Article

Covering and 2-degree-packing numbers in graphs

Carlos A. Alfaro ${ }^{1}$, Christian Rubio-Montiel ${ }^{2}$ and Adrián Vázquez-Ávila ${ }^{3, *}$
1 Banco de México, Ciudad de México, México; carlos.alfaro@banxico.org.mx.
2 División de Matemáticas e Ingeniería, FES Acatlán, Uiversidad Nacional Autónoma de México, Ciudad de México, México; christian.rubio@acatlan.unam.mx.
3 Subdirección de Ingeniería y Posgrado, Universidad Aeronáutica en Querétaro, Querétaro, México; adrian.vazquez@unaq.mx.
* Correspondence: adrian.vazquez@unaq.mx.

Received: 29 September 2023; Accepted: 12 December 2023; Published: 27 February 2024
Communicated by: Muhammad Kamran Jamil
Abstract: In this paper, we give a relationship between the covering number of a simple graph $G, \beta(G)$, and a new parameter associated to G, which is called 2-degree-packing number of $G, v_{2}(G)$. We prove that

$$
\left\lceil v_{2}(G) / 2\right\rceil \leq \beta(G) \leq v_{2}(G)-1,
$$

for any simple graph G, with $|E(G)|>v_{2}(G)$. Also, we give a characterization of connected graphs that attain the equalities.

Keywords: Covering number, independence number, 2-degree-packing number.
MSC: 05C69, 05C70.

1. Introduction

In this paper, we consider finite undirected simple graphs. For the terminology, notation and missing basic definitions related to graphs we refer the reader to [1]. Let G be a graph. We call $V(G)$ the vertex set of G and we call $E(G)$ the edge set of G. For a subset $A \subseteq V(G), G[A]$ denotes the subgraph of G which is induced by the vertex set A. Likewise, for a subset $R \subseteq E(G), G[R]$ denotes the subgraph of G which is induced by the edge set R. The distance between two vertices u and v in a graph G is the number $d_{G}(u, v)$ of edges in any shortest $u-v$ path in G that joins u and v; if u and v are not joined in G, then $d_{G}(u, v)=\infty$. The neighborhood of a vertex $u \in V(G)$, denoted by $N_{G}(u)$, is the subset of $V(G)$ adjacent to u in G. The set of edges incident to $u \in V(G)$ is denoted by \mathcal{L}_{u}. Hence, the degree of u, denoted by $\operatorname{deg}(u)$, is $\operatorname{deg}(x)=\left|\mathcal{L}_{u}\right|$. The minimum and maximum degree of a graph G is denoted by $\delta(G)$ and $\Delta(G)$, respectively. Let H be a subgraph of G, the restricted degree of a vertex $u \in V(H)$, denoted by $\operatorname{deg}_{H}(u)$, is defined as $\operatorname{deg}_{H}(u)=\left|\mathcal{L}_{u} \cap E(H)\right|$.

An independent set of a graph G is a subset $I \subseteq V(G)$ such that any two vertices of I are not adjacent. The independence number of G, denoted by $\alpha(G)$, is the maximum order of an independent set. A vertex cover of a graph G is a subset $T \subseteq V(G)$ such that all edges of G has at least one end in T. The covering number of G, denoted by $\beta(G)$, is the minimum order of a vertex cover of G. This parameter is well known and intensively studied in a more general context and with different names, see for example [2-8].

A k-degree-packing set of a graph $G(k \leq \Delta(G))$, is a subset $R \subseteq E(G)$ such that $\Delta(G[R]) \leq k$. The k-degree-packing number of G, denoted by $v_{k}(G)$, is the maximum order of a k-degree-packing set of G. We are interested in this new parameter when $k=2$, since $k=1$ is the matching number of G. Hence, the matching number is a particular case of the k-degree-packing number of a graph when $k=1$.

The 2-degree-packing number is studied in [5,9-13] in a more general context, but with a different name, as 2-packing number. The definition of 2-packing in graphs have a different meaning: A set $X \subseteq V(G)$ is called a 2-packing if $d_{G}(u, v)>2$ for any different vertices u and v of X, that is, the 2-packing is a subset $X \subseteq V(G)$ in which all the vertices are in distance at least 3 from each other, see for example [14]. Therefore, we called 2-degree-packing instead of 2-packing only applied for graphs.

As a particular case, Araujo-Pardo el al. proved in [5] any simple graph G satisfies:

Figure 1. Graphs with $\beta=2$ and $v_{2}=3$.

$$
\begin{equation*}
\left\lceil v_{2}(G) / 2\right\rceil \leq \beta(G) \tag{1}
\end{equation*}
$$

In this paper, we prove that for any simple graph G, with $|E(G)|>v_{2}(G)$, is such that:

$$
\begin{equation*}
\beta(G) \leq v_{2}(G)-1 . \tag{2}
\end{equation*}
$$

Hence, by Equations (1) and (2), we have:
Theorem 1. If G is a simple connected graph with $|E(G)|>v_{2}(G)$, then

$$
\left\lceil v_{2}(G) / 2\right\rceil \leq \beta(G) \leq v_{2}(G)-1
$$

In this paper, we give a characterization of simple connected graphs that attain the upper and lower bounds in Theorem 1.

2. Some results

Only connected graphs with $|E(G)|>v_{2}(G)$ are considered, since $|E(G)|=v_{2}(G)$ if and only if $\Delta(G) \leq 2$. Moreover, we may assume $v_{2}(G) \geq 4$, since otherwise Araujo-Pardo et al. in [5] proved:

Proposition 2. [5] Let G be a simple graph with $|E(G)|>v_{2}(G)$, then $v_{2}(G)=2$ if and only if $\beta(G)=1$.
Proposition 3. [5] Let G be a simple connected graph with $|E(G)|>v_{2}(G)$. If $v_{2}(G)=3$, then $\beta(G)=2$.
If a graph G satisfies the hypothesis of Proposition 2 with $v(G)=2$, then G is the complete bipartite graph of the form $K_{1, m}$, with $m \geq 2$. If the graph G satisfies the hypothesis of Proposition 3, then G is one of the graphs shown in Figure 1 (see [5]).

The next proposition shows some simple consequences of the definitions given previously. Also, some results are well known.

Proposition 4.

1. If R is a maximum 2-degree-packing of a graph G, then the components of $G[R]$ are either cycles or paths.
2. If G is either a cycle or a path, both of even length, and T is a minimum vertex cover of G, then T is an independent set.
3. If G is cycle of length odd and T is a minimum vertex cover of G, then there exists an unique $u \in T$ such that $T \backslash\{u\}$ is an independent set. On the other hand, if G is a path of length odd, then either there exists an unique $u \in T$ such that $T \backslash\{u\}$ is an independent set or T is an independent and $\operatorname{deg}_{T}(u)=1$.
4. If G is either a path or a cycle of length k, then $\beta(G)=\left\lceil\frac{k}{2}\right\rceil$.
5. $\beta\left(K_{n}\right)=v_{2}\left(K_{n}\right)-1$.

Figure 2. Graphs with $v_{2}(G)=4$ and $\beta(G)=3$

Remark 1. Let R be a maximum 2-degree-packing of a simple graph G. It is clear that the number of components of $G[R]$ is at most $v_{2}(G)-1$. Moreover, if T is a minimum vertex cover of $G[R]$, then $\beta(G) \leq k+p$, where k is the number of components of $G[R]$ of a single edge, and $p=\left|\left\{v \in V(G[R]): \operatorname{deg}_{R}(v)=2\right\}\right|$. Hence, $\beta(G) \leq k+p \leq v_{2}(G)$.

Proposition 5. If G is a simple graph with $|E(G)|>v_{2}(G)$, then $\beta(G) \leq v_{2}(G)-1$.
Proof. By Remark 1, we have $\beta(G) \leq k+p \leq v_{2}(G)$. It is not hard to see, if $k \geq 1$, then $\beta(G) \leq v_{2}(G)-1$. On the other hand, if $k=0$, then any component of $G[R]$ is a cycle, since if $G[R]$ has a path (of length at least 2) as a component, then $\beta(G) \leq v_{2}(G)-1$. Hence $p=v_{2}(G)$. We may assume $V(G[R])=V(G)$, since otherwise if $u \in V(G) \backslash V(G[R])$ and $e_{u}=u v \in E(G) \backslash R$, where $v \in V(G[R])$, then the following set $\left(R \backslash\left\{e_{v}\right\}\right) \cup\left\{e_{u}\right\}$, where $e_{v} \in R$, is incident to v, is a maximum 2-degree-packing of G with a path as a component, which implies that $\beta(G) \leq v_{2}(G)-1$. Therefore $\left\{v \in V(G[R]): \operatorname{deg}_{R}(v)=2\right\} \backslash\{u\}$, for any $u \in V(G[R])$, is a vertex cover of G, implying that $\beta(G) \leq v_{2}(G)-1$.

Hence, we have:
Theorem 6. If G is a simple graph with $|E(G)|>v_{2}(G)$, then

$$
\left\lceil v_{2}(G) / 2\right\rceil \leq \beta(G) \leq v_{2}(G)-1
$$

3. Graphs with $\beta=\nu_{2}-1$

We introduce some terminology in order to simplify the description of simple connected graphs G such that $\beta(G)=v_{2}(G)-1$.

As a particular case, Araujo-Pardo el al. proved in [5] the following:
Proposition 7. [5] If G is a simple graph G with $v_{2}(G)=4$ and $|E(G)|>4$, then $\beta(G) \leq 3$.
Also, in this paper [5], the authors give all the connected graphs with $v_{2}(G)=4$ and $\beta(G)=3$ and they are certain subgraphs of the graphs given in Figure 2. Hence, by Proposition 7, we may assume $v_{2}(G) \geq 5$.

In [15] Vázquez-Ávila constructed the graph $T_{s, t}$, with $s \geq 1$ and $t \geq 2$, (see Figure 3 (a)), where:

$$
\begin{aligned}
& V\left(T_{s, t}\right)=\left\{p_{1}, \ldots, p_{s}\right\} \cup\left\{q_{1}, \ldots, q_{s}\right\} \cup\left\{w_{1}, \ldots, w_{t}\right\} \\
& E\left(T_{s, t}\right)=\left\{p_{i} q_{i}: i=1, \ldots, s\right\} \cup\left\{v p_{i}: i=1, \ldots, s\right\} \cup\left\{v w_{i}: i=1, \ldots, t\right\} .
\end{aligned}
$$

Let $G_{s, t}$, with $s \geq 1$ and $t \geq 2$, be the graph constructed from $T_{s, t}$, where (see Figure $3(b)$):

$$
\begin{aligned}
V\left(G_{s, t}\right) & =V\left(T_{s, t}\right) \\
E\left(G_{s, t}\right) & =E\left(T_{s, t}\right) \cup\left\{v q_{i}: i=1, \ldots, s\right\} .
\end{aligned}
$$

As a consequence of Corollary 2.1 given in [15], we have:

Figure 3. In (a) depict the Graph $T_{s, t}$ and in (b) depict the graph $G_{s, t}$.

Corollary 8. [15] $\beta\left(T_{s, t}\right)=v_{2}\left(T_{s, t}\right)-1=s+1$, for every $s \geq 1$ and $t \geq 2$.
Since the graph $T_{s, t}$ is a spanning graph of $G_{s, t}$ and any minimum vertex cover of $T_{s, t}$ is a vertex covering of $G_{s, t}$, then:

Corollary 9. $\beta\left(G_{s, t}\right)=v_{2}\left(G_{s, t}\right)-1=s+1$, for every $s \geq 1$ and $t \geq 2$.
Corollary 10. If $T_{s, t}$ is a spanning subgraph of a graph G and G is a spanning subgraph of $G_{s, t}$, then $\beta(G)=v_{2}(G)-1=$ $s+1$.

Let G be a simple graph with $|E(G)|>v_{2}(G)$ and R be a maximum 2-degree-packing of G. Let $R_{1}, \ldots, R_{s}, R_{s+1}, \ldots, R_{k}$ be the components of $G[R]$, where $\left|R_{i}\right|=1$, for $i=1, \ldots, s$ and $\left|R_{j}\right|>1$, for $j=s+1, \ldots, k$. It is not difficult to see that $s \leq v_{2}(G)-2$. If $s=v_{2}(G)-2$, then $k=v_{2}(G)-1$ and $\left|E\left(G\left[R_{k}\right]\right)\right|=2$. Hence, any edge from $E(G) \backslash E(G[R])$ is incident with the unique vertex $v \in V\left(G\left[R_{k}\right]\right)$ with $\operatorname{deg}_{R}(v)=2$. Hence, if $R_{i}=p_{i} q_{i}$, for $i=1, \ldots, s, R_{k}=w_{0} v w_{1}$, and $V(G) \backslash V(G[R])=\left\{w_{3}, \ldots, w_{t}\right\}$ (an independent set), if $t \geq 3$, then $T_{s, t}$ is a spanning subgraph of a graph G and G is a spanning subgraph of $G_{s, t}$. Therefore, $\beta(G)=v_{2}(G)-1=s+1$.

Let $R_{1}, \ldots, R_{s}, R_{s+1}, \ldots, R_{k}$ be the components of a simple connected graph G, with k as small as possible, where $\left|R_{i}\right|=1$, for $i=1, \ldots, s$ and $\left|R_{j}\right|>1$, for $j=s+1, \ldots, k$. It is clear that $\beta(G)=s+\beta(H)$ and $v_{2}(G)=s+v_{2}(H)$, where H is given by

$$
\begin{aligned}
& V(H)=V(G) \backslash \bigcup_{i=1}^{s} u_{i}, \\
& E(H)=E(G) \backslash \bigcup_{i=1}^{s} \mathcal{L}_{u_{i}},
\end{aligned}
$$

where $u_{i} \in V\left(G\left[R_{i}\right]\right)$, for $i=1, \ldots, s$, and deleting those vertices of degree 0 (if any). Therefore, it may be assumed that any simple connected graph G, with $|E(G)|>v_{2}(G)$, has a maximum 2-degree-packing R of G, where each component of $G[R]$ has at least 2 edges; and as a consequence, the set $T=\{u \in V(G[R])$: $\left.\operatorname{deg}_{G[R]}(u)=2\right\}$ is a vertex cover of G.

Let K_{n}^{1} be the simple connected graph, where

$$
\begin{aligned}
V\left(K_{n}^{1}\right) & =\left\{x_{1}, \ldots, x_{n}\right\} \cup\{u\}, \\
E\left(K_{n}^{1}\right) & =\left\{x_{i} x_{j}: 1 \leq i<j \leq n\right\} \cup\left\{u x_{1}\right\} .
\end{aligned}
$$

The graph K_{n}^{1} is the complete graph of n vertices with one extra edge attached. It is easy to see that $\beta\left(K_{n}^{1}\right)=v_{2}\left(K_{n}^{1}\right)-1=n-1$.

Proposition 11. Let G be a simple graph with $|E(G)|>v_{2}(G), v_{2}(G) \geq 5$ and $\beta(G)=v_{2}(G)-1$. If R is a maximum 2-degree-packing of G with $V(G[R])=V(G)$, then either G is the complete graph $K_{v_{2}}$ or G is $K_{v_{2}}^{1}$, where $v_{2}=v_{2}(G)$.

Proof. Let R be a maximum 2-degree-packing of G with $V(G[R])=V(G)$ and R_{1}, \ldots, R_{k} be the components of $G[R]$ with k as small as possible. Then:

Case(i) If $k=1$, then $G[R]$ is either a path or a cycle. Suppose that $R=u_{0} u_{1} \cdots u_{v_{2}-1} u_{0}$ is a cycle: If there are two non-adjacent vertices $u_{i}, u_{j} \in V(G[R])=V(G)$, then $T=V(G[R]) \backslash\left\{u_{i}, u_{j}\right\}$ is a vertex cover of G of cardinality $v_{2}(G)-2$, which is a contradiction. Therefore, any different pair of vertices of G are adjacent. Hence, the graph G is the complete graph with $v_{2}(G)$ vertices.
On the other hand, if $R=u_{0} u_{1} \cdots u_{v_{2}}$ is a path, then $T=\left\{u_{1}, \ldots, u_{v_{2}-1}\right\}$ is a minimum vertex cover of G. We may assume either $u_{0} u_{j} \in E(G)$ or $u_{v_{2}} u_{j} \in E(G)$, for all $u_{j} \in T^{*}=T \backslash\left\{u_{1}, u_{v_{2}-1}\right\}$, since otherwise, $T \backslash\left\{u_{j}\right\}$ is a vertex cover of G of cardinality $v_{2}(G)-2$, which is a contradiction. Without loss of generality, suppose $u_{0} u_{j} \in E(G)$, for all $u_{j} \in T^{*}=T \backslash\left\{u_{1}, u_{v_{2}-1}\right\}$. If $u_{j} u_{v_{2}} \in E(G)$, for some $u_{j} \in T^{*}$, then $R^{*}=$ $\left(R \backslash\left\{u_{j} u_{j+1}\right\}\right) \cup\left\{u_{j} u_{v_{2}}, u_{0} u_{j+1}\right\}$ (since $v_{2}(G) \geq 5$) is a 2-degree-packing of size $v_{2}(G)+1$, a contradiction. Hence $u_{j} u_{v_{2}} \notin E(G)$, for all $u_{j} \in T^{*}$, which implies that $\operatorname{deg}\left(u_{v_{2}}\right)=1$. On the other hand, if there are two vertices $u_{i}, u_{j} \in T^{*}$ non-adjacents, then $\left(T \backslash\left\{u_{i}, u_{j}\right\}\right) \cup\left\{u_{0}\right\}$ is a vertex cover of G of size $v_{2}(G)-2$, which is a contradiction. Also, $u_{1} u_{j} \in E(G)$ and $u_{j} u_{v_{2}-1} \in E(G)$, for all $u_{j} \in T^{*}$, otherwise there exists $u_{j} \in T^{*}$ such that either $\left(T \backslash\left\{u_{1}, u_{j}\right\}\right) \cup\left\{u_{0}\right\}$ or $\left(T \backslash\left\{u_{j}, u_{v_{2}-1}\right\}\right) \cup\left\{u_{0}\right\}$ is a vertex cover of G of size $v_{2}(G)-2$, which is a contradiction. Therefore, the graphs G is the graph $K_{v_{2}}^{1}$.
Case (ii) Suppose $k \geq 2$ and $T=\left\{v \in V(G[R]): \operatorname{deg}_{R}(v)=2\right\}$. If there is at least two components as a paths (of length at least 2), say R_{1} and R_{2}, then

$$
\begin{aligned}
\beta(G) \leq|T| & \leq\left(\left|E\left(R_{1}\right)\right|-1\right)+\left(\left|E\left(R_{2}\right)\right|-1\right)+\sum_{i=3}^{k}\left|E\left(R_{i}\right)\right| \\
& =\sum_{i=1}^{k}\left|E\left(R_{i}\right)\right|-2=v_{2}(G)-2
\end{aligned}
$$

which is a contradiction. Hence, there are at most one component as a path of length at least 2. Let $u \in V\left(R_{1}\right)$ such that $\operatorname{deg}_{R}(u)=1$, then $\operatorname{deg}_{G}(u)=1$, otherwise $T \backslash\{v\}$, where u and v are adjacent, is a vertex cover of G of size $v(G)-1$, which is a contradiction. Moreover, if $u \in V\left(R_{1}\right)$ such that $\operatorname{deg}_{R_{1}}(u)=2$ and there is $v \in V(G) \backslash V\left(R_{1}\right)$ such that u and v are non-adjacents, then $T \backslash\{v\}$ is a vertex cover of G of size $v(G)-2$, a contradiction. Therefore $k=1$, which is a contradiction.

Theorem 12. Let G be a simple connected graph with $v_{2}(G) \geq 5$ and $\beta(G)=v_{2}(G)-1$. Then either G is the complete graph $K_{v_{2}}$ or G is $K_{v_{2}}^{1}$, where $v_{2}=v_{2}(G)$.

Proof. Let R be a maximum 2-degree-packing of G and $I=V(G) \backslash V(G[R])$ (independent set of vertices). Then $I \neq \varnothing$, by the Proposition 6.

Case (i): Suppose $G[R]$ is the complete graph of $v_{2}(G)$ vertices. We claim, if $u \in I$, then $\operatorname{deg}(u)=1$. To verify the claim, we suppose on the contrary, u is incident to at least two vertices of $V(G[R])$, say v and w. If $V(G[R])=\left\{u_{1}, \ldots, u_{v_{2}}\right\}$, then without loss of generality $u_{1}=v$ and $u_{j}=w$, for some $j \in\left\{2, \ldots, v_{2}\right\}(G[R]$ is a complete graph). Then

$$
\left(R \backslash\left\{u_{1} u_{v_{2}}, u_{j-1} u_{j}\right\}\right) \cup\left\{u u_{1}, u u_{j}, u_{j-1} u_{v_{2}}\right\}
$$

is a 2-degree-packing of G of size $v_{2}(G)+1$, which is a contradiction. Hence, if $u \in I$, then $\operatorname{deg}_{G}(u)=1$.
On the other hand, if $|I|>1$, let $u, v \in I$. Without loss of generality, suppose u is adjacent to u_{1} and v is adjacent to u_{j}, for some $j \in\left\{2, \ldots, v_{2}\right\}$. Since $G[R]$ is a complete graph, then

$$
\left(R \backslash\left\{u_{1} u_{v_{2}}, u_{j-1} u_{j}\right\}\right) \cup\left\{u u_{1}, u_{j-1} u_{v_{2}}, v u_{j}\right\}
$$

is a 2-degree-packing of $\operatorname{size} v_{2}(G)+1$, which is a contradiction. Also, if u and v are adjacent to u_{1}, then

$$
\left(R \backslash\left\{u_{1} u_{2}, u_{1} u_{v_{2}}\right\}\right) \cup\left\{u u_{1}, v u_{1}, u_{2} u_{v_{2}}\right\}
$$

is a 2-degree-packing of size $v_{2}(G)+1$, which is contradiction. Hence, $I=\{u\}$ with $\operatorname{deg}(u)=1$, which implies that the graph G is $K_{\nu_{2}}^{1}$.
Case (ii): Suppose $G[R]$ is the graph $K_{v_{2}}^{1}$. Let $v \in V(G)$ such that the $G[R]-v$ is the complete graph of size $v_{2}(G)$. If $u \in I$ is such that $u w \in E(G)$, whit $w \in V(G[R])$, then, there exists a 2-degree-packing of G of size $v_{2}(G)+1$ (see proof of Proposition 6, which is a contradiction. Then $u w \notin E(G)$, for all $w \in V(G[R]) \cup\{v\}$, which implies that G is a disconnected graph, unless $I=\varnothing$, and the theorem holds by Proposition 6.

4. Graphs with $\beta=\left\lceil v_{2} / 2\right\rceil$

We introduce some terminology and results in order to simplify the description of the simple connected graphs G which satisfy $\beta(G)=\left\lceil\nu_{2}(G) / 2\right\rceil$.

Proposition 13. Let G be a simple connected graph and R be a maximum 2-degree-packing of G.

1. If $v_{2}(G)$ is an even integer and $\beta(G)=\frac{v_{2}(G)}{2}$, then the components of R has even length.
2. If $v_{2}(G)$ is an odd integer and $\beta(G)=\frac{v_{2}\left(\frac{2}{G}\right)+1}{2}$, then there is an unique component of R of odd length.

Proof. To prove the item 1, let R be a maximum 2-degree-packing of G and let R_{1}, \ldots, R_{k} be the components of $G[R]$. If T is a minimum vertex cover of G, then

$$
\frac{v_{2}(G)}{2}=\beta(G)=|T|=\sum_{i=1}^{k}\left|T \cap V\left(R_{i}\right)\right| \geq \sum_{i=1}^{k} \beta\left(R_{i}\right)=\sum_{i=1}^{k}\left\lceil v_{2}\left(R_{i}\right) / 2\right\rceil .
$$

Hence, if R_{1} have a odd number of edges, then

$$
\sum_{i=1}^{k}\left\lceil v_{2}\left(R_{i}\right) / 2\right\rceil=\frac{v_{2}\left(R_{1}\right)+1}{2}+\sum_{i=2}^{k}\left\lceil v_{2}\left(R_{i}\right) / 2\right\rceil \geq \frac{1}{2}+\sum_{i=1}^{k} \frac{v_{2}\left(R_{i}\right)}{2}=\frac{1}{2}+\frac{v_{2}(G)}{2}
$$

which is a contradiction. Therefore, each component of $G[R]$ has an even number of edges. To prove the item 2 we use an analogous argument.

Let A and B be two sets of vertices. The complete graph whose set of vertices is A is denoted by K_{A}. The graph whose set of vertices is $A \cup B$ and whose set of edges is $\{a b: a \in A, b \in B\}$ is denoted by $K_{A, B}$. On the other hand, let $k \geq 3$ be a positive integer. The cycle of length k and the path of length k are denoted by C^{k} and P^{k}, respectively.

If A and B are two sets of vertices from $V\left(C^{k}\right)$ and $V\left(P^{k}\right)$ (not necessarily disjoint) and I be an independent set of vertices different from $V\left(C^{k}\right)$ and $V\left(P^{k}\right)$ then $C_{A, B, I}^{k}=\left(V\left(C_{A, B, I}^{k}\right), E\left(C_{A, B, I}^{k}\right)\right)$ and $P_{A, B, I}^{k}=$ $\left(V\left(P_{A, B, I}^{k}\right), E\left(P_{A, B, I}^{k}\right)\right)$ are denoted to be the graphs with $V\left(C_{A, B, I}^{k}\right)=V\left(C^{k}\right) \cup I$ and $V\left(P_{A, B, I}^{k}\right)=V\left(P^{k}\right) \cup I$, respectively, and $E\left(C_{A, B, I}^{k}\right)=E\left(C^{k}\right) \cup E\left(K_{A}\right) \cup E\left(K_{A, B}\right) \cup E\left(K_{A, I}\right)$ and $E\left(P_{A, B, I}^{k}\right)=E\left(P^{k}\right) \cup E\left(K_{A}\right) \cup E\left(K_{A, B}\right) \cup$ $E\left(K_{A, I}\right)$, respectively. In an analogous way, we denote by C_{I}^{k} to be the graph with $V\left(C_{I}^{k}\right)=V\left(C^{k}\right) \cup I$ and $E\left(C_{I}^{k}\right)=E\left(C^{k}\right)$ and we denote by P_{I}^{k} to be the graph with $V\left(P_{I}^{k}\right)=V\left(P^{k}\right) \cup I$ and $E\left(P_{I}^{k}\right)=E\left(P^{k}\right)$. In Figure 4 are depicted the graphs C_{I}^{k} and P_{I}^{k}, where $|I|=i$.

We define $\mathcal{C}_{A, B, I}^{k}$ to be the family of connected graphs G such that C_{I}^{k} is a subgraph of G and G is a subgraph of $C_{A, B, I}^{k}$. Similarly, we define $\mathcal{P}_{A, B, I}^{k}$ to be the family of connected graphs G such that P_{I}^{k} is a subgraph of G and G is a subgraph of $P_{A, B, I}^{k}$.

That is

$$
\begin{aligned}
& \mathcal{C}_{A, B, I}^{k}=\left\{G: C_{I}^{k} \subseteq G \subseteq C_{A, B, I}^{k} \text { where } G \text { is a connected graph }\right\} \\
& \mathcal{P}_{A, B, I}^{k}=\left\{G: P_{I}^{k} \subseteq G \subseteq P_{A, B, I}^{k} \text { where } G \text { is a connected graph }\right\}
\end{aligned}
$$

Proposition 14. Let $k \geq 4$ be an even integer, T be a minimum vertex cover of C^{k} and I be an independent set of vertices different from $V\left(C^{k}\right)$. If $\hat{T}=V\left(C^{k}\right) \backslash T$ and $G \in \mathcal{C}_{T, \hat{T}, I}^{k}$, then $\beta(G)=\frac{k}{2}$ and $v_{2}(G)=k$.

Figure 4. In (a) depict the Graph C_{I}^{k} and in (b) depict the graph P_{I}^{k}.

(a)

(b)

Figure 5. In (a) is depict the Graph $C_{T, \hat{T}, I}^{6}$ and in (b) is depict the graph $P_{T, \hat{T}, I^{\prime}}^{6}$, where $T=\left\{x_{2}, x_{4}, x_{6}\right\}$ and $I=\left\{c_{1}, c_{2}\right\}$.

Proof. It is clear that, if $G \in \mathcal{C}_{T, \hat{T}, I^{\prime}}^{k}$ then $\beta(G)=\frac{k}{2}$. On the other hand, since C^{k} is a 2-degree-packing of G, then $v_{2}(G) \geq k$. Moreover, since $\left\lceil v_{2}(G) / 2\right\rceil \leq \beta(G)=\frac{k}{2}$, then $v_{2}(G)=k$.

In Figure 5 are depicted the graphs $C_{T, \hat{T}, I}^{6}$ and $P_{T, \hat{T}, I}^{6}$, where $T=\left\{x, x_{4}, x_{6}\right\}$ and $I=\left\{c_{1}, c_{2}\right\}$.
Corollary 15. Let $k \geq 4$ be an even integer, T be a minimum vertex cover of P^{k} and I be an independent set of vertices different from $V\left(P^{k}\right)$. If $\hat{T}=V\left(P^{k}\right) \backslash T$ and $G \in \mathcal{P}_{T, \hat{T}, I^{\prime}}^{k}$, then $\beta(G)=\frac{k}{2}$ and $v_{2}(G)=k$.

For instance, any connected graph G containing the subgraph of Figure 4 (a) and whose supergraph is the graph of Figure 5 (a) is such that $\tau=3$ and $v_{2}=6$.

Now, let $\hat{\mathcal{C}}_{A, B, I}^{k}$ be the family of simple connected graphs G with $v_{2}(G)=k$, such that C_{I}^{k} is a subgraph of G and G is a subgraph of $C_{A, B, I}^{k}$. Similarly, let $\hat{\mathcal{P}}_{A, B, I}^{k}$ be the family of simple connected graphs G with $v_{2}(G)=k$ such that P_{I}^{k} is a subgraph of G and G is a subgraph of $P_{A, B, I}^{k}$. That is

$$
\begin{aligned}
& \hat{\mathcal{C}}_{A, B, I}^{k}=\left\{G: C_{I}^{k} \subseteq G \subseteq C_{A, B, I}^{k} \text { where } G \text { is connected and } v_{2}(G)=k\right\}, \\
& \hat{\mathcal{P}}_{A, B, I}^{k}=\left\{G: P_{I}^{k} \subseteq G \subseteq P_{A, B, I}^{k} \text { where } G \text { is connected and } v_{2}(G)=k\right\} .
\end{aligned}
$$

Hence if $k \geq 4$ is an even integer, T is a minimum vertex cover of either C^{k} or P^{k}, and I is an independent set different from either $V\left(C^{k}\right)$ or $V\left(P^{k}\right)$, then by Proposition 8 and Corollary 4 , we have

$$
\hat{\mathcal{C}}_{T, \hat{T}, I}^{k}=\mathcal{C}_{T, \hat{T}, I}^{k} \text { and } \hat{\mathcal{P}}_{T, \hat{T}, I}^{k}=\mathcal{P}_{T, \hat{T}, I}^{k} .
$$

However, if $k \geq 5$ is an odd integer, T is a minimum vertex cover of either C^{k} or P^{k} and I is an independent set different from either $V\left(C^{k}\right)$ or $V\left(P^{k}\right)$, then

$$
\hat{\mathcal{C}}_{T, \hat{T}, I}^{k} \neq \mathcal{C}_{T, \hat{T}, I}^{k} \text { and } \hat{\mathcal{P}}_{T, \hat{T}, I}^{k} \neq \mathcal{P}_{T, \hat{T}, I}^{k} .
$$

To see this, let R be the cycle of length k and $u, v \in T$ adjacent. Hence, if G is such that $V(G)=V\left(C^{k}\right) \cup\{w\}$, where $w \in I$ and $E(G)=E\left(C^{k}\right) \cup\{u w, v w\}$, then $G \in \mathcal{C}_{T, \hat{T}, I}^{k}$. However, it is clear that $v_{2}(G)=k+1$, which implies that $G \notin \hat{\mathcal{C}}_{T, \hat{T}, T}^{k}$. A similar argument is used to prove that $\hat{\mathcal{P}}_{T, \hat{T}, I}^{k} \neq \mathcal{P}_{T, \hat{T}, I}^{k}$.

Proposition 16. Let $k \geq 5$ be an odd integer, T be a minimum vertex cover of C^{k} and I be an independent set of vertices different from $V\left(C^{k}\right)$. If $\hat{T}=V\left(C^{k}\right) \backslash T$ and $G \in \hat{\mathcal{C}}_{T, \hat{T}, I^{\prime}}^{k}$ then $\beta(G)=\frac{k+1}{2}$.

Proof. It is clear that

$$
\frac{k+1}{2}=\left\lceil v_{2}\left(C_{I}^{k}\right) / 2\right\rceil \leq\left\lceil v_{2}(G) / 2\right\rceil \leq \beta(G) \leq|T|=\frac{k+1}{2},
$$

which implies that $\beta(G)=\frac{k+1}{2}$.
Corollary 17. Let $k \geq 5$ be an odd integer, T be a minimum vertex cover of P^{k} and I be an independent set of vertices different from $V\left(P^{k}\right)$. If $\hat{T}=V\left(P^{k}\right) \backslash T$ and $G \in \hat{\mathcal{P}}_{T, \hat{T}, I^{\prime}}^{k}$, then $\beta(G)=\frac{k+1}{2}$.

Proposition 18. Let G be a connected graph with $|E(G)|>v_{2}(G)$ and R_{1}, \ldots, R_{k} be the components of a maximum 2-degree-packing of G. If $\beta(G)=\left\lceil v_{2}(G) / 2\right\rceil$, then $\beta(G)=\sum_{i=1}^{k} \beta\left(R_{i}\right)$.

Proof. Let R be a maximum 2-degree-packing of G and R_{1}, \ldots, R_{k} be the components of $G[R]$. Since R_{i} is a cycle or a path of length $v_{2}\left(R_{i}\right)$, then $\beta\left(R_{i}\right)=\left\lceil v_{2}\left(R_{i}\right) / 2\right\rceil$, for $i=1, \ldots, k$. If $\beta(G)=\left\lceil v_{2}(G) / 2\right\rceil$, then by Proposition 7, we have

$$
\left\lceil v_{2}(G) / 2\right\rceil=\beta(G) \geq \sum_{i=1}^{k} \beta\left(R_{i}\right)=\sum_{i=1}^{k}\left\lceil v_{2}\left(R_{i}\right) / 2\right\rceil=\left\lceil v_{2}(G) / 2\right\rceil .
$$

Therefore $\beta(G)=\sum_{i=1}^{k} \beta\left(R_{i}\right)$.
By Proposition 13 and Proposition 18, we have:
Theorem 19. Let G be a connected graph with $|E(G)|>v_{2}(G)$ and R_{1}, \ldots, R_{k} be the components of a maximum 2-degree-packing of G.

Then: $\beta(G)=\left\lceil v_{2}(G) / 2\right\rceil$, if and only if, $\beta(G)=\sum_{i=1}^{k} \beta\left(R_{i}\right)$, being:

1. $\left|R_{i}\right|$ an even integer, for $i=1, \ldots, k$, if $v_{2}(G)$ an even number.
2. $\left|R_{1}\right|$ is an odd integer and $\left|R_{i}\right|$ is an even integer, for $i=2, \ldots, k$, if $v_{2}(G)$ is an odd number.

Proposition 20. Let G be a simple connected graph with $v_{2}(G) \geq 4,|E(G)|>v_{2}(G)$ and R_{1}, \ldots, R_{k} be the components of a maximum 2-degree-packing R of G, with k as small as possible. If $\beta(G)=\left\lceil v_{2}(G) / 2\right\rceil$, then $I=I_{1} \cup \cdots \cup I_{k}=$ $V(G) \backslash V(G[R])$, where either $I_{i}=\varnothing$ or for every $u \in I_{i}$ satisfies $N(u) \subseteq V\left(R_{i}\right)$, for $i=1, \ldots, k$.

Proof. Suppose there exists $u \in I, w_{i} \in V\left(R_{i}\right)$ and $w_{j} \in V\left(R_{j}\right)$, for some $i \neq j \in\{1, \ldots, k\}$, such that $u w_{i}, u w_{j} \in E(G)$. Hence $\left(R \backslash\left\{e_{w_{i}}, e_{w_{j}}\right\}\right) \cup\left\{u w_{i}, u w_{j}\right\}$, where $w_{i} \in e_{w_{i}} \in E\left(R_{i}\right)$ and $w_{j} \in e_{w_{j}} \in E\left(R_{j}\right)$, is a maximum 2-degree-packing with less components than R, which is a contradiction. Therefore $I=I_{1} \cup \cdots \cup I_{k}$, where either $I_{i}=\varnothing$ or for every $u \in I_{i}$ satisfies $N(u) \subseteq V\left(R_{i}\right)$, for $i=1, \ldots, k$.

Proposition 21. Let G be a simple connected graph with $v_{2}(G) \geq 4,|E(G)|>v_{2}(G), R_{1}, \ldots, R_{k}$ be the components of a maximum 2-degree-packing R of G, with k as small as possible, and $I=I_{1} \cup \cdots \cup I_{k}=V(G) \backslash V(G[R])$, where either
$I_{i}=\varnothing$ or for every $u \in I_{i}$ satisfies $N(u) \subseteq V\left(R_{i}\right)$, for $i=1, \ldots, k$. If $\beta(G)=\left\lceil v_{2}(G) / 2\right\rceil$, then $\beta\left(G\left[R_{i}\right]\right)=\left\lceil v_{2}\left(G\left[R_{i}\right]\right) / 2\right\rceil$, for $i=1, \ldots, k$.

Proof. The proof of the proposition is completely analogous to the proof Proposition 20.
Proposition 22. Let G be a simple connected graph with $v_{2}(G) \geq 4,|E(G)|>v_{2}(G)$ and R be a maximum 2-degree-packingof G, such that $G[R]$ is a connected graph. If $\beta(G)=\left\lceil v_{2}(G) / 2\right\rceil$, then either $G \in \hat{\mathcal{C}}_{T, \hat{T}, I}^{k}$ or $G \in \hat{\mathcal{P}}_{T, \hat{T}, I^{\prime}}^{k}$ where T is a minimum vertex cover of either C^{k} or $P^{k}, \hat{T}=V(G[R]) \backslash T$ and $I=V(G) \backslash V(G[R])$.

Proof. By Proposition 13, we have either \hat{C}_{I}^{k} is a subgraph of G or P_{I}^{k} is a subgraph of G. Let T be a minimum vertex cover of G (hence, a minimum vertex cover of $G[R]$, by Proposition 18). Hence, by definition, if $e \in$ $E(G) \backslash E\left(G[R]\right.$, then e has an end in T, which implies that G is a subgraph of $\hat{C}_{T, \hat{T}, I}^{k}$. Therefore, either $G \in \hat{\mathcal{C}}_{T, \hat{T}, I}^{k}$ or $G \in \hat{\mathcal{P}}_{T, \hat{T}, I}^{k}$.

By Proposition 18, Proposition 22 and Corollary 21, we have:
Corollary 23. Let G be a simple connected graph with $v_{2}(G) \geq 4,|E(G)|>v_{2}(G), R_{1}, \ldots, R_{k}$ be the components of a maximum 2-degree-packing R of G, with k as small as possible, and $I=I_{1} \cup \cdots \cup I_{k}=V(G) \backslash V(G[R])$, where either $I_{i}=\varnothing$ or for every $u \in I_{i}$ satisfies $N(u) \subseteq V\left(R_{i}\right)$, for $i=1, \ldots, k$. If $\beta(G)=\left\lceil v_{2}(G) / 2\right\rceil$, then either $G\left[V_{i}\right] \in \hat{\mathcal{C}}_{T_{i}, \hat{T}_{i}, I_{i}}^{k_{i}}$ or $G\left[V_{i}\right] \in \hat{\mathcal{P}}_{T_{i}, \hat{T}_{i}, I_{i}}^{k_{i}}$, where $V_{i}=V\left(G\left[R_{i}\right]\right) \cup I_{i}, k_{i}=v_{2}\left(G\left[R_{i}\right]\right), T_{i}$ is a minimum vertex cover of either $C^{k_{i}}$ or $P^{k_{i}}$ and $\hat{T}_{i}=V\left(G\left[R_{i}\right]\right) \backslash T_{i}$.

Hence, by Proposition 14, Proposition 22, Corollary 15 and Corollary 23, we have:
Theorem 24. Let G be a simple connected graph with $v_{2}(G) \geq 4,|E(G)|>v_{2}(G), R_{1}, \ldots, R_{k}$ be the components of a maximum 2-degree-packing R of G, with k as small as possible, and $I=I_{1} \cup \cdots \cup I_{k}=V(G) \backslash V(G[R])$, where either $I_{i}=\varnothing$ or for every $u \in I_{i}$ satisfies $N(u) \subseteq V\left(R_{i}\right)$, for $i=1, \ldots, k$. Then $\beta(G)=\left\lceil v_{2}(G) / 2\right\rceil$, if and only if, either $G\left[V_{i}\right] \in \mathcal{C}_{T_{i}, \hat{T}_{i}, I_{i}}^{k_{i}}$ or $G\left[V_{i}\right] \in \hat{\mathcal{P}}_{T_{i}, \hat{T}_{i}, I_{i}}^{k_{i}}$, where $V_{i}=V\left(G\left[R_{i}\right]\right) \cup I_{i}, k_{i}=v_{2}\left(G\left[R_{i}\right]\right), T_{i}$ is a minimum vertex cover of either $C^{k_{i}}$ or $P^{k_{i}}$ and $\hat{T}_{i}=V\left(G\left[R_{i}\right]\right) \backslash T_{i}$, being

1. $\left|R_{i}\right|$ an even integer, for $i=1, \ldots, k$, if $v_{2}(G)$ an even number.
2. $\left|R_{1}\right|$ is an odd integer and $\left|R_{i}\right|$ is an even integer, for $i=2, \ldots, k$, if $v_{2}(G)$ is an odd number.

Acknowledgments: The author would like to thank the referees for careful reading of the manuscript. Research was partially supported by SNI and CONACyT.

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Conflicts of Interest: "The authors declare no conflict of interest."

References

[1] Bondy, J.A. (1976), Graph theory with applications. Elsevier Science Ltd., Oxford, UK,.
[2] Alon, N., \& Kleitman, D. J. (1992). Piercing convex sets and the Hadwiger-Debrunner (p, q)-problem. Advances in Mathematics, 96(1), 103-112.
[3] Alon, N., \& Kleitman, D. J. (1992). Piercing convex sets. Bulletin of the American Mathematical Society, 29, 252-256.
[4] Alon, N., Kalai, G., Matoušek, J., \& Meshulam, R. (2002). Transversal numbers for hypergraphs arising in geometry. Advances in Applied Mathematics, 29(1), 79-101.
[5] Araujo-Pardo, G., Montejano, A., Montejano, L. \& Vázquez-Ávila, A. (2017). On transversal and 2-packing numbers in straight line systems on \mathbb{R}^{2}, Utilitas Mathematica, 105, 317-336.
[6] Huicochea, M., Montejano, L. \& Oliveros, D. (2015). About the Piercing Number of a Family of Intervals. Discrete Mathematics, 338(12), 2545-2548.
[7] Kynčl, J. \& Tancer, M. (2008). The Maximum Piercing Number for some Classes of Convex Sets with the (4,3)-property. The Electronic Journal of Combinatorics, 15, \#R27.
[8] Montejano, L. \& Soberón, P. (2011), Piercing numbers for balanced and unbalanced families. Discrete E Computational Geometry, 45(2), 358-364.
[9] Alfaro, C.A., Araujo-Pardo, G., Rubio-Montiel C. \& Vázquez-Ávila, A. (2020). On transversal and 2-packing numbers in uniform linear systems. AKCE International Journal of Graphs and Combinatorics, 17(1), 335-3341.
[10] Alfaro, C. \& Vázquez-Ávila, A. (2020). A note on a problem of Henning and Yeo about the transversal number of uniform linear systems whose 2-packing number is fixed. Discrete Mathematics Letters, 3, 61-66.
[11] Vázquez-Ávila, A. (2022), On intersecting straight line systems. Journal of Discrete Mathematical Sciences and Cryptography, 25(6), 1931-1936 .
[12] Vázquez-Ávila, A. (2019), A note on domination in intersecting linear systems. Applied Mathematics E-Notes, 19, 310-314.
[13] Vázquez-Ávila, A. (Submitted). On domination and 2-packing numbers in intersecting linear systems.
[14] Topp, J. \& Volkmann, L. (1991), On packing and covering numbers of graphs, Discrete Mathematics, 96(3), 229-238.
[15] Vázquez-Ávila, A., (To appear). Domination and 2-degree-packing number in graphs. RAIRO - Operations Research.
© 2024 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

