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Abstract: In this paper, we give a relationship between the covering number of a simple graph G, β(G), and
a new parameter associated to G, which is called 2-degree-packing number of G, ν2(G). We prove that

⌈ν2(G)/2⌉ ≤ β(G) ≤ ν2(G)− 1,

for any simple graph G, with ∣E(G)∣ > ν2(G). Also, we give a characterization of connected graphs that attain
the equalities.
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1. Introduction

I n this paper, we consider finite undirected simple graphs. For the terminology, notation and missing basic
definitions related to graphs we refer the reader to [1]. Let G be a graph. We call V(G) the vertex set of G

and we call E(G) the edge set of G. For a subset A ⊆ V(G), G[A] denotes the subgraph of G which is induced
by the vertex set A. Likewise, for a subset R ⊆ E(G), G[R] denotes the subgraph of G which is induced by the edge
set R. The distance between two vertices u and v in a graph G is the number dG(u, v) of edges in any shortest
u − v path in G that joins u and v; if u and v are not joined in G, then dG(u, v) =∞. The neighborhood of a vertex
u ∈ V(G), denoted by NG(u), is the subset of V(G) adjacent to u in G. The set of edges incident to u ∈ V(G)
is denoted by Lu. Hence, the degree of u, denoted by deg(u), is deg(x) = ∣Lu∣. The minimum and maximum
degree of a graph G is denoted by δ(G) and ∆(G), respectively. Let H be a subgraph of G, the restricted degree
of a vertex u ∈ V(H), denoted by degH(u), is defined as degH(u) = ∣Lu ∩ E(H)∣.

An independent set of a graph G is a subset I ⊆ V(G) such that any two vertices of I are not adjacent. The
independence number of G, denoted by α(G), is the maximum order of an independent set. A vertex cover of a
graph G is a subset T ⊆ V(G) such that all edges of G has at least one end in T. The covering number of G,
denoted by β(G), is the minimum order of a vertex cover of G. This parameter is well known and intensively
studied in a more general context and with different names, see for example [2–8].

A k-degree-packing set of a graph G (k ≤ ∆(G)), is a subset R ⊆ E(G) such that ∆(G[R]) ≤ k. The
k-degree-packing number of G, denoted by νk(G), is the maximum order of a k-degree-packing set of G. We
are interested in this new parameter when k = 2, since k = 1 is the matching number of G. Hence, the matching
number is a particular case of the k-degree-packing number of a graph when k = 1.

The 2-degree-packing number is studied in [5,9–13] in a more general context, but with a different name,
as 2-packing number. The definition of 2-packing in graphs have a different meaning: A set X ⊆ V(G) is called
a 2-packing if dG(u, v) > 2 for any different vertices u and v of X, that is, the 2-packing is a subset X ⊆ V(G)
in which all the vertices are in distance at least 3 from each other, see for example [14]. Therefore, we called
2-degree-packing instead of 2-packing only applied for graphs.

As a particular case, Araujo-Pardo el al. proved in [5] any simple graph G satisfies:
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Figure 1. Graphs with β = 2 and ν2 = 3.

⌈ν2(G)/2⌉ ≤ β(G). (1)

In this paper, we prove that for any simple graph G, with ∣E(G)∣ > ν2(G), is such that:

β(G) ≤ ν2(G)− 1. (2)

Hence, by Equations (1) and (2), we have:

Theorem 1. If G is a simple connected graph with ∣E(G)∣ > ν2(G), then

⌈ν2(G)/2⌉ ≤ β(G) ≤ ν2(G)− 1.

In this paper, we give a characterization of simple connected graphs that attain the upper and lower
bounds in Theorem 1.

2. Some results

Only connected graphs with ∣E(G)∣ > ν2(G) are considered, since ∣E(G)∣ = ν2(G) if and only if ∆(G) ≤ 2.
Moreover, we may assume ν2(G) ≥ 4, since otherwise Araujo-Pardo et al. in [5] proved:

Proposition 2. [5] Let G be a simple graph with ∣E(G)∣ > ν2(G), then ν2(G) = 2 if and only if β(G) = 1.

Proposition 3. [5] Let G be a simple connected graph with ∣E(G)∣ > ν2(G). If ν2(G) = 3, then β(G) = 2.

If a graph G satisfies the hypothesis of Proposition 2 with ν(G) = 2, then G is the complete bipartite graph
of the form K1,m, with m ≥ 2. If the graph G satisfies the hypothesis of Proposition 3, then G is one of the graphs
shown in Figure 1 (see [5]).

The next proposition shows some simple consequences of the definitions given previously. Also, some
results are well known.

Proposition 4.

1. If R is a maximum 2-degree-packing of a graph G, then the components of G[R] are either cycles or paths.
2. If G is either a cycle or a path, both of even length, and T is a minimum vertex cover of G, then T is an independent

set.
3. If G is cycle of length odd and T is a minimum vertex cover of G, then there exists an unique u ∈ T such that

T ∖ {u} is an independent set. On the other hand, if G is a path of length odd, then either there exists an unique
u ∈ T such that T ∖ {u} is an independent set or T is an independent and degT(u) = 1.

4. If G is either a path or a cycle of length k, then β(G) = ⌈ k
2 ⌉.

5. β(Kn) = ν2(Kn)− 1.
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Figure 2. Graphs with ν2(G) = 4 and β(G) = 3

Remark 1. Let R be a maximum 2-degree-packing of a simple graph G. It is clear that the number of
components of G[R] is at most ν2(G)− 1. Moreover, if T is a minimum vertex cover of G[R], then β(G) ≤ k + p,
where k is the number of components of G[R] of a single edge, and p = ∣{v ∈ V(G[R]) ∶ degR(v) = 2}∣. Hence,
β(G) ≤ k + p ≤ ν2(G).

Proposition 5. If G is a simple graph with ∣E(G)∣ > ν2(G), then β(G) ≤ ν2(G)− 1.

Proof. By Remark 1, we have β(G) ≤ k + p ≤ ν2(G). It is not hard to see, if k ≥ 1, then β(G) ≤ ν2(G) − 1. On
the other hand, if k = 0, then any component of G[R] is a cycle, since if G[R] has a path (of length at least 2) as
a component, then β(G) ≤ ν2(G) − 1. Hence p = ν2(G). We may assume V(G[R]) = V(G), since otherwise if
u ∈ V(G)∖V(G[R]) and eu = uv ∈ E(G)∖R, where v ∈ V(G[R]), then the following set (R∖ {ev})∪ {eu}, where
ev ∈ R, is incident to v, is a maximum 2-degree-packing of G with a path as a component, which implies that
β(G) ≤ ν2(G) − 1. Therefore {v ∈ V(G[R]) ∶ degR(v) = 2} ∖ {u}, for any u ∈ V(G[R]), is a vertex cover of G,
implying that β(G) ≤ ν2(G)− 1.

Hence, we have:

Theorem 6. If G is a simple graph with ∣E(G)∣ > ν2(G), then

⌈ν2(G)/2⌉ ≤ β(G) ≤ ν2(G)− 1.

3. Graphs with β = ν2 − 1

We introduce some terminology in order to simplify the description of simple connected graphs G such
that β(G) = ν2(G)− 1.

As a particular case, Araujo-Pardo el al. proved in [5] the following:

Proposition 7. [5] If G is a simple graph G with ν2(G) = 4 and ∣E(G)∣ > 4, then β(G) ≤ 3.

Also, in this paper [5], the authors give all the connected graphs with ν2(G) = 4 and β(G) = 3 and they are
certain subgraphs of the graphs given in Figure 2. Hence, by Proposition 7, we may assume ν2(G) ≥ 5.

In [15] Vázquez-Ávila constructed the graph Ts,t, with s ≥ 1 and t ≥ 2, (see Figure 3 (a)), where:

V(Ts,t) = {p1, . . . , ps}∪ {q1, . . . , qs}∪ {w1, . . . , wt},
E(Ts,t) = {piqi ∶ i = 1, . . . , s}∪ {vpi ∶ i = 1, . . . , s}∪ {vwi ∶ i = 1, . . . , t}.

Let Gs,t, with s ≥ 1 and t ≥ 2, be the graph constructed from Ts,t, where (see Figure 3 (b)):

V(Gs,t) = V(Ts,t),
E(Gs,t) = E(Ts,t)∪ {vqi ∶ i = 1, . . . , s}.

As a consequence of Corollary 2.1 given in [15], we have:
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Figure 3. In (a) depict the Graph Ts,t and in (b) depict the graph Gs,t.

Corollary 8. [15] β(Ts,t) = ν2(Ts,t)− 1 = s + 1, for every s ≥ 1 and t ≥ 2.

Since the graph Ts,t is a spanning graph of Gs,t and any minimum vertex cover of Ts,t is a vertex covering
of Gs,t, then:

Corollary 9. β(Gs,t) = ν2(Gs,t)− 1 = s + 1, for every s ≥ 1 and t ≥ 2.

Corollary 10. If Ts,t is a spanning subgraph of a graph G and G is a spanning subgraph of Gs,t, then β(G) = ν2(G)−1 =
s + 1.

Let G be a simple graph with ∣E(G)∣ > ν2(G) and R be a maximum 2-degree-packing of G. Let
R1, . . . , Rs, Rs+1, . . . , Rk be the components of G[R], where ∣Ri∣ = 1, for i = 1, . . . , s and ∣Rj∣ > 1, for j = s + 1, . . . , k.
It is not difficult to see that s ≤ ν2(G)−2. If s = ν2(G)−2, then k = ν2(G)−1 and ∣E(G[Rk])∣ = 2. Hence, any edge
from E(G)∖ E(G[R]) is incident with the unique vertex v ∈ V(G[Rk])with degR(v) = 2. Hence, if Ri = piqi, for
i = 1, . . . , s, Rk = w0vw1, and V(G)∖V(G[R]) = {w3, . . . , wt} (an independent set), if t ≥ 3, then Ts,t is a spanning
subgraph of a graph G and G is a spanning subgraph of Gs,t. Therefore, β(G) = ν2(G)− 1 = s + 1.

Let R1, . . . , Rs, Rs+1, . . . , Rk be the components of a simple connected graph G, with k as small as possible,
where ∣Ri∣ = 1, for i = 1, . . . , s and ∣Rj∣ > 1, for j = s+1, . . . , k. It is clear that β(G) = s+ β(H) and ν2(G) = s+ν2(H),
where H is given by

V(H) = V(G)∖
s
⋃
i=1

ui,

E(H) = E(G)∖
s
⋃
i=1
Lui ,

where ui ∈ V(G[Ri]), for i = 1, . . . , s, and deleting those vertices of degree 0 (if any). Therefore, it may be
assumed that any simple connected graph G, with ∣E(G)∣ > ν2(G), has a maximum 2-degree-packing R of
G, where each component of G[R] has at least 2 edges; and as a consequence, the set T = {u ∈ V(G[R]) ∶
degG[R](u) = 2} is a vertex cover of G.

Let K1
n be the simple connected graph, where

V(K1
n) = {x1, . . . , xn}∪ {u},

E(K1
n) = {xixj ∶ 1 ≤ i < j ≤ n}∪ {ux1}.

The graph K1
n is the complete graph of n vertices with one extra edge attached. It is easy to see that

β(K1
n) = ν2(K1

n)− 1 = n − 1.

Proposition 11. Let G be a simple graph with ∣E(G)∣ > ν2(G), ν2(G) ≥ 5 and β(G) = ν2(G) − 1. If R is a maximum
2-degree-packing of G with V(G[R]) = V(G), then either G is the complete graph Kν2 or G is K1

ν2
, where ν2 = ν2(G).
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Proof. Let R be a maximum 2-degree-packing of G with V(G[R]) = V(G) and R1, . . . , Rk be the components
of G[R]with k as small as possible. Then:

Case(i) If k = 1, then G[R] is either a path or a cycle. Suppose that R = u0u1⋯uν2−1u0 is a cycle: If there are
two non-adjacent vertices ui, uj ∈ V(G[R]) = V(G), then T = V(G[R]) ∖ {ui, uj} is a vertex cover of G of
cardinality ν2(G)− 2, which is a contradiction. Therefore, any different pair of vertices of G are adjacent.
Hence, the graph G is the complete graph with ν2(G) vertices.

On the other hand, if R = u0u1⋯uν2 is a path, then T = {u1, . . . , uν2−1} is a minimum vertex cover of
G. We may assume either u0uj ∈ E(G) or uν2 uj ∈ E(G), for all uj ∈ T∗ = T ∖ {u1, uν2−1}, since otherwise,
T∖{uj} is a vertex cover of G of cardinality ν2(G)−2, which is a contradiction. Without loss of generality,
suppose u0uj ∈ E(G), for all uj ∈ T∗ = T ∖ {u1, uν2−1}. If ujuν2 ∈ E(G), for some uj ∈ T∗, then R∗ =
(R ∖ {ujuj+1}) ∪ {ujuν2 , u0uj+1} (since ν2(G) ≥ 5) is a 2-degree-packing of size ν2(G) + 1, a contradiction.
Hence ujuν2 /∈ E(G), for all uj ∈ T∗, which implies that deg(uν2) = 1. On the other hand, if there are two
vertices ui, uj ∈ T∗ non-adjacents, then (T ∖ {ui, uj})∪ {u0} is a vertex cover of G of size ν2(G)− 2, which
is a contradiction. Also, u1uj ∈ E(G) and ujuν2−1 ∈ E(G), for all uj ∈ T∗, otherwise there exists uj ∈ T∗

such that either (T ∖ {u1, uj}) ∪ {u0} or (T ∖ {uj, uν2−1}) ∪ {u0} is a vertex cover of G of size ν2(G) − 2,
which is a contradiction. Therefore, the graphs G is the graph K1

ν2
.

Case (ii) Suppose k ≥ 2 and T = {v ∈ V(G[R]) ∶ degR(v) = 2}. If there is at least two components as a paths (of
length at least 2), say R1 and R2, then

β(G) ≤ ∣T∣ ≤ (∣E(R1)∣− 1)+ (∣E(R2)∣− 1)+
k
∑
i=3
∣E(Ri)∣

=
k
∑
i=1
∣E(Ri)∣− 2 = ν2(G)− 2,

which is a contradiction. Hence, there are at most one component as a path of length at least 2. Let
u ∈ V(R1) such that degR(u) = 1, then degG(u) = 1, otherwise T ∖ {v}, where u and v are adjacent, is a
vertex cover of G of size ν(G)− 1, which is a contradiction. Moreover, if u ∈ V(R1) such that degR1

(u) = 2
and there is v ∈ V(G)∖V(R1) such that u and v are non-adjacents, then T ∖ {v} is a vertex cover of G of
size ν(G)− 2, a contradiction. Therefore k = 1, which is a contradiction.

Theorem 12. Let G be a simple connected graph with ν2(G) ≥ 5 and β(G) = ν2(G)− 1. Then either G is the complete
graph Kν2 or G is K1

ν2
, where ν2 = ν2(G).

Proof. Let R be a maximum 2-degree-packing of G and I = V(G) ∖V(G[R]) (independent set of vertices).
Then I ≠ ∅, by the Proposition 6.

Case (i): Suppose G[R] is the complete graph of ν2(G) vertices. We claim, if u ∈ I, then deg(u) = 1. To verify
the claim, we suppose on the contrary, u is incident to at least two vertices of V(G[R]), say v and w. If
V(G[R]) = {u1, . . . , uν2}, then without loss of generality u1 = v and uj = w, for some j ∈ {2, . . . , ν2} (G[R]
is a complete graph). Then

(R ∖ {u1uν2 , uj−1uj})∪ {uu1, uuj, uj−1uν2}

is a 2-degree-packing of G of size ν2(G)+ 1, which is a contradiction. Hence, if u ∈ I, then degG(u) = 1.

On the other hand, if ∣I∣ > 1, let u, v ∈ I. Without loss of generality, suppose u is adjacent to u1 and v is
adjacent to uj, for some j ∈ {2, . . . , ν2}. Since G[R] is a complete graph, then

(R ∖ {u1uν2 , uj−1uj})∪ {uu1, uj−1uν2 , vuj}

is a 2-degree-packing of size ν2(G)+ 1, which is a contradiction. Also, if u and v are adjacent to u1, then

(R ∖ {u1u2, u1uν2})∪ {uu1, vu1, u2uν2}



Open J. Discret. Appl. Math. 2024, 7(1), 1-10 6

is a 2-degree-packing of size ν2(G) + 1, which is contradiction. Hence, I = {u} with deg(u) = 1, which
implies that the graph G is K1

ν2
.

Case (ii): Suppose G[R] is the graph K1
ν2

. Let v ∈ V(G) such that the G[R]− v is the complete graph of size ν2(G). If
u ∈ I is such that uw ∈ E(G), whit w ∈ V(G[R]), then, there exists a 2-degree-packing of G of size ν2(G)+1
(see proof of Proposition 6, which is a contradiction. Then uw /∈ E(G), for all w ∈ V(G[R]) ∪ {v}, which
implies that G is a disconnected graph, unless I = ∅, and the theorem holds by Proposition 6.

4. Graphs with β = ⌈ν2/2⌉
We introduce some terminology and results in order to simplify the description of the simple connected

graphs G which satisfy β(G) = ⌈ν2(G)/2⌉.

Proposition 13. Let G be a simple connected graph and R be a maximum 2-degree-packing of G.

1. If ν2(G) is an even integer and β(G) = ν2(G)
2

, then the components of R has even length.

2. If ν2(G) is an odd integer and β(G) = ν2(G)+ 1
2

, then there is an unique component of R of odd length.

Proof. To prove the item 1, let R be a maximum 2-degree-packing of G and let R1, . . . , Rk be the components
of G[R]. If T is a minimum vertex cover of G, then

ν2(G)
2
= β(G) = ∣T∣ =

k
∑
i=1
∣T ∩V(Ri)∣ ≥

k
∑
i=1

β(Ri) =
k
∑
i=1
⌈ν2(Ri)/2⌉.

Hence, if R1 have a odd number of edges, then

k
∑
i=1
⌈ν2(Ri)/2⌉ =

ν2(R1)+ 1
2

+
k
∑
i=2
⌈ν2(Ri)/2⌉ ≥

1
2
+

k
∑
i=1

ν2(Ri)
2

= 1
2
+ ν2(G)

2
,

which is a contradiction. Therefore, each component of G[R] has an even number of edges. To prove the item
2 we use an analogous argument.

Let A and B be two sets of vertices. The complete graph whose set of vertices is A is denoted by KA. The
graph whose set of vertices is A ∪ B and whose set of edges is {ab ∶ a ∈ A, b ∈ B} is denoted by KA,B. On the
other hand, let k ≥ 3 be a positive integer. The cycle of length k and the path of length k are denoted by Ck and
Pk, respectively.

If A and B are two sets of vertices from V(Ck) and V(Pk) (not necessarily disjoint) and I be an
independent set of vertices different from V(Ck) and V(Pk) then Ck

A,B,I = (V(Ck
A,B,I), E(Ck

A,B,I)) and Pk
A,B,I =

(V(Pk
A,B,I), E(Pk

A,B,I)) are denoted to be the graphs with V(Ck
A,B,I) = V(Ck) ∪ I and V(Pk

A,B,I) = V(Pk) ∪ I,
respectively, and E(Ck

A,B,I) = E(Ck) ∪ E(KA) ∪ E(KA,B) ∪ E(KA,I) and E(Pk
A,B,I) = E(Pk) ∪ E(KA) ∪ E(KA,B) ∪

E(KA,I), respectively. In an analogous way, we denote by Ck
I to be the graph with V(Ck

I ) = V(Ck) ∪ I and
E(Ck

I ) = E(Ck) and we denote by Pk
I to be the graph with V(Pk

I ) = V(Pk)∪ I and E(Pk
I ) = E(Pk). In Figure 4 are

depicted the graphs Ck
I and Pk

I , where ∣I∣ = i.
We define Ck

A,B,I to be the family of connected graphs G such that Ck
I is a subgraph of G and G is a subgraph

of Ck
A,B,I . Similarly, we define Pk

A,B,I to be the family of connected graphs G such that Pk
I is a subgraph of G

and G is a subgraph of Pk
A,B,I .

That is
Ck

A,B,I = {G ∶ Ck
I ⊆ G ⊆ Ck

A,B,I where G is a connected graph}

Pk
A,B,I = {G ∶ Pk

I ⊆ G ⊆ Pk
A,B,I where G is a connected graph}

Proposition 14. Let k ≥ 4 be an even integer, T be a minimum vertex cover of Ck and I be an independent set of vertices
different from V(Ck). If T̂ = V(Ck)∖ T and G ∈ Ck

T,T̂,I
, then β(G) = k

2 and ν2(G) = k.
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Figure 4. In (a) depict the Graph Ck
I and in (b) depict the graph Pk
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Figure 5. In (a) is depict the Graph C6
T,T̂,I and in (b) is depict the graph P6

T,T̂,I , where T = {x2, x4, x6} and
I = {c1, c2}.

Proof. It is clear that, if G ∈ Ck
T,T̂,I

, then β(G) = k
2 . On the other hand, since Ck is a 2-degree-packing of G, then

ν2(G) ≥ k. Moreover, since ⌈ν2(G)/2⌉ ≤ β(G) = k
2

, then ν2(G) = k.

In Figure 5 are depicted the graphs C6
T,T̂,I

and P6
T,T̂,I

, where T = {x,x4, x6} and I = {c1, c2}.

Corollary 15. Let k ≥ 4 be an even integer, T be a minimum vertex cover of Pk and I be an independent set of vertices
different from V(Pk). If T̂ = V(Pk)∖ T and G ∈ Pk

T,T̂,I
, then β(G) = k

2 and ν2(G) = k.

For instance, any connected graph G containing the subgraph of Figure 4 (a) and whose supergraph is the
graph of Figure 5 (a) is such that τ = 3 and ν2 = 6.

Now, let Ĉk
A,B,I be the family of simple connected graphs G with ν2(G) = k, such that Ck

I is a subgraph of G
and G is a subgraph of Ck

A,B,I . Similarly, let P̂k
A,B,I be the family of simple connected graphs G with ν2(G) = k

such that Pk
I is a subgraph of G and G is a subgraph of Pk

A,B,I . That is

Ĉk
A,B,I = {G ∶ Ck

I ⊆ G ⊆ Ck
A,B,I where G is connected and ν2(G) = k},

P̂k
A,B,I = {G ∶ Pk

I ⊆ G ⊆ Pk
A,B,I where G is connected and ν2(G) = k}.

Hence if k ≥ 4 is an even integer, T is a minimum vertex cover of either Ck or Pk, and I is an independent
set different from either V(Ck) or V(Pk), then by Proposition 8 and Corollary 4, we have

Ĉk
T,T̂,I = C

k
T,T̂,I and P̂k

T,T̂,I = P
k
T,T̂,I .
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However, if k ≥ 5 is an odd integer, T is a minimum vertex cover of either Ck or Pk and I is an independent
set different from either V(Ck) or V(Pk), then

Ĉk
T,T̂,I ≠ C

k
T,T̂,I and P̂k

T,T̂,I ≠ P
k
T,T̂,I .

To see this, let R be the cycle of length k and u, v ∈ T adjacent. Hence, if G is such that V(G) = V(Ck) ∪ {w},
where w ∈ I and E(G) = E(Ck)∪ {uw, vw}, then G ∈ Ck

T,T̂,I
. However, it is clear that ν2(G) = k + 1, which implies

that G /∈ Ĉk
T,T̂,T

. A similar argument is used to prove that P̂k
T,T̂,I

≠ Pk
T,T̂,I

.

Proposition 16. Let k ≥ 5 be an odd integer, T be a minimum vertex cover of Ck and I be an independent set of vertices
different from V(Ck). If T̂ = V(Ck)∖ T and G ∈ Ĉk

T,T̂,I
, then β(G) = k+1

2 .

Proof. It is clear that

k + 1
2
= ⌈ν2(Ck

I )/2⌉ ≤ ⌈ν2(G)/2⌉ ≤ β(G) ≤ ∣T∣ = k + 1
2

,

which implies that β(G) = k+1
2 .

Corollary 17. Let k ≥ 5 be an odd integer, T be a minimum vertex cover of Pk and I be an independent set of vertices
different from V(Pk). If T̂ = V(Pk)∖ T and G ∈ P̂k

T,T̂,I
, then β(G) = k+1

2 .

Proposition 18. Let G be a connected graph with ∣E(G)∣ > ν2(G) and R1, . . . , Rk be the components of a maximum

2-degree-packing of G. If β(G) = ⌈ν2(G)/2⌉, then β(G) =
k
∑
i=1

β(Ri).

Proof. Let R be a maximum 2-degree-packing of G and R1, . . . , Rk be the components of G[R]. Since Ri is a
cycle or a path of length ν2(Ri), then β(Ri) = ⌈ν2(Ri)/2⌉, for i = 1, . . . , k. If β(G) = ⌈ν2(G)/2⌉, then by Proposition
7, we have

⌈ν2(G)/2⌉ = β(G) ≥
k
∑
i=1

β(Ri) =
k
∑
i=1
⌈ν2(Ri)/2⌉ = ⌈ν2(G)/2⌉ .

Therefore β(G) =
k
∑
i=1

β(Ri).

By Proposition 13 and Proposition 18, we have:

Theorem 19. Let G be a connected graph with ∣E(G)∣ > ν2(G) and R1, . . . , Rk be the components of a maximum
2-degree-packing of G.

Then: β(G) = ⌈ν2(G)/2⌉, if and only if, β(G) =
k
∑
i=1

β(Ri), being:

1. ∣Ri∣ an even integer, for i = 1, . . . , k, if ν2(G) an even number.
2. ∣R1∣ is an odd integer and ∣Ri∣ is an even integer, for i = 2, . . . , k, if ν2(G) is an odd number.

Proposition 20. Let G be a simple connected graph with ν2(G) ≥ 4, ∣E(G)∣ > ν2(G) and R1, . . . , Rk be the components
of a maximum 2-degree-packing R of G, with k as small as possible. If β(G) = ⌈ν2(G)/2⌉, then I = I1 ∪ ⋯ ∪ Ik =
V(G)∖V(G[R]), where either Ii = ∅ or for every u ∈ Ii satisfies N(u) ⊆ V(Ri), for i = 1, . . . , k.

Proof. Suppose there exists u ∈ I, wi ∈ V(Ri) and wj ∈ V(Rj), for some i ≠ j ∈ {1, . . . , k}, such that
uwi, uwj ∈ E(G). Hence (R ∖ {ewi , ewj})∪ {uwi, uwj}, where wi ∈ ewi ∈ E(Ri) and wj ∈ ewj ∈ E(Rj), is a maximum
2-degree-packing with less components than R, which is a contradiction. Therefore I = I1 ∪⋯∪ Ik, where either
Ii = ∅ or for every u ∈ Ii satisfies N(u) ⊆ V(Ri), for i = 1, . . . , k.

Proposition 21. Let G be a simple connected graph with ν2(G) ≥ 4, ∣E(G)∣ > ν2(G), R1, . . . , Rk be the components of
a maximum 2-degree-packing R of G, with k as small as possible, and I = I1 ∪⋯∪ Ik = V(G) ∖V(G[R]), where either
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Ii = ∅ or for every u ∈ Ii satisfies N(u) ⊆ V(Ri), for i = 1, . . . , k. If β(G) = ⌈ν2(G)/2⌉, then β(G[Ri]) = ⌈ν2(G[Ri])/2⌉,
for i = 1, . . . , k.

Proof. The proof of the proposition is completely analogous to the proof Proposition 20.

Proposition 22. Let G be a simple connected graph with ν2(G) ≥ 4, ∣E(G)∣ > ν2(G) and R be a maximum
2-degree-packingof G, such that G[R] is a connected graph. If β(G) = ⌈ν2(G)/2⌉, then either G ∈ Ĉk

T,T̂,I
or G ∈ P̂k

T,T̂,I
,

where T is a minimum vertex cover of either Ck or Pk, T̂ = V(G[R])∖ T and I = V(G)∖V(G[R]).

Proof. By Proposition 13, we have either Ĉk
I is a subgraph of G or Pk

I is a subgraph of G. Let T be a minimum
vertex cover of G (hence, a minimum vertex cover of G[R], by Proposition 18). Hence, by definition, if e ∈
E(G)∖ E(G[R], then e has an end in T, which implies that G is a subgraph of Ĉk

T,T̂,I
. Therefore, either G ∈ Ĉk

T,T̂,I
or G ∈ P̂k

T,T̂,I
.

By Proposition 18, Proposition 22 and Corollary 21, we have:

Corollary 23. Let G be a simple connected graph with ν2(G) ≥ 4, ∣E(G)∣ > ν2(G), R1, . . . , Rk be the components of a
maximum 2-degree-packing R of G, with k as small as possible, and I = I1 ∪⋯∪ Ik = V(G) ∖V(G[R]), where either
Ii = ∅ or for every u ∈ Ii satisfies N(u) ⊆ V(Ri), for i = 1, . . . , k. If β(G) = ⌈ν2(G)/2⌉, then either G[Vi] ∈ Ĉki

Ti ,T̂i ,Ii

or G[Vi] ∈ P̂ki
Ti ,T̂i ,Ii

, where Vi = V(G[Ri]) ∪ Ii, ki = ν2(G[Ri]), Ti is a minimum vertex cover of either Cki or Pki and

T̂i = V(G[Ri])∖ Ti.

Hence, by Proposition 14, Proposition 22, Corollary 15 and Corollary 23, we have:

Theorem 24. Let G be a simple connected graph with ν2(G) ≥ 4, ∣E(G)∣ > ν2(G), R1, . . . , Rk be the components of a
maximum 2-degree-packing R of G, with k as small as possible, and I = I1 ∪⋯∪ Ik = V(G) ∖V(G[R]), where either
Ii = ∅ or for every u ∈ Ii satisfies N(u) ⊆ V(Ri), for i = 1, . . . , k. Then β(G) = ⌈ν2(G)/2⌉, if and only if, either
G[Vi] ∈ Ĉki

Ti ,T̂i ,Ii
or G[Vi] ∈ P̂ki

Ti ,T̂i ,Ii
, where Vi = V(G[Ri]) ∪ Ii, ki = ν2(G[Ri]), Ti is a minimum vertex cover of either

Cki or Pki and T̂i = V(G[Ri])∖ Ti, being

1. ∣Ri∣ an even integer, for i = 1, . . . , k, if ν2(G) an even number.
2. ∣R1∣ is an odd integer and ∣Ri∣ is an even integer, for i = 2, . . . , k, if ν2(G) is an odd number.
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