z−⌊ a+c
2 ⌋−1

z−2 ))(y+z−b−c−⌈ a+c
2 ⌉−1

y+z−b−c+1 )+ and a + c even

1 if x = y = 0

0 otherwise

Proposition 17. The function v counts the number of pairs of non-adjacent lattice paths L1 and L4 placed on opposite
corners v1 and v4 of a hollow hexagon hλ = (a, b, c, d, e, f ) that is fixed under the rotation r3 where L1 and L4 both start
at x and end at y.

Proof. In order to enumerate lattice path coronoids that are fixed under r3, we know that path L4 is equal to
L1, so x1 = x4 and y1 = y4. We also have equality among some edge lengths with a = d, b = e, and c = f . We
apply the same orientation as in the proof of Proposition 14 where v1 = (0, 0) and we reverse the direction of
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S1 = (x1, 0)

(0, y1)

(c +d − x4, b + c)
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(⌊
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2 ⌋, z)

(⌈
c+d

2 ⌉, b + c − z)

Figure 10. A hexagon fixed under the action of r3

L4 so it starts along edge E and ends along edge D. There are two cases to consider. In the first case, assume
the parameter x1 ≤ ⌊ c+d

2 ⌋ − 1. This means lattice path L1 does not cross the NE line x = ⌊ c+d
2 ⌋ − 1 and similarly

lattice path L4 does not cross the line x = c + d − ⌊ c+d
2 ⌋ + 1 = ⌈ c+d

2 ⌉ + 1. So for any choice of x1 = x4, the lattice
paths are non-adjacent. For 1 ≤ y1 ≤ b − 1, there are (x1+y1−2

x1−1 ) pairs of paths.

In the second case, assume x > ⌊ c+d
2 ⌋ − 1. We introduce a parameter z where we let z be the y-coordinate

of the path L1 where it intersects the line x = ⌊ c+d
2 ⌋. Because of the symmetry z is also the y-coordinate of the

lattice path L4 where L4 intersects the line x = ⌈ c+d
2 ⌉. (See Figure 10.) These two intersection points lie either on

the same line or on adjacent lines. Because the lattice paths L1 and L4 cannot intersect, and in fact must have at
least one hexagon between them to preserve the corona hole, z must be strictly less than ⌊ b+c

2 ⌋. Further, observe
the part of path L1 from (x1, 0) to (⌊ c+d

2 ⌋, z) is equal to the reverse of the part of the path L4 from (⌈ c+d
2 ⌉, b+ c− z)

to (c + d − x4, b + c), and there is a similar relationship for the remaining parts of the two paths. Thus we need
only check that the partial paths (x1, 0) to (⌊ c+d

2 ⌋, z) and (c + d, b + c − y4) to (⌈ c+d
2 ⌉, b + c − z) are non-adjacent

for all z. As in the previous proof, we note that each path must start with a proscribed N or NE step (although
it could end with either kind of step), and we must apply a shift to the lower path to ensure that the paths are
not just non-intersecting but also non-adjacent. We have a path from Ŝ1 = (x1 + 1, 2) to Ê1 = (⌊ c+d

2 ⌋ + 1, z + 1)
and path from Ŝ4 = (c + d − 1, b + c − y4) to Ê4 = (⌈ c+d

2 ⌉, b + c − z).
First count the number of pairs of intersecting lattice paths (Ŝ1, Ê4) and (Ŝ4, Ê1). The argument follows

similarly to that in the proof of Proposition 14. Because x1 > ⌊ c+d
2 ⌋ and because z ≥ 1 we can show the

x-coordinate of Ŝ1 is greater and the y-coordinate of Ŝ1 is less than those of Ê1. The same relationships hold for
Ŝ4 and Ê4 because z ≤ y1 = y4 and c, d ≥ 1. We know the x-coordinate and the y-coordinate of Ŝ1 are less than
the corresponding coordinates of Ŝ4 by the same argument in Proposition 14. Finally, when c + d is odd, the x-
and y-coordinates of Ê1 are also both less than those of Ê4 because z ≤ ⌊ b+c

2 ⌋− 1. Therefore, those two paths will
always intersect. However, when c + d is even, the x- and y-coordinates of Ê1 are each one unit greater than
those of Ê4. In this case, there are non-intersecting pairs of paths.
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To count these paths, first we note a non-intersecting path Ŝ1 to Ê4 must pass through the point P′ =
(⌊ c+d

2 ⌋, z) that is the point one unit to the right and below Ê1. From there the path must travel straight up to
Ê4. We have

Lattice paths Ŝ1 to P′ ∶ ((x1 + 1− ⌊ c+d
2 ⌋)+ (z − 2)

z − 2
) = (x1 + z − ⌊ c+d

2 ⌋− 1
z − 2

)

Lattice paths Ŝ4 to P′ ∶ ((c + d − 1− ⌊ c+d
2 ⌋)+ (z − (b + c − y4))

z − (b + c − y4)
) = (y4 + z − ⌈ c+d

2 ⌉− b + d − 1
y4 + z − b − c

)

Before we can apply Proposition 15, we also need the paths to Ê1. These are:

Lattice paths Ŝ1 to Ê1 ∶ (
(x1 + 1− (⌊ c+d

2 ⌋+ 1))+ ((z + 1)− 2)
(z + 1)− 2

) = (x1 + z − ⌊ c+d
2 ⌋− 1

z − 1
)

Lattice paths Ŝ4 to Ê1 ∶ (
(c + d − 1− (⌊ c+d

2 ⌋+ 1))+ (z + 1− (b + c − y4))
z + 1− (b + c − y4)

) = (y4 + z − b − c + ⌈ c+d
2 ⌉− 1

y4 + z − b − c + 1
)

Now, we have

Q((Ŝ1, Ê4), (Ŝ4, Ê1)) = Q((Ŝ1, P′), (Ŝ4, Ê1)) = det

⎡⎢⎢⎢⎢⎢⎣

P(Ŝ1, P′) P(Ŝ1, Ê1)

P(Ŝ4, P′) P(Ŝ4, Ê1)

⎤⎥⎥⎥⎥⎥⎦
+Q((Ŝ1, Ê1), (Ŝ4, P′)).

Note, the final term in the sum is zero because of the relative positions of Ŝ1 and Ŝ4 and because P′ has a
smaller x and y-coordinates than Ê1, so the number of non-intersection pairs of paths (Ŝ1, Ê4) and (Ŝ4, Ê1) is

(x + z − ⌊ c+d
2 ⌋− 1

z − 2
)(y4 + z − b − c + ⌈ c+d

2 ⌉− 1
y4 + z − b − c + 1

)− (x1 + z − ⌊ c+d
2 ⌋− 1

z − 1
)(y4 + z − ⌈ c+d

2 ⌉− b + d − 1
y4 + z − b − c

).

We will need to apply Proposition 15 a second time.

Lattice paths Ŝ1 to Ê4 ∶ (
(x1 + 1− ⌈ c+d

2 ⌉)+ (b + c − z − 2)
b + c − z − 2

) = (x1 + b + c − ⌈ c+d
2 ⌉− z − 1

b + c − z − 2
)

Lattice paths Ŝ4 to Ê4 ∶ (
(c + d − 1− ⌈ c+d

2 ⌉)+ (b + c − z − (b + c − y4))
b + c − z − (b + c − y4)

) = (y4 − z + ⌊ c+d
2 ⌋− 1

y4 − z
)

Applying the change of variable where d = a, the result then follows from the determinant and the calculations
above.

To complete the proof, we note clearly if x = 0 or y = 0, then symmetries implies the other must also be
zero, and there is only one way to leave the hexagon unchanged at those corners.

Now, we may modify fr3 .

f̄r3(a, b, c) =
b−1
∑

y1=0

c−1
∑

y2=0

a−1
∑

y3=0

a−1−y3

∑
x1=0

b−1−y1

∑
x2=0

c−1−y2

∑
x3=0

v(x1, y1)s(x2, y2)s(x3, y3).

6.2. Reflections with a 4

Now considering the action of the reflection qr4 over the line bisecting edges C and F, we see L1 = rev(L4),
L2 = rev(L3), and L5 = rev(L6), so we need a modified version of fqr4 .
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(x1, 0)

(0, y1)

a

b

c

f

S = (x1, 1)

E = (1, y1)

(a) A hexagon fixed under the action qr4

S = (0, 0)

E = (x − 1, y − 1)

a

b

c

(b) Transformation to rectangular coordinate axis

Figure 11. A lattice path in a hollow hexagon and transformed to a rectangular coordinate axis

Definition 18. Given a hollow hexagon h = (a, b, c, d, e, f ), let w ∶ N×N Ð→ N be the integer-valued piece-wise
function where

w(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(x+y−2
x−1 )− (

x+y−2
x+y−a− f+1) if x, y > 0

1 if x = y = 0
0 otherwise

Proposition 19. The function w counts the number of pairs of non-adjacent lattice paths L1 and L4 placed on opposite
corners v1 and v4 of a hollow hexagon hλ = (a, b, c, d, e, f ) that is fixed under the action of qr4 where L1 and L4

respectively start at x and y and end at y and x, respectively.

Proof. Under the action of qr4, lattice paths L1 and L4 are fixed under the reflection over the line bisecting
edges C and F. We will apply a different orientation than in previous proofs and orient the hexagon so (0, 0)
is the start of the path L1 at (x1, 1); see Figure 11. Under this orientation the path starts at (0, 0) and ends at
(x1 − 1, y1 − 1) and must stay strictly below the line y = x + (a + f − x1 − 1).

The reflection principle can be used to solve Ballot Theorem questions which ask how many ways can
votes be counted so Candidate A is always at least t votes ahead of Candidate B. This is equivalent to counting
the number of lattice paths that do not cross the line x = t. (The problem was studied by Bertrand [14] and
André [15] among others, although they did not use the reflection principle.) Here we need to count the
number of N and E lattice paths from (p1, p2) to (s1, s2) that are weakly below a line x = t. The desired count
is given by

(s1 − p1 + s2 − p1

s1 − p1
)− (s1 − p1 + s2 − p2

s2 − p1 − t
),

so since we need the lattice paths to be strictly below y = x + a + f − x1 − 1 we set t = a + f − x1 − 2 and thus the
desired amount is

(x1 + y1 − 2
y1 − 1

)− ( x1 + y1 − 2
y1 − 1− (a + f − x1 − 2)).
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(0, 0)

(x1, 0)

(c +d, b + c − y4)

a

b

c

d

e
f

(z1, z1)

(c +d − z4, b + c − z4)

Figure 12. A hexagon fixed under the action qr1

Therefore we have the a new counting function:

f̄qr4(a, b, c, f ) =
b−1
∑

y1=0

⌊ c−1
2 ⌋

∑
y2=0

a−1
∑

y6=0

a−1−y6

∑
x1=0

b−1−y1

∑
x2=0

⌊
f−1
2 ⌋

∑
x6=0

w(x1, y1)s(x2, y2)s(x6, y6).

Finally, the reflection across the line through the opposite vertices v1 and v4 creates symmetric lattice
paths L1 and L4. Further, we also must have that these two paths do not intersect, and specifically L1 = rev(L1),
L2 = rev(L6), L3 = rev(L5), and L4 = rev(L4).

Definition 20. Given a hollow hexagon h = (a, b, c, d, e, f ), let p ∶ N ×N Ð→ N be the integer-valued function
where

p(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑b+c−2
z1=1 ∑

b+c−2−z1
z4=1 ( y−1

z4−1)(
x−1
z1−1)− (

y−1
b+c−z1−2)(

x−1
b+c−z4−2) if x, y > 0

∑b+c−2
z1=1 (

x−1
z1−1) if x > 0 and y = 0

∑b+c−2
z4=1 (

y−1
z4−1) if x = 0 and y > 0

1 if x = y = 0

0 otherwise

Proposition 21. The function p counts the number of pairs of non-adjacent lattice paths L1 and L4 placed on opposite
corners v1 and v4 of a hollow hexagon hλ = (a, b, c, d, e, f ) that is fixed under the action of qr1 where L1 starts and ends
at x while L4 starts and ends at y.

Proof. In this case we need two parameters, z1 and z4 that will denote the intersection of lattice paths L1 and
L4 with the line between vertices v1 and v4; See Figure 12. Because the lattice paths are equal to their reverse,
the paths from (x1, 0) to the line of reflection and from (0, y4) to the line of reflection completely determine L1

and L4.
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To find the bounds on z1 and z4, we have z1 ≤ x1 ≤ b − 1, so z1 ≤ b + c − 2 because c ≥ 1, and similarly
for z2. Further, if z1, z4 ≥ 1, their sum must be less than the distance across the hexagon, that is, b + c, so
if 1 ≤ z1 ≤ b + c − 2 then 1 ≤ z4 ≤ b + c − 2 − z1. As in previous proof, we will need to shift the lattice path
from (x1, 0) to (z1, z1) south and northeast, because we want the two paths to be not just non-crossing, but
also non-intersecting. Thus we need to enumerate the number of pairs of non-crossing paths with start Ŝ1 =
(x1 + 1, 2) and end Ê1 = (z1 + 1, z1 + 1) and start Ŝ4 = (c + d − 1, b + c − y4) and end Ê4 = (c + d − z4, b + c − z4).

Again we apply Proposition 15, first checking that all paths (Ŝ1, Ê4) and (Ŝ4, Ê1) intersect. These
arguments follow similarly to that cases in the proofs of Propositions 14 and 17, where we check the locations
of these points relative to each other using their x- and y-coordinates and applying the relationship between
z1 and z4, so we omit the details here.

With these bounds on z1 and z4, we may enumerate the lattice paths similarly to the proof of
Proposition 17, only with two parameters.

Lattice paths Ŝ1 to Ê1 ∶ (
(x1 + 1− (z1 + 1))+ (z1 + 1)− 2

z1 + 1− 2
) = (x1 − 1

z1 − 1
)

Lattice paths Ŝ1 to Ê4 ∶ (
(x1 + 1− (c + d − z4))+ (b + c − z4 − 2)

b + c − z4 − 2
) = (x1 + b − d − 1

b + c − z4 − 2
)

Lattice paths Ŝ4 to Ê1 ∶ (
(c + d − 1− (z1 + 1))+ (z1 + 1− (b + c − y4)

c + d − 1− (z1 + 1) ) = (y4 − b + d − 1
c + d − z1 − 2

)

Lattice paths Ŝ4 to Ê4 ∶ (
(c + d − 1− (c + d − z4))+ (b + c − z4 − (b + c − y4))

c + d − 1− (c + d − z4)
) = (y4 − 1

z4 − 1
)

Note, if the x-coordinate of Ŝ1 is not greater and the y-coordinate of Ŝ1 is not less than those of Ê4 or if
similarly Ŝ4 is not to the right and below Ê1, there is no lattice path and the binomial coefficient is also zero.
Thus the desired result follows, noting that if x1 > 0 and y4 = 0, we need only count the number of lattice paths
from (x1, 1) to (z1, z1)where z1 is only limited by the side length a, and similarly if x1 = 0 and y4 > 0.

Now we may modify our previous function fqr1 .

f̄qr1(b, c, d) =
b−1
∑

y1=0

c−1
∑

y2=0

d−1
∑

y3=0

b−1−y1

∑
x2=0

c−1−y2

∑
x3=0

d−1−y3

∑
x4=0

p(x4, y1)s(x2, y2)s(x3, y3).

Now, we can complete the enumeration.

6.3. Partitions containing 4’s

With the reflection and rotation functions established we can count lattice path coronoids corresponding
to hollow hexagons whose partitions have at least one 4 and at least one 6.

Proposition 22. Given a partition λ of n.

1. If λ contains only 4’s, and 6’s with at least one of each, the corresponding hollow hexagon has the form hλ =
(a, a, c, a, a, c), and the number of distinct lattice path coronoids, up to rotation and reflection, in the equivalence
class indexed by hλ is

g6,4(a, c) = 1
4
( f̄1(a, a, c, a, a, c)+ f̄r3(a, a, c)+ f̄qr4(a, a, c, a)+ f̄qr1(a, a, c))

2. If λ contains only 2’s, 4’s, and 6’s with at least one of each, the corresponding hollow hexagon has the form hλ =
(a, b, c, a, b, c), and the number of distinct lattice path coronoids, up to rotation and reflection, in the equivalence
class indexed by hλ is

g6,4,2(a, b, c) = 1
2
( f̄1(a, b, c, a, b, c)+ f̄r3(a, b, c))
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3. If λ contains only 3’s, 4’s, and 6’s with at least one of each, the corresponding hollow hexagon has the form hλ =
(a, b, c, b, a, f ), and the number of distinct lattice path coronoids, up to rotation and reflection, in the equivalence
class indexed by hλ is

g6,4,3(a, b, c, b, a, f ) = 1
2
( f̄1(a, b, c, b, a, f )+ f̄qr4(a, b, c, f ))

4. If λ contains 2’s, 3’s, 4’s, and 6’s with at least one of each, the corresponding hollow hexagon has the form hλ =
(a, b, c, d, e, f ), and the number of distinct lattice path coronoids, up to rotation and reflection, in the equivalence
class indexed by hλ is

g6,4,3,2(a, b, c, d, e, f ) = f̄1(a, b, c, d, e, f )

The proof is straightforward.

Proof. A partition having parts of size 4 and 6 implies that the corresponding hexagon has edge lengths where
a = b = d = e > c = f . The symmetric group that acts on this hexagon has the identity, the rotation by 180○, the
reflection through the vertices a and d, and the reflection over the line that bisects edges C and F and the first
result follows. Adding at least one 2 into a partition that already contains 4’s and 6’s modifies the edge lengths,
so a = d > b = e > c = f . The group acting on this shape has only two actions: the identity 1 and the rotation by
180○. Apply Lemma 10 to obtain the second result. When the partition has parts of size 4 and 3 , but none of
size 2, the edge lengths satisfy the following: a = e > b = d > f and a = e > c > f . The group acting on this shape
has only two members: the identity 1, and the reflection over the line bisecting edges C and F. The third result
follows. Finally, in the fourth result, all side lengths are distinct, so the symmetric group action is only by the
identity.

Given a partition λ using parts from Sλ ⊆ {2, 3, 4, 6} with corresponding hexagon hλ = (a, b, c, d, e, f ),
let gSλ

(hλ) denote the appropriate counting function from Propositions 12 and 22.We have the following
culminating theorem:

Theorem 23. The number of lattice path coronoids composed of n hexagons is ∑
λ↦n

gSλ
(hλ).

7. Further applications

For mathematicians or computational chemists interested in these types of problems, there are other
characteristics of coronoids to study.

1. Kekulé structures or bonds correspond to perfect matchings on the hexagonal graph of the lattice path
coronoid. Can we enumerate or find bounds for the number of Kekulé structures for classes of lattice
path coronoids?

2. What if we consider lattice path coronoid systems, that is, lattice path coronoids with more than one
corona hole such as lattice path double-coronoids or triple-coronoids? Can these be enumerated by
modifying the counting function in Section 5 to allow opposite lattice paths to meet?

3. We could also try to count the analogously defined lattice path benzenoids whose structure will have an
inner and outer perimeters defined by lattice paths.
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