Article

The bounds for topological invariants of a weighted graph using traces

Emre Sevgi ${ }^{1, *}$, Gül Özkan Kizilirmak ${ }^{\mathbf{1}}$ and Şerife Büyükköse ${ }^{\mathbf{1}}$
1 Department of Mathematics, Faculty of Science, Gazi University, Ankara, Turkey.; emresevgi@gazi.edu.tr; gulozkangazi.edu.tr; sbuyukkose@gazi.edu.tr
* Correspondence:emresevgi@gazi.edu.tr

Communicated by: Muhammad Kamran Jamil
Received: 15 September 2018; Accepted: 7 November 2018; Published: 25 December 2023
Abstract: In this paper, we obtain the bounds for the Laplacian eigenvalues of a weighted graph using traces. Then, we find the bounds for the Kirchhoff and Laplacian Estrada indices of a weighted graph. Finally, we define the Laplacian energy of a weighted graph and get the upper bound for this energy.

Keywords: Laplacian energy; Kirchhoff index; Laplacian Estrada index; weighted graph.
MSC: 05C50; 05C22.

1. Introduction

L
et G be a weighted graph with n vertices and m edges. The Laplacian matrix L of a weighted graph G is the $n \times n$ matrix defined as follows:

$$
l_{i j}=\left\{\begin{array}{cc}
w_{i,}, & \text { if } i=j \\
-w_{i j}, & \text { if } i \sim j \\
0, & \text { otherwise }
\end{array}\right.
$$

Here, the weight $w_{i}=\sum_{i \sim j} w_{i j}$ is the sum of the weights of edges incident on vertex i. There are some studies on indices of graphs using Laplacian eigenvalues. For any connected graph G with n vertices, the Kirchhoff index is

$$
K f(G)=n \sum_{k=1}^{n-1} \frac{1}{\lambda_{k}}
$$

where λ_{k} are the Laplacian eigenvalues of G [1].
Let G be a graph with n vertices without loops and multiple edges. Then, the Laplacian Estrada index of G is

$$
\operatorname{LEE}(G)=\sum_{i=1}^{n} e^{\lambda_{i}}
$$

where λ_{i} are the Laplacian eigenvalues of G [2].
The energy $E(G)$ of a graph G defined as the sum of the absolute values of its eigenvalues. In 2006, Gutman and Zhou defined the Laplacian energy of a graph as

$$
L E(G)=\sum_{i=1}^{n}\left|\mu_{i}-\frac{2 m}{n}\right|
$$

where $n \geq \mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}=0$ [3].
In the following theorems, the bounds for the eigenvalues of a matrix is given by using the trace of the matrix [4].

Theorem 1. Let A be an $n \times n$ complex matrix. A^{*} denotes the conjugate transpose of A. Let $B=A A^{*}$ with eigenvalues $\lambda_{n}(B) \leq \cdots \leq \lambda_{1}(B)$. Then,

$$
m-s \sqrt{n-1} \leq \lambda_{n}(B) \leq m-\frac{s}{\sqrt{n-1}}
$$

and

$$
m+\frac{s}{\sqrt{n-1}} \leq \lambda_{1}(B) \leq m+s \sqrt{n-1}
$$

where $m=\frac{\operatorname{tr} B}{n}$ and $s^{2}=\frac{\operatorname{tr} B^{2}}{n}-m^{2}$.
Theorem 2. Let A, m and s^{2} be defined as in Theorem 1, then

$$
\begin{equation*}
m-s \sqrt{\frac{k-1}{n-k+1}} \leq \lambda_{k}(B) \leq m+s \sqrt{\frac{n-1}{k}} . \tag{1}
\end{equation*}
$$

By using the above theorems, the bounds for the Laplacian eigenvalues for a connected simple graph were established [5].

In the next chapter, we will obtain the bounds for the Laplacian eigenvalues of a weighted graph. Then, we will find the bounds for the Kirchhoff and Laplacian Estrada indices of a weighted graph. Finally, we will define the Laplacian energy of a weighted graph and get the upper bound for this energy.

2. Discussion and Main Results

Theorem 3. Let G be a weighted graph with n vertices and L be the Laplacian matrix of G with the eigenvalues $\lambda_{n}(L) \leq$ $\cdots \leq \lambda_{1}(L)$. Then,

$$
m-s \sqrt{n-1} \leq \lambda_{n}(L) \leq m-\frac{s}{\sqrt{n-1}}
$$

and

$$
m+\frac{s}{\sqrt{n-1}} \leq \lambda_{1}(L) \leq m+s \sqrt{n-1},
$$

where

$$
m=\frac{1}{n} \sum_{i=1}^{n} w_{i}
$$

and

$$
s^{2}=\frac{n-1}{n^{2}} \sum_{i=1}^{n} w_{i}^{2}+\frac{2}{n} \sum_{i \sim j} w_{i j}^{2}-\frac{2}{n^{2}} \sum_{i<j}^{n} w_{i} w_{j} .
$$

Proof. By Theorem 1, we can write $m=\frac{\operatorname{tr} L}{n}$. So, by the definition of weighted Laplacian matrix, we have

$$
m=\frac{\operatorname{tr} L}{n}=\frac{1}{n} \sum_{i=1}^{n} w_{i} .
$$

Moreover, evaluating the matrix L^{2}, when $i=j$ we find the $(i, j) _$th elements as

$$
\begin{equation*}
L_{i j}=w_{i}^{2}+\sum_{i \sim j} w_{i j}^{2} \tag{2}
\end{equation*}
$$

Again, by Theorem 1, we can write $s^{2}=\frac{\operatorname{tr} L^{2}}{n}-m^{2}$. So, by using (2), we have

$$
s^{2}=\frac{1}{n}\left(\sum_{i=1}^{n} w_{i}^{2}+2 \sum_{i \sim j} w_{i j}^{2}\right)-\frac{1}{n^{2}}\left(\sum_{i=1}^{n} w_{i}\right)^{2}=\frac{n-1}{n^{2}} \sum_{i=1}^{n} w_{i}^{2}+\frac{2}{n} \sum_{i \sim j} w_{i j}^{2}-\frac{2}{n^{2}} \sum_{i<j}^{n} w_{i} w_{j} .
$$

Figure 1. Weighted graph G

Example 1. Let we have the weighted graph G shown in the following figure. weighted Laplacian matrix of G is

$$
L=\left[\begin{array}{cccc}
5 & -5 & 0 & 0 \\
-5 & 13 & -2 & -6 \\
0 & -2 & 6 & -4 \\
0 & -6 & -4 & 10
\end{array}\right]
$$

and the eigenvalues are $\lambda_{1}=18.89, \lambda_{2}=10.79, \lambda_{3}=4.31$ and $\lambda_{4}=0$.
By using Theorem 3 , we get $m=8.5, s^{2}=50.75$ and so $s=7.12$.Also, by the inequality (1) we get some bounds for the eigenvalues λ_{2} and λ_{3} as

$$
\begin{gathered}
4.38 \leq \lambda_{2}=10.79 \leq 15.62 \\
1.38 \leq \lambda_{3}=4.31 \leq 12.61
\end{gathered}
$$

By Theorem 3, we get a bound for the largest eigenvalue λ_{1} as

$$
12.61 \leq \lambda_{1}=18.89 \leq 20.83
$$

Now, we will give an upper and lower bound for the Kirchhoff index of a weighted graph using the trace of the weighted Laplacian matrix.

Theorem 4. Let G be a weighted graph with n vertices, then

$$
\begin{equation*}
\frac{n(n-1)}{m+s \sqrt{n-1}} \leq K f(G) \leq \frac{n(n-1)}{m-s \sqrt{\frac{n-2}{2}}} \tag{3}
\end{equation*}
$$

where m and s^{2} are defined in Theorem 3.
Proof. We know that the largest eigenvalue of Laplacian matrix of G has the following bound

$$
m+\frac{s}{\sqrt{n-1}} \leq \lambda_{1}(L) \leq m+s \sqrt{n-1}
$$

Assume that all eigenvalues of L are equal to the largest eigenvalue $\lambda_{1}(L)$, then,

$$
\begin{aligned}
K f(G) & \geq n(n-1) \frac{1}{\lambda_{1}(L)} \\
& \geq \frac{n(n-1)}{m+s \sqrt{n-1}} .
\end{aligned}
$$

Conversely, let all eigenvalues of L be equal to the smallest eigenvalue $\lambda_{n-1}(L)$ different from zero, then by the inequality (1) we can write

$$
\begin{equation*}
m-s \sqrt{\frac{n-2}{2}} \leq \lambda_{n-1}(L) \leq m+s \sqrt{\frac{1}{n-1}} \tag{4}
\end{equation*}
$$

and so,

$$
K f(G) \leq n(n-1) \frac{1}{\lambda_{n-1}(L)} \leq \frac{n(n-1)}{m-s \sqrt{\frac{n-2}{2}}}
$$

Example 2. Let we have the graph defined in Example 1 with $m=8.5$ and $s=7.12$.
The Kirchhoff index of G is evaluated as

$$
K f(G)=4\left(\frac{1}{18.89}+\frac{1}{10.79}+\frac{1}{4.31}\right)=1.50
$$

By using the inequality (3) we get the following bound for Kirchhoff index of G

$$
0.57 \leq K f(G)=1.50 \leq 8.69
$$

Now, we will give an upper and lower bound for the Laplacian Estrada index of a weighted graph using the trace of the weighted Laplacian matrix.

Theorem 5. Let G be a weighted graph with n vertices, then

$$
\begin{equation*}
1+(n-1) e^{m-s} \sqrt{\frac{n-2}{2}} \leq L E E(G) \leq 1+(n-1) e^{m+s \sqrt{n-1}} \tag{5}
\end{equation*}
$$

where m and s^{2} are defined in Theorem 3.
Proof. We know that the largest eigenvalue of Laplacian matrix of G has the following bound

$$
m+\frac{s}{\sqrt{n-1}} \leq \lambda_{1}(L) \leq m+s \sqrt{n-1}
$$

Assume that all eigenvalues of L are equal to the largest eigenvalue $\lambda_{1}(L)$, then,

$$
\begin{aligned}
\operatorname{LEE}(G) & \leq 1+(n-1) e^{\lambda_{1}(L)} \\
& \leq 1+(n-1) e^{m+s \sqrt{n-1}}
\end{aligned}
$$

Conversely, let all eigenvalues of L be equal to the smallest eigenvalue $\lambda_{n-1}(L)$ different from zero, then by using the bounds (4) for $\lambda_{n-1}(L)$, we get

$$
\begin{aligned}
\operatorname{LEE}(G) & \geq 1+(n-1) e^{\lambda_{n-1}(L)} \\
& \geq 1+(n-1) e^{m-s} \sqrt{\frac{n-2}{2}}
\end{aligned}
$$

Example 3. Let we have the graph defined in Example 1 with $m=8.5$ and $s=7.12$.
The Laplacian Estrada index of G is evaluated as

$$
\operatorname{LEE}(G)=1+e^{18.89}+e^{10.79}+e^{4.31}=1599391195.21
$$

By using the inequality (5) we get the following bound for Laplacian Estrada index of G

$$
33.41 \leq L E E(G)=1599391195.21 \leq 3296780717.01
$$

Definition 6. Laplacian energy of a weighted graph G is defined as

$$
L E^{w}(G)=\sum_{i=1}^{n-1}\left|\mu_{i}-\frac{\sum_{i=1}^{n} w_{i}}{n}\right|,
$$

where $\mu_{i}(i=1, \ldots n)$ are Laplacian eigenvalues and $w_{i}(i=1, \ldots n)$ are the weights of the edges of the weighted graph G.

Theorem 7. The upper bound for the Laplacian energy of a weighted graph G is

$$
L E^{w}(G) \leq(n-1)\left[m+s \sqrt{n-1}-w_{\min }\right]
$$

where $m=\frac{\operatorname{tr} L(G)}{n}$ and $s^{2}=\frac{\operatorname{tr} L(G)^{2}}{n}-m^{2}$.
Proof. By the above definition, Laplacian energy of a weighted graph G is

$$
L E^{w}(G)=\sum_{i=1}^{n-1}\left|\mu_{i}-\frac{\sum_{i=1}^{n} w_{i}}{n}\right| .
$$

If we take the maximum Laplacian eigenvalue μ_{1} and the minimum edge weight $w_{\text {min }}$ instead of all eigenvalues and all edges, respectively, we get an upper bound for Laplacian energy. Then,

$$
L E^{w}(G) \leq \sum_{i=1}^{n-1}\left|\mu_{1}-w_{\min }\right| \leq(n-1)\left[\mu_{1}-w_{\min }\right] \leq(n-1)\left[m+s \sqrt{n-1}-w_{\min }\right]
$$

Example 4. Let we have the graph defined in Example 1 with $m=8.5$ and $s=7.12$.
The Laplacian energy of G is evaluated as

$$
L E^{w}(G)=16.865 .
$$

Using the above theorem, we get the upper bound for the Laplacian energy of G as

$$
L E^{w}(G) \leq 47.493 .
$$

3. Conclusion

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Conflicts of Interest: "The authors declare no conflict of interest."

References

[1] Gutman, I. \& Mohar, B. (1996). The Quasi-Wiener and the Kirchhoff indices coincide. Journal of Chemical Information and Computer Sciences, 36(5), 982-985.
[2] Fath-Tabar, G. H., Ashrafi, A. R., \& Gutman, I. (2009). Note on Estrada and L-Estrada indices of graphs. Bulletin (Académie serbe des sciences et des arts. Classe des sciences mathématiques et naturelles. Sciences mathématiques), 1-16.
[3] Gutman, I. \& Zhou, B. (2006). Laplacian energy of a graph. Linear Algebra and its Applications, 414, 29-37.
[4] Wolkowicz, H. \& Styan, G. (1980). Bounds for eigenvalues using traces. Linear Algebra and its Applications, 29, 471-506.
[5] Maden, A. D. \& Buyukkose, S. (2012). Bounds for Laplacian graph eigenvalues. Mathematical Inequalities \mathcal{E} Applications, 12, 529-536.
© 2023 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

