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Abstract: There are three different kinds of topological indices: spectrum-based, degree-based, and
distance-based. We presented the K-swapped network for t-regular graphs in this study. We also
computed various degree-based topological indices of the K-swapped network for t-regular graphs, eye,
and n-dimensional twisted cube network. The metrics used to analyze the abstract structural characteristics
of networks are called topological indices. We also calculate each of the aforementioned networks
M-polynomials. A graph can be used to depict an interconnection network’s structure. The processing nodes
in the network are represented by vertices, while the links connecting the processor nodes are represented
by edges. We can quickly determine the diameter and degree between the nodes based on the graph’s
topology. A key component of graph theory are graph invariants, which identify the structural characteristics
of networks and graphs. Furthermore described by graph invariants are computer, social, and internet
networks.
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1. Introduction

I nterconnection networks are very important in computer networking and useful for the transformation
between the computer and processor. In last few years, many researchers designed the new

interconnection networks. In parallel processsing system, interconnection networks plays an important
role to increase the performance of computers. In graph theory, interconnection network can be expressed by
a graph. In this expression, processor represented by vertex and connection between the units represented by
an edge. From the topology of a network, we can easily determine certain properties. The number of links
(edges) connected to a node known as the degree of that node (vertex). If the degree is same for all nodes in a
network, then network is called regular network [1]. The degree of a vertex is represented by {dv∣v ∈ V (ℵ)} of
a graph ℵ. The sum of the neighborhood degree of a vertex v ∈ ℵ is the sum of degrees of all adjacent vertices
of a vertex v and it is denoted by Sv.

In graph theory and the characterization of the structural characteristics of graphs and networks, graph
invariants are crucial. The chemical structure of molecules, the internet, chemical reactions, computers, and
social networks are all described in this. Topological indices are these indices that we employ to investigate
the abstract structural features of networks. There are three types of topological indices: degree-based [2],
distance-based [3,4], and spectrum-based topological indices [5,6].
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The first degree-based topological index was put forward in 1975 by Milan Randić, [7]. It is define as

Rα (ℵ) = ∑
uv∈E(ℵ)

(dudv)α , α = −1,−1
2

,
1
2

, 1. (1)

Later, this index was generalized for any real number α, and known as the generalized Randić index, [8] and
its mathematical expression is

RRα (ℵ) = ∑
uv∈E(ℵ)

1
(dudv)α

. (2)

Gutman and Trinajstic, introduced the first Zagreb index in [9], mathematically can be written as

M1 (ℵ) = ∑
v∈E(ℵ)

d2
v = ∑

uv∈E(ℵ)
(du + dv) . (3)

The general sum-connectivity index [10], defined as

SCI (ℵ) = ∑
uv∈E(ℵ)

1√
du + dv

. (4)

Vukicevic et al. [11], introduced the geometric arithmetic index and expressed as

GA (ℵ) = ∑
uv∈E(ℵ)

2
√

dudv

du + dv
. (5)

The 5th geometric arithmetic index was introduced by Graovac et al. [12], its formulation is

GA5 (ℵ) = ∑
uv∈E(ℵ)

2
√

SuSv

Su + Sv
. (6)

There are many other types of degree based topological indices like, general Randić index, general sum
connectivity index, second Zagreb index, third Zagreb index, first multiple Zagreb index, second multiple
Zagreb index, hyper Zagreb index, augmented Zagreb index, harmonic index, reduced second Zagreb index,
reduced reciprocal Randić index, modified Zagreb index, symmetric division index and inverse sum index,
briefly defined in [13].

The M-polynomial was introduced by Deutsch and Klavzar [14] in 2015. It functions similarly to the
Hosoya polynomial [15] in determining the closed form of numerous degree-based topological indices. For
more detail on the recent study of topological indices and their applications see [16–24]. This motivates us
to study M-polynomial of some graph operations and some interconnection networks. Recently, the study of
M-polynomial are reported in [25–33].

The M-polynomial can be defines as

M (ℵ; x, y) = ∑
i≤j

mi,j (ℵ) xiyj, (7)

where mi,j (ℵ) is the number of edges of graph ℵ such that i ≤ j. where

Dx = x
∂ f
∂x

, Sx = ∫
x

0

f (z, y)
z

dz, Qa = xa f (x, y) ,

Dy = x
∂ f
∂y

, Sy = ∫
y

0

f (x, z)
z

dz J = f (x, x) . (8)

2. K-Swapped networks

Wenjun et. al [34] introduced the new family of communication architectures called “biswapped
networks”. Given any n-node basis network ℵ, the associated biswapped network Bsw(ℵ) is built of 2n copies
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Table 1. M-Polynomials

Topological index Derivation from M(Γ;x,y)
First Zagreb (Dx +Dy) (M (ℵ; x, y))
Second Zagreb (DxDy) (M (ℵ; x, y))
Second modified Zagreb (SxSy) (M (ℵ; x, y))
General Randić (Dα

x Dα
y) (M (ℵ; x, y))

General inverse Randić (Sα
xSα

y) (M (ℵ; x, y))
Symmetric division index (DxSy +DySx) (M (ℵ; x, y))
Harmonic index 2Sx J (M (ℵ; x, y))
Inverse sum index Sx JDxDy (M (ℵ; x, y))
Augmented Zagreb S3

xQ−2 JD3
xD3

y (M (ℵ; x, y))

Figure 1. 3-swapped network of C3

of ℵ. We generalized this biswapped network to K-swapped network for t regular graphs. For a base graph ℵ,
the K-swapped interconnection networks (Ksw (ℵt)) are the graphs with vertex set and edge set defined as

V (Ksw (ℵt)) = {< i, p, g >,< j, p, g > ∣ p, g ∈ V (ℵ) ,

i = 0, 1, 2, ..., k & j = 1, 2, ..., k with i ≠ j}. (9)

E (Ksw (ℵt)) = {(< i, p, g1 >,< i, p, g2 >) , (< j, p, g1 >,< j, p, g1 >) ,

∣ (g1, g2) ∈ E (ℵ) , p ∈ V (ℵ) , i = 0, 1, 2, ..., k & j = 1, 2, ..., k with i = j}. (10)

The size and degree of K-swapped networks are (t+K−1)Kn2

2 , t +K − 1 respectively, where t is the regularity of
base graphs.

In this section, we study some topological properties of K-swapped networks of t-regular graphs.
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2.1. Results for K-swapped networks (Ksw(ℵt))

Theorem 1. Let Γ be the K-swapped network of t-regular graphs, then Randić, general and reduced reciprocal Randić
indices are

1 ∶ Rα (Γ) =
Kn2

2
d2α+1.

2 ∶ RRα (Γ) =
Kn2

2d2α−1 .

3 ∶ RRR (Γ) = Kn2

2
d (d − 1) .

Proof. K-swapped network has degree, d = t +K − 1 and size dKn2

2 , putting degree, d and number of edges in
“Equation (1) and (2)”,

1 ∶ Rα (Γ) =
dKn2

2
(d × d)α . =

d (Kn2)
2

d2α = Kn2

2
d2α+1.

2 ∶ RRα (Γ) =
dKn2

2 (d × d)α
= dKn2

2d2α
= Kn2

2d2α−1 .

The reduced reciprocal Randić index defined and used to get the result for Ksw(ℵt) below,

3 ∶ RRR (Γ) = ∑
uv∈E(Γ)

√
(du − 1) (dv − 1) = dKn2 (d − 1)

2
= Kn2

2
d (d − 1) .

Theorem 2. Let Γ be the K-swapped network of t-regular graphs, then family of Zagreb indices are

1 ∶ M1 (Γ) = Kn2d2.

2 ∶ M2 (Γ) =
Kn2d3

2
.

3 ∶ M3 (Γ) = 0.

4 ∶ PM1 (Γ) = (2d)
Kn2d

2 .

5 ∶ PM2 (Γ) = dKn2d.

6 ∶ AZI (Γ) = Kn2d7

2 (d2 − 2)3
.

7 ∶ RM2 (Γ) =
Kn2

2
d (d − 1)2 .

8 ∶ m M2 (Γ) =
Kn2

2d
.

9 ∶ HM (Γ) = 2Kn2d3.

(11)
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Proof. As we already computed the degree, d = t + K − 1 and size dKn2

2 of K-swapped network, using these
parameters in the formulation of different Zagreb indices, after some simplification get the results as defined
below,

1 ∶ M1 (Γ) = ∑
uv∈E(Γ)

(du + dv) =
dKn2

2
(d + d) = dKn2

2
2 (d) = Kn2d2.

2 ∶ M2 (Γ) = ∑
uv∈E(Γ)

(dudv) =
dKn2

2
(d × d) = Kn2d3

2
.

3 ∶ M3 (Γ) = ∑
uv∈E(Γ)

(du − dv) =
dKn2

2
(d − d) = 0.

4 ∶ PM1 (Γ) = ∏
uv∈E(Γ)

(du + dv) = ∏
uv∈E(Γ)

(d + d) = (2d)
dKn2

2 .

5 ∶ PM2 (Γ) = ∏
uv∈E(Γ)

(dudv) = d2 × d2 × ⋅ ⋅ ⋅ × (dKn2

2
) = dKn2d.

6 ∶ AZI (Γ) = ∑
uv∈E(Γ)

( dudv

dudv − 2
)

3
= dKn2

2
( d2

d2 − 2
)

3

= Kn2d7

2 (d2 − 2)3
.

7 ∶ RM2 (Γ) = ∑
uv∈E(Γ)

(du − 1) (dv − 1) = dKn2

2
(d − 1) (d − 1) = dKn2

2
(d − 1)2 .

8 ∶ m M2 (Γ) = ∑
uv∈E(Γ)

1
dudv

= dKn2

2d2 =
Kn2

2d
.

9 ∶ HM (Γ) = ∑
uv∈E(Γ)

(du + dv)2 =
dKn2

2
(d + d)2 = dKn2

2
(2d)2 = 2Kn2d3.

Theorem 3. Let Γ be the K-swapped network of t-regular graphs, then sum connectivity and general sum connectivity
indices are

1 ∶ SCI (Γ) = Kn2d
2
√

2d
.

2 ∶ χα (Γ) = 2α−1Kn2dα+1.

Proof. Consider, we have a K-swapped network of t-regular graph, then by using degree and size of derived
network, making some calculations their indices are defined below:

1 ∶ SCI (Γ) = ∑
uv∈E(Γ)

1√
du + dv

= dKn2

2
1√
2d
= Kn2d

2
√

2d
.

2 ∶ χα (Γ) = ∑
uv∈E(Γ)

(du + dv)α = 2α−1Kn2dα+1.
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Theorem 4. Let Γ be the K-swapped network of t-regular graphs, then the geometric arithmetic, 5th geometric arithmetic,
symmetric division and inverse sum indices are

1 ∶ GA (Γ) = dKn2

2
.

2 ∶ GA5 (Γ) =
dKn2

2
.

3 ∶ SDI (Γ) = dKn2.

4 ∶ IS (Γ) = Kn2d2

4
.

Proof. Consider, we have a K-swapped network of t-regular graphs, then by using degree and size parameters
in “Equation (5) and (6)”,

1 ∶ GA (Γ) = Kn2

2
(d)

2
√
(d)2

2d
= dKn2

2
.

2 ∶ GA5 (Γ) =
Kn2

2
(d)

2
√
(d)2

2d
= dKn2

2
.

3 ∶ SDI (Γ) = ∑
uv∈E(Γ)

d2
u + d2

v
dudv

= dKn2

2
× (d)

2 + (d)2

(d)2
= Kn2d.

4 ∶ IS (Γ) = ∑
uv∈E(Γ)

dudv

du + dv
= dKn2

2
d2

2d
= Kn2d2

4
.

Following theorem define the M-polynomials of different K-swapped networks derived from t-regular,
different graphs.

Theorem 5. : Let Γ be the K-swapped network of t-regular graphs, then M-polynomial is:

M(Γ;x,y)= dKn2

2 xdyd.

Proof. As we know that

M (Γ; x, y) = ∑
i≤j

mij (Γ) xiyj,

where, mij (Γ) = ∣E (Γ) ∣ and i, j are the degree of adjacent vertices u, v respectively.

M (Γ; x, y) = Kn2

2 (t +K − 1) xt+K−1yt+K−1 and already computed parameter d = t + K − 1 then we have

M(Γ; x, y) = dKn2

2 xdyd.
This completed the proof of M-polynomials for different K-swapped networks derived from t-regular
graphs.

Following theorem is about the subdivided M-polynomials for different topological indices like, family
of Zagreb indices and some from Randić index.

Theorem 6. : Let Γ be the K-swapped network of t-regular graphs, then different M-polynomials Table:1 for different
indices are:
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1 ∶ M1 (Γ; x, y) = d2Kn2xdyd.

2 ∶ M2 (Γ; x, y) = d4K2n4

4
x2dy2d.

3 ∶ m M (Γ; x, y) = K2n4

4
x2dy2d.

4 ∶ Rα (Γ; x, y) = (d4K2n4

4
x2dy2d)

α

.

5 ∶ RRα (Γ; x, y) = (K2n4

4
x2dy2d)

α

.

6 ∶ SDI (Γ; x, y) = d2K2n4

2
x2dy2d.

7 ∶ H (Γ; x, y) = dK2n4

2
x3dy2d.

8 ∶ IS (Γ; x, y) = d5K4n8

16
x5dy3d.

9 ∶ AZI (Γ; x, y) = d14K11n22

211 x12d−2y10d.

(12)

Proof. Consider, we have K-swapped networks of t-regular graphs, using “Equation (8)", in which computed
different differential formulas with same d = K + t − 1 like,

Dx = Dy =
d2Kn2

2
(xy)d , J = dKn2x2d

2
.

Sx = Sy =
Kn2 (xy)d

2
, Q−2 =

dKn2

2
xd−2yd.

then we have the following M-polynomials of Table:1

1 ∶ M1 (Γ; x, y) = (d2Kn2

2
(xy)d + d2Kn2

2
(xy)d) = d2Kn2xdyd.

2 ∶ M2 (Γ; x, y) = d2Kn2

2
(xy)d × d2Kn2

2
(xy)d = d4K2n4

4
x2dy2d.
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Figure 2. 5-dimensional twisted cube

3 ∶ m M (Γ; x, y) . = Kn2 (xy)d

2
Kn2 (xy)d

2
= K2n4

4
x2dy2d.

4 ∶ Rα (Γ; x, y) = (d2Kn2

2
(xy)d)

α

(d2Kn2

2
(xy)d)

α

= (x2dy2dd4K2n4

4
)

α

.

5 ∶ RRα (Γ; x, y) =
⎛
⎝

dKn2 (xy)d

2
⎞
⎠

α
⎛
⎝

dKn2 (xy)d

2
⎞
⎠

α

=
⎛
⎝

dKn2 (xy)d

2
⎞
⎠

2α

= (K2n4

4
x2dy2d)

α

.

6 ∶ SDI (Γ; x, y) =
⎛
⎝

d2Kn2 (xy)d

2
Kn2 (xy)d

2
+ Kn2 (xy)d

2
d2Kn2 (xy)d

2
⎞
⎠

.

= d2K2n4 (xy)2d

4
+ d2K2n4 (xy)2d

4
= d2K2n4

2
x2dy2d.

7 ∶ H (Γ; x, y) = 2
Kn2 (xy)d

2
dKn2x2d

2
= dK2n4

2
x3dy2d.

8 ∶ IS (Γ; x, y) = dKn2 (xy)d

2
× dKn2x2d

2
× d2Kn2

2
(xy)d × d2Kn2

2
(xy)d = d5K4n8

16
x5dy3d.

9 ∶ AZI (Γ; x, y) =
⎛
⎝

dKn2 (xy)d

2
⎞
⎠

3

(d2K2n4x3d−2yd

4
)
⎛
⎝

d2Kn2 (xy)d

2
⎞
⎠

3
⎛
⎝

d2Kn2 (xy)d

2
⎞
⎠

3

.

= d14K11n22

211 x12d−2y10d.

3. n-dimensional twisted cube

The n-dimensional twisted cube [35], is a variant of n-dimensional hypercube cube. It is represented by TQn

with n = 2k + 1. The size, order and degree of n-dimensional twisted cube are n2n−1 , 2n and n respectively.
To make a twisted cube, we delete some edges from the graph and add some edges in such a way that total
number of edges conserved.

Suppose that n is an odd integer with condition n ≥ 3. We can divide vertices of TQn into four sets L0,0,
L0,1, L1,0, L1,1 where Li,j consists of those vertices u with un−1 = i, un−2 = j and (i, j) ∈ {(0, 0) , (0, 1) , (1, 0) , (1, 1)}
and edge set of twisted cube we can define as: vertex un−1un−2un−3, . . . , u1u0 with Pn−3 (u) = 0 is connected to
ūn−1ūn−2un−3un−4...u1u0 and ūn−1un−2un−3un−4...u1u0; un−1ūn−2un−3un−4...u1u0 and ūn−1un−2un−3un−4...u1u0 if
Pn−3 (u) = 1.
Figure: 2 is drawn for a clearer view of the vertex set of 5-dimensional twisted cube.
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This section is about topological indices and M-polynomials of n-dimensional twisted cube.

3.1. Results for n-dimensional twisted cube

Theorem 7. Let χ be the n-dimensional twisted cube network, then Randić, general and reduced reciprocal Randić
indices are

1 ∶ Rα (χ) = 2n−1n2α+1.

2 ∶ RRα (χ) = 2n−1 (n)1−2α .

3 ∶ RRR (χ) = 2n−1n (n − 1) .

Proof. As we know that n-dimensional twisted cube network has degree n and size is n2n−1, after plugging all
the known parameters in to the formulas

1 ∶ Rα (χ) = ∑
uv∈E(χ)

(dudv)α = n2n−1 (n × n)α = 2n−1n2α+1.

2 ∶ RRα (χ) = ∑
uv∈E(χ)

1
(dudv)α

= n2n−1 1
(n × n)α

= 2n−1n1−2α.

3 ∶ RRR (χ) = ∑
uv∈E(χ)

√
(du − 1) (dv − 1) = n2n−1

√
(n − 1) (n − 1) = n2n−1

√
(n − 1)2.

= n2n−1 (n − 1) .

Theorem 8. Let χ be the n-dimensional twisted cube network, then we have family of Zagreb index are

1 ∶ M1 (χ) = 2nn2.

2 ∶ M2 (χ) = 2n−1n3.

3 ∶ M3 (χ) = 0.

4 ∶ PM1 (χ) = (2n)2
n−1n.

5 ∶ PM2 (χ) = n2nn.

6 ∶ AZI (χ) = 2n−1n( n2

n2 − 2
)

3

.

7 ∶ RM2 (χ) = 2n−1n (n − 1)2 .

8 ∶ m M2 (χ) =
2n−1

n
.

9 ∶ HM (χ) = 2n+1n3.

(13)
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Proof. As we know that n-dimensional twisted cube network has degree n and size is n2n−1, then following
indices can be proven by putting parameters into formulas,

1 ∶ M1 (χ) = ∑
uv∈E(χ)

(du + dv) = n2n−1 (n + n) = n2n−1 (2n) = 2n−1 (2n2) = 2nn2.

2 ∶ M2 (χ) = ∑
uv∈E(χ)

(dudv) = n2n−1 (n × n) = 2n−1n3.

3 ∶ M3 (χ) = ∑
uv∈E(χ)

(du − dv) = n2n−1 (n − n) = 0.

4 ∶ PM1 (χ) = ∏
uv∈E(χ)

(du + dv) = (n + n)2
n−1n = (2n)2

n−1n.

5 ∶ PM2 (χ) = ∏
uv∈E(χ)

(dudv) = (n2)2
n−1n = n2nn.

6 ∶ AZI (χ) = ∑
uv∈E(χ)

( dudv

dudv − 2
)

3
= n2n−1 ( n2

n2 − 2
)

3

.

7 ∶ RM2 (χ) = ∑
uv∈E(χ)

(du − 1) (dv − 1) = n2n−1 (n − 1) (n − 1) = 2n−1n (n − 1)2 .

8 ∶ m M2 (χ) = ∑
uv∈E(χ)

1
dudv

= n2n−1

n × n
= 2n−1

n
.

9 ∶ HM (χ) = ∑
uv∈E(χ)

(du + dv)2 = n2n−1 (n + n)2 = 2n+1n3.

Theorem 9. Let χ be the n-dimensional twisted cube network, then sum connectivity and general sum connectivity
indices are

1 ∶ SCI (χ) = 2n− 3
2
√

n.

2 ∶ χα (χ) = 2n−1+αnα+1.

Proof. As we know that ”n”-dimensional twisted cube network has degree n and size is n2n−1 then the
following indices can be computed with the same manner,

1 ∶ SCI (χ) = ∑
uv∈E(χ)

1√
du + dv

= n2n−1
√

2n
= 2n− 3

2
√

n.

2 ∶ χα (χ) = ∑
uv∈E(χ)

(du + dv)α = n2n−1 (2n)α = 2n−1+αnα+1.

Theorem 10. Let χ be the n-dimensional twisted cube network, then the geometric arithmetic, symmetric division and
inverse sum index are

1 ∶ GA (χ) = 2n−1n.

2 ∶ GA5 (χ) = 2n−1n.

3 ∶ SDI (χ) = 2nn.

4 ∶ IS (χ) = 2n−2n2.
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Proof. The n-dimensional twisted cube network has degree n and size is n2n−1,

1 ∶ GA (χ) = ∑
uv∈E(χ)

2
√

dudv

du + dv
= n2n−1 2

√
n2

2n
= 2n−1n.

2 ∶ GA5 (χ) = n2n−1 2
√

n2

2n
= 2n−1n.

3 ∶ SDI (χ) = ∑
uv∈E(χ)

d2
u + d2

v
dudv

= n2n−1 n2 + n2

n2 = n2n−1 2n2

n2 = 2nn.

4 ∶ IS (χ) = ∑
uv∈E(χ)

dudv

du + dv
= n2n−1 n2

2n
= 2n−2n2.

Theorem 11. : Let χ be the n-dimensional twisted cube network, then M-polynomial is

M(χ;x,y)=n2n−1xnyn.

Proof. As we know that from the definition of M-polynomials M (χ; x, y) = h (x, y) = ∑i≤j mij (χ) xiyj, and
mij (χ) = ∣E (χ) ∣ = 2n−1n where i,j are the degrees of adjacent vertices (u, v), both have same degree n. Hence
this prove that,

M (χ; x, y) = n2n−1xnyn. (14)

Figure: 3 shows the graphical interpretation of equation (14), that is M-polynomial Table:1 of different
twisted cube networks.

Theorem 12. : Let χ be the n-dimensional twisted cube network, then different M-polynomials are:

1 ∶ M1 (χ; x, y) = 2nn2 (xy)n .

2 ∶ M2 (χ; x, y) = 22n−2n4 (xy)2n .

3 ∶ m M (χ; x, y) = 22n−2 (xy)2n .

4 ∶ Rα (χ; x, y) = 22α(n−1)n4α (xy)2αn .

5 ∶ RRα (χ; x, y) = 22α(n−1) (xy)2αn .

6 ∶ SDI (χ; x, y) = 22nn2 (xy)2n .

7 H (χ; x, y) = 22n−1nx3nyn.

8 ∶ IS (χ; x, y) = 24n−4n5y3nx5n.

9 ∶ AZI (χ; x, y) = n14211n−12x12n−2y10n.

(15)

Proof. To get M-polynomials of different indices computed by ”n”-dimensional twisted cube, here are some
computed formulas necessary for the definition of M-polynomial

Dx = Dy = (xy)n 2n−1n2, J = n2n−1x2n.

Sx = Sy = 2n−1 (xy)n , Q−2 = n2n−1xn−2yn.
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Figure 3. M-Polynomials of ”n”-dimensional twisted cube network

putting all these junctions into definition of M-polynomials, following are different required M-polynomials
for different indices,

1 ∶ M1 (χ; x, y) = (Dx +Dy)M(χ; x, y) = (xy)n 2n−1n2 + (xy)n 2n−1n2.

= 2nn2 (xy)n .

2 ∶ M2 (χ; x, y) = (DxDy)M(χ; x, y) = ((xy)n 2n−1n2) ((xy)n 2n−1n2) .

= 22n−2n4 (xy)2n .

3 ∶ m M (χ; x, y) = (SxSy)M(χ; x, y) = (2n−1 (xy)n) (2n−1 (xy)n) .

= 22n−2 (xy)2n .

4 ∶ Rα (χ; x, y) = (Dα
x Dα

y)M(χ; x, y) = ((xy)n 2n−1n2)α ((xy)n 2n−1n2)α

= 22α(n−1)n4α (xy)2αn .

5 ∶ RRα (χ; x, y) = (Sα
xSα

y)M(χ; x, y) = (2n−1 (xy)n)α (2n−1 (xy)n)α = 22α(n−1) (xy)2αn .

6 ∶ SDI (χ; x, y) = (DxSy +DySx)M(χ; x, y) = ((xy)n 2n−1n2) (2n−1 (xy)n) + ((xy)n 2n−1n2) (2n−1 (xy)n)

= 22nn2 (xy)2n .

7 ∶ H (χ; x, y) = 2Sx JM(χ; x, y) = 2× 2n−1 (xy)n n2n−1x2n = 22n−1nx3nyn.

8 ∶ IS (χ; x, y) = Sx JDxDy M(χ; x, y) = 2n−1 (xy)n (xy)n 2n−1n2 (xy)n 2n−1n2n2n−1x2n.

= 24n−4n5y3nx5n.

9 ∶ AZI (χ; x, y) = S3
xQ−2 JD3

xD3
y M(χ; x, y)

= (2n−1 (xy)n)3 (n2n−1xn−2yn) (n2n−1x2n) ((xy)n 2n−1n2)3 ((xy)n 2n−1n2)3 .

= n14211n−12x12n−2y10n.

Further section is about very famous eye networks in computer networking. In this section basics, indices and
some M-polynomials are discussed for eye network.
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Figure 4. Eye(2)

4. Eye Networks

An eye network graph with s+1 layers of concentric cycle [36]. It is represented by Eye (s) . The s+1 cycles
can be written as l0, l1, l2, ..., ls−1 and Os, here Os represents the outermost cycle. The size, order and degree of
eye networks are 9 (2s − 1) , 6 (2s − 1) and 3 respectively. Vertex and edge set of Eye networks are following

V (Eye (s)) = ∪s−1
k=0V (Ik) ∪V (Os) .

V (Ik) = {(k, j) ∣0 ≤ j ≤ Nk − 1; 0 ≤ k ≤ s − 1}. (16)

V (Os) = {(s, j) ∣0 ≤ j ≤ Ns − 1; 0 ≤ k ≤ s − 1 and ∣j∣3 = 0}. (17)

E (Eye (s)) = ∪s−1
k=0E (Ik) ∪ E (Os) ∪ (∪s−1

k=oEk+1
k ) . (18)

where Nk = 9× 2k−1 for positive k

ek,j = {
((k, j) , (k, j + 1)) ; 0 ≤ j ≤ Nk − 1 and 0 ≤ k ≤ s − 1,
((k, j) , (k, j + 3)) ; k = s and 0 ≤ j ≤ Ns − 1 and ∣j∣3 = 0.

ek+1
k,j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

((0, j) , (1, 2j + ∣j∣3)) ; k = 0; j = 0, 1, 2, ...,
((k, j) , (k + 1, 2j + ∣j∣3)) ; ∣j∣3 ≠ 0 and 1 ≤ k ≤ s − 1 ,
and 0 ≤ j ≤ Nk − 1.

The set {ek,j∣ 0 ≤ j ≤ Nk − 1} is denoted by E(Ik) if 0 ≤ k ≤ s − 1, and denoted by E(Os) if k = s. We use Ek+1
k to

denote the set {eK+1
k,j ∣ 0 ≤ j ≤ Nk − 1}. For better understanding of the labeling of Eye-networks following Figure

is illustrated.

4.1. Results for Eye Networks

Theorem 13. Let ψ be the eye network, then Randić, general and reduced reciprocal Randić indices are

1 ∶ Rα (ψ) = 9α+1 (2s − 1) .

2 ∶ RRα (ψ) = 91−α (2s − 1) .

3 ∶ RRR (ψ) = 18 (2s − 1) .
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Proof. The size and degree of Eye networks are 9 (2s − 1) , 3 respectively, after furnishing into formulas we get
Randić family of indices,

1 ∶ Rα (ψ) = ∑
uv∈E(ψ)

(dudv)α = 9 (2s − 1) (3 ∗ 3)α = 9 (2s − 1) (9)α = 9α+1 (2s − 1) .

2 ∶ RRα (ψ) = ∑
uv∈E(ψ)

1
(dudv)α

= 9 (2s − 1)
(9)α

= 91−α (2s − 1) .

3 ∶ RRR (ψ) = ∑
uv∈E(ψ)

√
(du − 1) (dv − 1) = 9 (2s − 1)

√
4 = 18 (2s − 1) .

Theorem 14. Let ψ be the eye network, then we have family of Zagreb indices are

1. M1 (ψ) = 54 (2s − 1) ,
2. M2 (ψ) = 81 (2s − 1) ,
3. M3 (ψ) = 0,
4. PM1 (ψ) = 69(2s

−1),
5. PM2 (ψ) = 99(2s

−1),
6. AZI (ψ) = 6561

343 (2
s − 1) ,

7. RM2 (ψ) = 36 (2s − 1) ,
8. m M2 (ψ) = (2s − 1) ,
9. HM (ψ) = 324 (2s − 1) .

Proof. The size and degree of Eye networks are 9 (2s − 1) , 3 respectively, after putting these parameters into
formulas we get Zagreb family of indices,

1 ∶ M1 (ψ) = ∑
uv∈E(ψ)

(du + dv) = 9 (2s − 1) (6) = 54 (2s − 1) .

2 ∶ M2 (ψ) = ∑
uv∈E(ψ)

(dudv) = 9 (2s − 1) (9) = 81 (2s − 1) .

3 ∶ M3 (ψ) = ∑
uv∈E(ψ)

(du − dv) = 9 (2s − 1) (0) = 0.

4 ∶ PM1 (ψ) = ∏
uv∈E(ψ)

(du + dv) = 69(2s
−1).

5 ∶ PM2 (ψ) = ∏
uv∈E(ψ)

(dudv) = 99(2s
−1).

6 ∶ AZI (ψ) = ∑
uv∈E(ψ)

( dudv

dudv − 2
)

3
= 9 (2s − 1) (9

7
)3 = 6561

343
(2s − 1) .

7 ∶ RM2 (ψ) = ∑
uv∈E(ψ)

(du − 1) (dv − 1) = 9 (2s − 1)4 = 36 (2s − 1) .

8 ∶ m M2 (ψ) = ∑
uv∈E(ψ)

1
dudv

= 9 (2s − 1) 1
9
= 2s − 1.

9 ∶ HM (ψ) = ∑
uv∈E(ψ)

(du + dv)2 = 9 (2s − 1)62 = 324 (2s − 1) .

Theorem 15. Let ψ be the eye network, then sum connectivity and general sum connectivity indices are

1 ∶ SCI (ψ) = 9√
6
(2s − 1) .

2 ∶ χα (ψ) = 9 (2s − 1)6α.
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Proof. By using size and degree of networks that is 9 (2s − 1) , 3 respectively, following indices can be
computed like given below,

1 ∶ SCI (ψ) = ∑
uv∈E(ψ)

1√
du + dv

= 9 (2s − 1) 1√
6
= 9√

6
(2s − 1) .

2 ∶ χα (ψ) = ∑
uv∈E(ψ)

(du + dv)α = 9 (2s − 1)6α.

Theorem 16. Let ψ be the eye network, then geometric arithmetic, symmetric division and inverse sum indices are

1 ∶ GA (ψ) = GA5 (ψ) = 9 (2s − 1) .

2 ∶ SDI (ψ) = 18 (2s − 1) .

3 ∶ IS (ψ) = 27
2
(2s − 1)

Proof. By using size and degree of networks that is 9 (2s − 1) , 3 respectively, following indices geometric
arithmetic, symmetric division and inverse sum indices can be computed like given below,

1 ∶ GA (ψ) = ∑
uv∈E(ψ)

2
√

dudv

du + dv
= 9 (2s − 1) 2

√
9

6
= 9 (2s − 1) .

2 ∶ SDI (ψ) = ∑
uv∈E(ψ)

d2
u + d2

v
dudv

= 9 (2s − 1) 18
9
= 18 (2s − 1) .

3 ∶ IS (ψ) = ∑
uv∈E(ψ)

dudv

du + dv
= 9 (2s − 1) 9

6
= 27

2
(2s − 1) .

Theorem 17. : Let ψ be the eye network, then different M-polynomials are:

1 ∶ M1 (ψ; x, y) = 54 (2s − 1) (xy)3 .

2 ∶ M2 (ψ; x, y) = 729 (2s − 1)2 (xy)6 .

3 ∶ mM (ψ; x, y) = 9 (2s − 1)2 (xy)6 .

4 ∶ Rα (ψ; x, y) = (729 (2s − 1)2 (xy)6)
α

.

5 ∶ RRα (ψ; x, y) = 9 (2s − 1)2 (xy)6 .

6 ∶ SDI (ψ; x, y) = 162 (2s − 1)2 (xy)6 .

7 ∶ H (ψ; x, y) = 54 (2s − 1)2 x9y3.

8 ∶ IS (ψ; x, y) = 19683 (2s − 1)3 x15y9.

(19)

Proof. To get the results for the M-polynomials, following few formulas computed by using the definition of
M-polynomials given in the form of differential in equation (8).

Dx = Dy = 27 (2s − 1) (xy)3 , J = 9 (2s − 1) x6.

Sx = Sy = 3 (2s − 1) (xy)3 , Q−2 = 9 (2s − 1) xy3.
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after plugging all above equations we get required following results.

1 ∶ M1 (ψ; x, y) = (Dx +Dy)M(ψ; x, y) = 27 (2s − 1) (xy)3 + 27 (2s − 1) (xy)3 .

= 54 (2s − 1) (xy)3 .

2 ∶ M2 (ψ; x, y) = (DxDy)M(ψ; x, y) = 27 (2s − 1) (xy)3 × 27 (2s − 1) (xy)3 .

= 729 (2s − 1)2 (xy)6 .

3 ∶ m M (ψ; x, y) = (SxSy)M(ψ; x, y) = (3 (2s − 1) (xy)3 ∗ 3 (2s − 1) (xy)3) .

= 9 (2s − 1)2 (xy)6 .

4 ∶ Rα (ψ; x, y) = (Dα
x Dα

y)M(ψ; x, y) = (27 (2s − 1) (xy)3)
α
(27 (2s − 1) (xy)3)

α
.

= (729 (2s − 1)2 (xy)6)
α

.

5 ∶ RRα (ψ; x, y) = (Sα
xSα

y)M(ψ; x, y) = (3 (2s − 1) (xy)3)
α
(3 (2s − 1) (xy)3)

α
.

= (9 (2s − 1)2 (xy)6)
α

.

6 ∶ SDI (ψ; x, y) = (DxSy +DySx)M(ψ; x, y).

= 3 (2s − 1) (xy)3 27 (2s − 1) (xy)3 + 27 (2s − 1) (xy)3 3 (2s − 1) (xy)3

= 162 (2s − 1)2 (xy)6 .

7 ∶ H (ψ; x, y) = 2Sx JM(ψ; x, y) = 2× 3 (2s − 1) (xy)3 × 9 (2s − 1) x6 = 54 (2s − 1)2 x9y3.

8 ∶ IS (ψ; x, y) = Sx JDxDy M(ψ; x, y).

= 27 (2s − 1) (xy)3 J = 9 (2s − 1) x627 (2s − 1) (xy)3 27 (2s − 1) (xy)3 .

= 19683 (2s − 1)3 x15y9.

This completes the proof.

5. Discussion

The exploration of computing M-polynomials and degree-based topological indices in different
interconnection networks stands as a pivotal endeavor within the realm of network science. This pursuit
is underscored by its inherent significance in unraveling the structural intricacies of complex networks,
offering a nuanced understanding that extends beyond traditional metrics. The M-polynomials, derived from
the characteristic polynomial of graphs, encapsulate essential information about the network’s topological
features. This mathematical abstraction enables researchers to distill intricate network structures into concise
representations, facilitating a more profound exploration of connectivity patterns and graph properties.

The implementation of this computational approach involves navigating the vast landscape of
interconnection networks, ranging from classic architectures to modern communication networks. The
computational methods utilized in this study transcend mere abstraction, providing a practical means to assess
and characterize the connectivity patterns of diverse networks. This implementation allows for a detailed
analysis of different interconnection network models, shedding light on their unique topological signatures
and the implications of structural variations.

The significance of computing M-polynomials and degree-based topological indices is accentuated by
their applications in diverse domains. In the context of communication networks, understanding the inherent
connectivity structures becomes paramount for optimizing routing algorithms, enhancing fault tolerance, and
improving overall network performance. Furthermore, in the realm of social networks, the insights garnered
from these computations could illuminate patterns of influence and information flow, fostering a deeper
comprehension of social dynamics.

Beyond theoretical implications, the applications extend to areas such as epidemiology, where the study
of contact networks is crucial for modeling the spread of diseases. The ability to compute M-polynomials
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and degree-based indices provides a robust foundation for understanding the intricate relationships between
individuals and predicting the potential impact of interventions on disease transmission dynamics.

In conclusion, the pursuit of computing M-polynomials and degree-based topological indices in different
interconnection networks transcends the theoretical confines of graph theory. It offers a pragmatic lens
through which to analyze, model, and optimize complex systems across diverse disciplines, imparting a
wealth of knowledge with far-reaching implications in the realms of technology, communication, and societal
understanding.

6. Conclusions

In this paper, we investigate the topological indices of different interconnection networks. We compute
Randić index, general Randić index, sum connectivity index, families of Zagreb index, symmetric division
index and geometric arithmetic indices. We also compute the M-polynomials of K-swapped networks
of t-regular graphs, n-dimension tiwested cube and eye netwoks. Degree-based topological indices and
M-polynomials are mathematical tools used in graph theory to analyze the structural properties of graphs,
including interconnection networks. Interconnection networks are crucial components in various fields such
as computer science, telecommunications, and social network analysis.

7. Open Problem

Different new indices are still open for above structures like, reverse-degree-based topological indices,
such as the reverse-degree-based topological index of the first, second, and hyper Zagreb, forgotten, geometric
arithmetic, atom-bond-connectivity, and the Randic index.
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final manuscript.
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[10] Zhou, B., & Trinajstić, N. (2010). On general sum-connectivity index. Journal of mathematical chemistry, 47, 210-218.
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