

Article Covering and 2-degree-packing numbers in graphs

Carlos A. Alfaro¹, Christian Rubio-Montiel² and Adrián Vázquez-Ávila^{3,*}

- ¹ Banco de México, Ciudad de México, México; carlos.alfaro@banxico.org.mx.
- ² División de Matemáticas e Ingeniería, FES Acatlán, Uiversidad Nacional Autónoma de México, Ciudad de México, México; christian.rubio@acatlan.unam.mx.
- ³ Subdirección de Ingeniería y Posgrado, Universidad Aeronáutica en Querétaro, Querétaro, México; adrian.vazquez@unaq.mx.
- * Correspondence: adrian.vazquez@unaq.mx.

Received: 29 September 2023; Accepted: 12 December 2023; Published: 27 February 2024 Communicated by: Muhammad Kamran Jamil

Abstract: In this paper, we give a relationship between the covering number of a simple graph *G*, $\beta(G)$, and a new parameter associated to *G*, which is called 2-degree-packing number of *G*, $\nu_2(G)$. We prove that

$$\nu_2(G)/2] \leq \beta(G) \leq \nu_2(G) - 1,$$

for any simple graph *G*, with $|E(G)| > \nu_2(G)$. Also, we give a characterization of connected graphs that attain the equalities.

Keywords: Covering number, independence number, 2-degree-packing number.

MSC: 05C69, 05C70.

1. Introduction

In this paper, we consider finite undirected simple graphs. For the terminology, notation and missing basic definitions related to graphs we refer the reader to [1]. Let *G* be a graph. We call *V*(*G*) the vertex set of *G* and we call *E*(*G*) the edge set of *G*. For a subset $A \subseteq V(G)$, *G*[*A*] denotes the subgraph of *G* which is *induced* by the vertex set *A*. Likewise, for a subset $R \subseteq E(G)$, *G*[*R*] denotes the subgraph of *G* which is *induced* by the edge set *R*. The distance between two vertices *u* and *v* in a graph *G* is the number $d_G(u, v)$ of edges in any shortest $u \in V(G)$, denoted by $N_G(u)$, is the subset of *V*(*G*) adjacent to *u* in *G*. The set of edges incident to $u \in V(G)$ is denoted by \mathcal{L}_u . Hence, the *degree* of *u*, denoted by deg(u), is $deg(x) = |\mathcal{L}_u|$. The minimum and maximum degree of a graph *G* is denoted by $\delta(G)$ and $\Delta(G)$, respectively. Let *H* be a subgraph of *G*, the *restricted degree* of a vertex $u \in V(H)$, denoted by $deg_H(u)$, is defined as $deg_H(u) = |\mathcal{L}_u \cap E(H)|$.

An *independent set* of a graph *G* is a subset $I \subseteq V(G)$ such that any two vertices of *I* are not adjacent. The *independence number* of *G*, denoted by $\alpha(G)$, is the maximum order of an independent set. A *vertex cover* of a graph *G* is a subset $T \subseteq V(G)$ such that all edges of *G* has at least one end in *T*. The *covering number* of *G*, denoted by $\beta(G)$, is the minimum order of a vertex cover of *G*. This parameter is well known and intensively studied in a more general context and with different names, see for example [2–8].

A *k*-degree-packing set of a graph G ($k \le \Delta(G)$), is a subset $R \subseteq E(G)$ such that $\Delta(G[R]) \le k$. The *k*-degree-packing number of G, denoted by $\nu_k(G)$, is the maximum order of a *k*-degree-packing set of G. We are interested in this new parameter when k = 2, since k = 1 is the *matching number* of G. Hence, the matching number is a particular case of the *k*-degree-packing number of a graph when k = 1.

The 2-degree-packing number is studied in [5,9–13] in a more general context, but with a different name, as 2-packing number. The definition of 2-packing in graphs have a different meaning: A set $X \subseteq V(G)$ is called a 2-packing if $d_G(u,v) > 2$ for any different vertices u and v of X, that is, the 2-packing is a subset $X \subseteq V(G)$ in which all the vertices are in distance at least 3 from each other, see for example [14]. Therefore, we called 2-degree-packing instead of 2-packing only applied for graphs.

As a particular case, Araujo-Pardo el al. proved in [5] any simple graph *G* satisfies:

Figure 1. Graphs with β = 2 and ν ₂ = 3.

$$\left[\nu_2(G)/2\right] \le \beta(G). \tag{1}$$

In this paper, we prove that for any simple graph *G*, with $|E(G)| > \nu_2(G)$, is such that:

$$\beta(G) \le \nu_2(G) - 1. \tag{2}$$

Hence, by Equations (1) and (2), we have:

Theorem 1. *If G is a simple connected graph with* $|E(G)| > v_2(G)$ *, then*

$$[\nu_2(G)/2] \le \beta(G) \le \nu_2(G) - 1.$$

In this paper, we give a characterization of simple connected graphs that attain the upper and lower bounds in Theorem 1.

2. Some results

Only connected graphs with $|E(G)| > \nu_2(G)$ are considered, since $|E(G)| = \nu_2(G)$ if and only if $\Delta(G) \le 2$. Moreover, we may assume $\nu_2(G) \ge 4$, since otherwise Araujo-Pardo et al. in [5] proved:

Proposition 2. [5] Let G be a simple graph with $|E(G)| > v_2(G)$, then $v_2(G) = 2$ if and only if $\beta(G) = 1$.

Proposition 3. [5] Let G be a simple connected graph with $|E(G)| > \nu_2(G)$. If $\nu_2(G) = 3$, then $\beta(G) = 2$.

If a graph *G* satisfies the hypothesis of Proposition 2 with $\nu(G) = 2$, then *G* is the complete bipartite graph of the form $K_{1,m}$, with $m \ge 2$. If the graph *G* satisfies the hypothesis of Proposition 3, then *G* is one of the graphs shown in Figure 1 (see [5]).

The next proposition shows some simple consequences of the definitions given previously. Also, some results are well known.

Proposition 4.

- 1. If R is a maximum 2-degree-packing of a graph G, then the components of G[R] are either cycles or paths.
- 2. If *G* is either a cycle or a path, both of even length, and *T* is a minimum vertex cover of *G*, then *T* is an independent set.
- 3. If G is cycle of length odd and T is a minimum vertex cover of G, then there exists an unique $u \in T$ such that $T \setminus \{u\}$ is an independent set. On the other hand, if G is a path of length odd, then either there exists an unique $u \in T$ such that $T \setminus \{u\}$ is an independent set or T is an independent and $\deg_T(u) = 1$.
- 4. If G is either a path or a cycle of length k, then $\beta(G) = \lfloor \frac{k}{2} \rfloor$.
- 5. $\beta(K_n) = \nu_2(K_n) 1.$

Figure 2. Graphs with $\nu_2(G) = 4$ and $\beta(G) = 3$

Remark 1. Let *R* be a maximum 2-degree-packing of a simple graph *G*. It is clear that the number of components of *G*[*R*] is at most $v_2(G) - 1$. Moreover, if *T* is a minimum vertex cover of *G*[*R*], then $\beta(G) \le k + p$, where *k* is the number of components of *G*[*R*] of a single edge, and $p = |\{v \in V(G[R]) : \deg_R(v) = 2\}|$. Hence, $\beta(G) \le k + p \le v_2(G)$.

Proposition 5. If *G* is a simple graph with $|E(G)| > \nu_2(G)$, then $\beta(G) \le \nu_2(G) - 1$.

Proof. By Remark 1, we have $\beta(G) \le k + p \le \nu_2(G)$. It is not hard to see, if $k \ge 1$, then $\beta(G) \le \nu_2(G) - 1$. On the other hand, if k = 0, then any component of G[R] is a cycle, since if G[R] has a path (of length at least 2) as a component, then $\beta(G) \le \nu_2(G) - 1$. Hence $p = \nu_2(G)$. We may assume V(G[R]) = V(G), since otherwise if $u \in V(G) \setminus V(G[R])$ and $e_u = uv \in E(G) \setminus R$, where $v \in V(G[R])$, then the following set $(R \setminus \{e_v\}) \cup \{e_u\}$, where $e_v \in R$, is incident to v, is a maximum 2-degree-packing of G with a path as a component, which implies that $\beta(G) \le \nu_2(G) - 1$. Therefore $\{v \in V(G[R]) : \deg_R(v) = 2\} \setminus \{u\}$, for any $u \in V(G[R])$, is a vertex cover of G, implying that $\beta(G) \le \nu_2(G) - 1$.

Hence, we have:

Theorem 6. If *G* is a simple graph with $|E(G)| > v_2(G)$, then

$$[\nu_2(G)/2] \le \beta(G) \le \nu_2(G) - 1.$$

3. Graphs with $\beta = \nu_2 - 1$

We introduce some terminology in order to simplify the description of simple connected graphs *G* such that $\beta(G) = \nu_2(G) - 1$.

As a particular case, Araujo-Pardo el al. proved in [5] the following:

Proposition 7. [5] If G is a simple graph G with $v_2(G) = 4$ and |E(G)| > 4, then $\beta(G) \le 3$.

Also, in this paper [5], the authors give all the connected graphs with $\nu_2(G) = 4$ and $\beta(G) = 3$ and they are certain subgraphs of the graphs given in Figure 2. Hence, by Proposition 7, we may assume $\nu_2(G) \ge 5$.

In [15] Vázquez-Ávila constructed the graph $T_{s,t}$, with $s \ge 1$ and $t \ge 2$, (see Figure 3 (*a*)), where:

$$V(T_{s,t}) = \{p_1, \dots, p_s\} \cup \{q_1, \dots, q_s\} \cup \{w_1, \dots, w_t\},\$$

$$E(T_{s,t}) = \{p_i q_i : i = 1, \dots, s\} \cup \{v p_i : i = 1, \dots, s\} \cup \{v w_i : i = 1, \dots, t\}$$

Let $G_{s,t}$, with $s \ge 1$ and $t \ge 2$, be the graph constructed from $T_{s,t}$, where (see Figure 3 (*b*)):

$$V(G_{s,t}) = V(T_{s,t}),$$

$$E(G_{s,t}) = E(T_{s,t}) \cup \{vq_i : i = 1, \dots, s\}.$$

As a consequence of Corollary 2.1 given in [15], we have:

Figure 3. In (*a*) depict the Graph $T_{s,t}$ and in (*b*) depict the graph $G_{s,t}$.

Corollary 8. [15] $\beta(T_{s,t}) = \nu_2(T_{s,t}) - 1 = s + 1$, for every $s \ge 1$ and $t \ge 2$.

Since the graph $T_{s,t}$ is a spanning graph of $G_{s,t}$ and any minimum vertex cover of $T_{s,t}$ is a vertex covering of $G_{s,t}$, then:

Corollary 9. $\beta(G_{s,t}) = \nu_2(G_{s,t}) - 1 = s + 1$, for every $s \ge 1$ and $t \ge 2$.

Corollary 10. If $T_{s,t}$ is a spanning subgraph of a graph G and G is a spanning subgraph of $G_{s,t}$, then $\beta(G) = \nu_2(G) - 1 = s + 1$.

Let *G* be a simple graph with $|E(G)| > v_2(G)$ and *R* be a maximum 2-degree-packing of *G*. Let $R_1, \ldots, R_s, R_{s+1}, \ldots, R_k$ be the components of G[R], where $|R_i| = 1$, for $i = 1, \ldots, s$ and $|R_j| > 1$, for $j = s + 1, \ldots, k$. It is not difficult to see that $s \le v_2(G) - 2$. If $s = v_2(G) - 2$, then $k = v_2(G) - 1$ and $|E(G[R_k])| = 2$. Hence, any edge from $E(G) \\ E(G[R])$ is incident with the unique vertex $v \in V(G[R_k])$ with deg_R(v) = 2. Hence, if $R_i = p_i q_i$, for $i = 1, \ldots, s, R_k = w_0 v w_1$, and $V(G) \\ V(G[R]) = \{w_3, \ldots, w_t\}$ (an independent set), if $t \ge 3$, then $T_{s,t}$ is a spanning subgraph of a graph *G* and *G* is a spanning subgraph of $G_{s,t}$. Therefore, $\beta(G) = v_2(G) - 1 = s + 1$.

Let $R_1, \ldots, R_s, R_{s+1}, \ldots, R_k$ be the components of a simple connected graph G, with k as small as possible, where $|R_i| = 1$, for $i = 1, \ldots, s$ and $|R_j| > 1$, for $j = s+1, \ldots, k$. It is clear that $\beta(G) = s + \beta(H)$ and $\nu_2(G) = s + \nu_2(H)$, where H is given by

$$V(H) = V(G) \setminus \bigcup_{i=1}^{s} u_i,$$

$$E(H) = E(G) \setminus \bigcup_{i=1}^{s} \mathcal{L}_{u_i},$$

where $u_i \in V(G[R_i])$, for i = 1, ..., s, and deleting those vertices of degree 0 (if any). Therefore, it may be assumed that any simple connected graph *G*, with $|E(G)| > v_2(G)$, has a maximum 2-degree-packing *R* of *G*, where each component of *G*[*R*] has at least 2 edges; and as a consequence, the set $T = \{u \in V(G[R]) : \deg_{G[R]}(u) = 2\}$ is a vertex cover of *G*.

Let K_n^1 be the simple connected graph, where

$$\begin{aligned} V(K_n^1) &= \{x_1, \dots, x_n\} \cup \{u\}, \\ E(K_n^1) &= \{x_i x_j : 1 \le i < j \le n\} \cup \{u x_1\}. \end{aligned}$$

The graph K_n^1 is the complete graph of *n* vertices with one extra edge attached. It is easy to see that $\beta(K_n^1) = \nu_2(K_n^1) - 1 = n - 1$.

Proposition 11. Let G be a simple graph with $|E(G)| > v_2(G)$, $v_2(G) \ge 5$ and $\beta(G) = v_2(G) - 1$. If R is a maximum 2-degree-packing of G with V(G[R]) = V(G), then either G is the complete graph K_{v_2} or G is $K_{v_2}^1$, where $v_2 = v_2(G)$.

Proof. Let *R* be a maximum 2-degree-packing of *G* with V(G[R]) = V(G) and $R_1, ..., R_k$ be the components of G[R] with *k* as small as possible. Then:

Case(i) If k = 1, then G[R] is either a path or a cycle. Suppose that $R = u_0 u_1 \cdots u_{\nu_2-1} u_0$ is a cycle: If there are two non-adjacent vertices $u_i, u_j \in V(G[R]) = V(G)$, then $T = V(G[R]) \setminus \{u_i, u_j\}$ is a vertex cover of G of cardinality $\nu_2(G) - 2$, which is a contradiction. Therefore, any different pair of vertices of G are adjacent. Hence, the graph G is the complete graph with $\nu_2(G)$ vertices.

On the other hand, if $R = u_0 u_1 \cdots u_{\nu_2}$ is a path, then $T = \{u_1, \ldots, u_{\nu_2-1}\}$ is a minimum vertex cover of *G*. We may assume either $u_0 u_j \in E(G)$ or $u_{\nu_2} u_j \in E(G)$, for all $u_j \in T^* = T \setminus \{u_1, u_{\nu_2-1}\}$, since otherwise, $T \setminus \{u_j\}$ is a vertex cover of *G* of cardinality $\nu_2(G) - 2$, which is a contradiction. Without loss of generality, suppose $u_0 u_j \in E(G)$, for all $u_j \in T^* = T \setminus \{u_1, u_{\nu_2-1}\}$. If $u_j u_{\nu_2} \in E(G)$, for some $u_j \in T^*$, then $R^* = (R \setminus \{u_j u_{j+1}\}) \cup \{u_j u_{\nu_2}, u_0 u_{j+1}\}$ (since $\nu_2(G) \ge 5$) is a 2-degree-packing of size $\nu_2(G) + 1$, a contradiction. Hence $u_j u_{\nu_2} \notin E(G)$, for all $u_j \in T^*$, which implies that deg $(u_{\nu_2}) = 1$. On the other hand, if there are two vertices $u_i, u_j \in T^*$ non-adjacents, then $(T \setminus \{u_i, u_j\}) \cup \{u_0\}$ is a vertex cover of *G* of size $\nu_2(G) - 2$, which is a contradiction. Also, $u_1 u_j \in E(G)$ and $u_j u_{\nu_2-1} \in E(G)$, for all $u_j \in T^*$, otherwise there exists $u_j \in T^*$ such that either $(T \setminus \{u_1, u_j\}) \cup \{u_0\}$ or $(T \setminus \{u_j, u_{\nu_2-1}\}) \cup \{u_0\}$ is a vertex cover of *G* of size $\nu_2(G) - 2$, which is a contradiction. Therefore, the graphs *G* is the graph $K_{\nu_2}^1$.

Case (ii) Suppose $k \ge 2$ and $T = \{v \in V(G[R]) : \deg_R(v) = 2\}$. If there is at least two components as a paths (of length at least 2), say R_1 and R_2 , then

$$\beta(G) \le |T| \le (|E(R_1)| - 1) + (|E(R_2)| - 1) + \sum_{i=3}^{k} |E(R_i)|$$
$$= \sum_{i=1}^{k} |E(R_i)| - 2 = \nu_2(G) - 2,$$

which is a contradiction. Hence, there are at most one component as a path of length at least 2. Let $u \in V(R_1)$ such that $\deg_R(u) = 1$, then $\deg_G(u) = 1$, otherwise $T \setminus \{v\}$, where u and v are adjacent, is a vertex cover of G of size v(G) - 1, which is a contradiction. Moreover, if $u \in V(R_1)$ such that $\deg_{R_1}(u) = 2$ and there is $v \in V(G) \setminus V(R_1)$ such that u and v are non-adjacents, then $T \setminus \{v\}$ is a vertex cover of G of size v(G) - 2, a contradiction. Therefore k = 1, which is a contradiction.

Theorem 12. Let *G* be a simple connected graph with $\nu_2(G) \ge 5$ and $\beta(G) = \nu_2(G) - 1$. Then either *G* is the complete graph K_{ν_2} or *G* is $K_{\nu_2}^1$, where $\nu_2 = \nu_2(G)$.

Proof. Let *R* be a maximum 2-degree-packing of *G* and $I = V(G) \setminus V(G[R])$ (independent set of vertices). Then $I \neq \emptyset$, by the Proposition 6.

Case (i): Suppose G[R] is the complete graph of $v_2(G)$ vertices. We claim, if $u \in I$, then deg(u) = 1. To verify the claim, we suppose on the contrary, u is incident to at least two vertices of V(G[R]), say v and w. If $V(G[R]) = \{u_1, \ldots, u_{v_2}\}$, then without loss of generality $u_1 = v$ and $u_j = w$, for some $j \in \{2, \ldots, v_2\}$ (G[R]) is a complete graph). Then

$$(R \setminus \{u_1 u_{\nu_2}, u_{j-1} u_j\}) \cup \{u u_1, u u_j, u_{j-1} u_{\nu_2}\}$$

is a 2-degree-packing of *G* of size $\nu_2(G) + 1$, which is a contradiction. Hence, if $u \in I$, then deg_G(u) = 1.

On the other hand, if |I| > 1, let $u, v \in I$. Without loss of generality, suppose u is adjacent to u_1 and v is adjacent to u_j , for some $j \in \{2, ..., v_2\}$. Since G[R] is a complete graph, then

$$(R \setminus \{u_1 u_{\nu_2}, u_{j-1} u_j\}) \cup \{u u_1, u_{j-1} u_{\nu_2}, v u_j\}$$

is a 2-degree-packing of size $v_2(G) + 1$, which is a contradiction. Also, if u and v are adjacent to u_1 , then

$$(R \setminus \{u_1u_2, u_1u_{\nu_2}\}) \cup \{uu_1, vu_1, u_2u_{\nu_2}\}$$

is a 2-degree-packing of size $v_2(G) + 1$, which is contradiction. Hence, $I = \{u\}$ with deg(u) = 1, which implies that the graph *G* is $K_{v_2}^1$. Case (ii): Suppose *G*[*R*] is the graph $K_{v_2}^1$. Let $v \in V(G)$ such that the *G*[*R*] – *v* is the complete graph of size $v_2(G)$. If

Case (ii): Suppose G[R] is the graph $K_{\nu_2}^1$. Let $v \in V(G)$ such that the G[R] - v is the complete graph of size $\nu_2(G)$. If $u \in I$ is such that $uw \in E(G)$, whit $w \in V(G[R])$, then, there exists a 2-degree-packing of G of size $\nu_2(G) + 1$ (see proof of Proposition 6, which is a contradiction. Then $uw \notin E(G)$, for all $w \in V(G[R]) \cup \{v\}$, which implies that G is a disconnected graph, unless $I = \emptyset$, and the theorem holds by Proposition 6.

4. Graphs with $\beta = \lfloor \nu_2/2 \rfloor$

We introduce some terminology and results in order to simplify the description of the simple connected graphs *G* which satisfy $\beta(G) = [\nu_2(G)/2]$.

Proposition 13. Let G be a simple connected graph and R be a maximum 2-degree-packing of G.

1. If $v_2(G)$ is an even integer and $\beta(G) = \frac{v_2(G)}{2}$, then the components of R has even length. 2. If $v_2(G)$ is an odd integer and $\beta(G) = \frac{v_2(G) + 1}{2}$, then there is an unique component of R of odd length.

Proof. To prove the item 1, let *R* be a maximum 2-degree-packing of *G* and let R_1, \ldots, R_k be the components of *G*[*R*]. If *T* is a minimum vertex cover of *G*, then

$$\frac{\nu_2(G)}{2} = \beta(G) = |T| = \sum_{i=1}^k |T \cap V(R_i)| \ge \sum_{i=1}^k \beta(R_i) = \sum_{i=1}^k \lceil \nu_2(R_i)/2 \rceil.$$

Hence, if R_1 have a odd number of edges, then

$$\sum_{i=1}^{k} \lceil \nu_2(R_i)/2 \rceil = \frac{\nu_2(R_1) + 1}{2} + \sum_{i=2}^{k} \lceil \nu_2(R_i)/2 \rceil \ge \frac{1}{2} + \sum_{i=1}^{k} \frac{\nu_2(R_i)}{2} = \frac{1}{2} + \frac{\nu_2(G)}{2},$$

which is a contradiction. Therefore, each component of G[R] has an even number of edges. To prove the item 2 we use an analogous argument.

Let *A* and *B* be two sets of vertices. The complete graph whose set of vertices is *A* is denoted by K_A . The graph whose set of vertices is $A \cup B$ and whose set of edges is $\{ab : a \in A, b \in B\}$ is denoted by $K_{A,B}$. On the other hand, let $k \ge 3$ be a positive integer. The cycle of length *k* and the path of length *k* are denoted by C^k and P^k , respectively.

If *A* and *B* are two sets of vertices from $V(C^k)$ and $V(P^k)$ (not necessarily disjoint) and *I* be an independent set of vertices different from $V(C^k)$ and $V(P^k)$ then $C^k_{A,B,I} = (V(C^k_{A,B,I}), E(C^k_{A,B,I}))$ and $P^k_{A,B,I} = (V(P^k_{A,B,I}), E(P^k_{A,B,I}))$ are denoted to be the graphs with $V(C^k_{A,B,I}) = V(C^k) \cup I$ and $V(P^k_{A,B,I}) = V(P^k) \cup I$, respectively, and $E(C^k_{A,B,I}) = E(C^k) \cup E(K_A) \cup E(K_{A,B}) \cup E(K_{A,I})$ and $E(P^k_{A,B,I}) = E(P^k) \cup E(K_A) \cup E(K_{A,B}) \cup E(K_{A,I})$, respectively. In an analogous way, we denote by C^k_I to be the graph with $V(C^k_I) = V(C^k) \cup I$ and $E(C^k_I) = U(C^k) \cup I$ and $E(C^k_I) = E(C^k)$ and we denote by P^k_I to be the graph with $V(P^k_I) = V(P^k) \cup I$ and $E(P^k_I) = E(P^k)$. In Figure 4 are depicted the graphs C^k_I and P^k_I , where |I| = i.

We define $C_{A,B,I}^k$ to be the family of connected graphs *G* such that C_I^k is a subgraph of *G* and *G* is a subgraph of $C_{A,B,I}^k$. Similarly, we define $\mathcal{P}_{A,B,I}^k$ to be the family of connected graphs *G* such that P_I^k is a subgraph of *G* and *G* is a subgraph of *G*.

That is

 $\mathcal{C}_{A,B,I}^{k} = \{G : C_{I}^{k} \subseteq G \subseteq C_{A,B,I}^{k} \text{ where } G \text{ is a connected graph} \}$ $\mathcal{P}_{A,B,I}^{k} = \{G : P_{I}^{k} \subseteq G \subseteq P_{A,B,I}^{k} \text{ where } G \text{ is a connected graph} \}$

Proposition 14. Let $k \ge 4$ be an even integer, T be a minimum vertex cover of C^k and I be an independent set of vertices different from $V(C^k)$. If $\hat{T} = V(C^k) \setminus T$ and $G \in \mathcal{C}^k_{T\hat{T},I'}$ then $\beta(G) = \frac{k}{2}$ and $\nu_2(G) = k$.

Figure 4. In (*a*) depict the Graph C_I^k and in (*b*) depict the graph P_I^k .

Figure 5. In (*a*) is depict the Graph $C_{T,\hat{T},I}^6$ and in (*b*) is depict the graph $P_{T,\hat{T},I'}^6$ where $T = \{x_2, x_4, x_6\}$ and $I = \{c_1, c_2\}$.

Proof. It is clear that, if $G \in C^k_{T,\hat{T},I'}$ then $\beta(G) = \frac{k}{2}$. On the other hand, since C^k is a 2-degree-packing of G, then $\nu_2(G) \ge k$. Moreover, since $\lceil \nu_2(G)/2 \rceil \le \beta(G) = \frac{k}{2}$, then $\nu_2(G) = k$.

In Figure 5 are depicted the graphs $C_{T,\hat{T},I}^6$ and $P_{T,\hat{T},I}^6$, where $T = \{x, x_4, x_6\}$ and $I = \{c_1, c_2\}$.

Corollary 15. Let $k \ge 4$ be an even integer, T be a minimum vertex cover of P^k and I be an independent set of vertices different from $V(P^k)$. If $\hat{T} = V(P^k) \setminus T$ and $G \in \mathcal{P}^k_{T,\hat{T},I'}$ then $\beta(G) = \frac{k}{2}$ and $\nu_2(G) = k$.

For instance, any connected graph *G* containing the subgraph of Figure 4 (a) and whose supergraph is the graph of Figure 5 (a) is such that τ = 3 and ν ₂ = 6.

Now, let $\hat{C}_{A,B,I}^k$ be the family of simple connected graphs *G* with $\nu_2(G) = k$, such that C_I^k is a subgraph of *G* and *G* is a subgraph of $C_{A,B,I}^k$. Similarly, let $\hat{P}_{A,B,I}^k$ be the family of simple connected graphs *G* with $\nu_2(G) = k$ such that P_I^k is a subgraph of *G* and *G* is a subgraph of $P_{A,B,I}^k$. That is

$$\hat{\mathcal{C}}_{A,B,I}^k = \{G : C_I^k \subseteq G \subseteq C_{A,B,I}^k \text{ where } G \text{ is connected and } \nu_2(G) = k\}$$

$$\hat{\mathcal{P}}_{ABI}^{k} = \{G : P_{I}^{k} \subseteq G \subseteq P_{ABI}^{k} \text{ where } G \text{ is connected and } \nu_{2}(G) = k\}$$

Hence if $k \ge 4$ is an even integer, *T* is a minimum vertex cover of either C^k or P^k , and *I* is an independent set different from either $V(C^k)$ or $V(P^k)$, then by Proposition 8 and Corollary 4, we have

$$\hat{\mathcal{C}}_{T,\hat{T},I}^{k} = \mathcal{C}_{T,\hat{T},I}^{k} \text{ and } \hat{\mathcal{P}}_{T,\hat{T},I}^{k} = \mathcal{P}_{T,\hat{T},I}^{k}$$

However, if $k \ge 5$ is an odd integer, *T* is a minimum vertex cover of either C^k or P^k and *I* is an independent set different from either $V(C^k)$ or $V(P^k)$, then

$$\hat{\mathcal{C}}_{T,\hat{T},I}^{k} \neq \mathcal{C}_{T,\hat{T},I}^{k}$$
 and $\hat{\mathcal{P}}_{T,\hat{T},I}^{k} \neq \mathcal{P}_{T,\hat{T},I}^{k}$

To see this, let *R* be the cycle of length *k* and $u, v \in T$ adjacent. Hence, if *G* is such that $V(G) = V(C^k) \cup \{w\}$, where $w \in I$ and $E(G) = E(C^k) \cup \{uw, vw\}$, then $G \in \mathcal{C}^k_{T,\hat{T},I}$. However, it is clear that $v_2(G) = k + 1$, which implies that $G \notin \hat{\mathcal{C}}^k_{T,\hat{T},I}$. A similar argument is used to prove that $\hat{\mathcal{P}}^k_{T,\hat{T},I} \notin \mathcal{P}^k_{T,\hat{T},I}$.

Proposition 16. Let $k \ge 5$ be an odd integer, T be a minimum vertex cover of C^k and I be an independent set of vertices different from $V(C^k)$. If $\hat{T} = V(C^k) \setminus T$ and $G \in \hat{C}^k_{T\hat{T}I'}$ then $\beta(G) = \frac{k+1}{2}$.

Proof. It is clear that

$$\frac{k+1}{2} = \left\lceil \nu_2(C_I^k)/2 \right\rceil \le \left\lceil \nu_2(G)/2 \right\rceil \le \beta(G) \le |T| = \frac{k+1}{2}$$

which implies that $\beta(G) = \frac{k+1}{2}$.

Corollary 17. Let $k \ge 5$ be an odd integer, T be a minimum vertex cover of P^k and I be an independent set of vertices different from $V(P^k)$. If $\hat{T} = V(P^k) \setminus T$ and $G \in \hat{\mathcal{P}}^k_{T\hat{T}I'}$ then $\beta(G) = \frac{k+1}{2}$.

Proposition 18. Let G be a connected graph with $|E(G)| > v_2(G)$ and R_1, \ldots, R_k be the components of a maximum 2-degree-packing of G. If $\beta(G) = [v_2(G)/2]$, then $\beta(G) = \sum_{i=1}^k \beta(R_i)$.

Proof. Let *R* be a maximum 2-degree-packing of *G* and $R_1, ..., R_k$ be the components of *G*[*R*]. Since R_i is a cycle or a path of length $\nu_2(R_i)$, then $\beta(R_i) = \lceil \nu_2(R_i)/2 \rceil$, for i = 1, ..., k. If $\beta(G) = \lceil \nu_2(G)/2 \rceil$, then by Proposition 7, we have

$$\lceil \nu_2(G)/2 \rceil = \beta(G) \ge \sum_{i=1}^k \beta(R_i) = \sum_{i=1}^k \lceil \nu_2(R_i)/2 \rceil = \lceil \nu_2(G)/2 \rceil.$$

Therefore $\beta(G) = \sum_{i=1}^{k} \beta(R_i)$.

By Proposition 13 and Proposition 18, we have:

Theorem 19. Let G be a connected graph with $|E(G)| > v_2(G)$ and R_1, \ldots, R_k be the components of a maximum 2-degree-packing of G.

Then:
$$\beta(G) = \lceil \nu_2(G)/2 \rceil$$
, if and only if, $\beta(G) = \sum_{i=1}^k \beta(R_i)$ *, being.*

1. $|R_i|$ an even integer, for i = 1, ..., k, if $v_2(G)$ an even number.

2. $|R_1|$ is an odd integer and $|R_i|$ is an even integer, for i = 2, ..., k, if $v_2(G)$ is an odd number.

Proposition 20. Let G be a simple connected graph with $v_2(G) \ge 4$, $|E(G)| > v_2(G)$ and R_1, \ldots, R_k be the components of a maximum 2-degree-packing R of G, with k as small as possible. If $\beta(G) = \lfloor v_2(G)/2 \rfloor$, then $I = I_1 \cup \cdots \cup I_k = V(G) \setminus V(G[R])$, where either $I_i = \emptyset$ or for every $u \in I_i$ satisfies $N(u) \subseteq V(R_i)$, for $i = 1, \ldots, k$.

Proof. Suppose there exists $u \in I$, $w_i \in V(R_i)$ and $w_j \in V(R_j)$, for some $i \neq j \in \{1, ..., k\}$, such that $uw_i, uw_j \in E(G)$. Hence $(R \setminus \{e_{w_i}, e_{w_j}\}) \cup \{uw_i, uw_j\}$, where $w_i \in e_{w_i} \in E(R_i)$ and $w_j \in e_{w_j} \in E(R_j)$, is a maximum 2-degree-packing with less components than R, which is a contradiction. Therefore $I = I_1 \cup \cdots \cup I_k$, where either $I_i = \emptyset$ or for every $u \in I_i$ satisfies $N(u) \subseteq V(R_i)$, for i = 1, ..., k.

Proposition 21. Let G be a simple connected graph with $\nu_2(G) \ge 4$, $|E(G)| > \nu_2(G)$, R_1, \ldots, R_k be the components of a maximum 2-degree-packing R of G, with k as small as possible, and $I = I_1 \cup \cdots \cup I_k = V(G) \setminus V(G[R])$, where either

 $I_i = \emptyset$ or for every $u \in I_i$ satisfies $N(u) \subseteq V(R_i)$, for i = 1, ..., k. If $\beta(G) = \lceil \nu_2(G)/2 \rceil$, then $\beta(G[R_i]) = \lceil \nu_2(G[R_i])/2 \rceil$, for i = 1, ..., k.

Proof. The proof of the proposition is completely analogous to the proof Proposition 20.

Proposition 22. Let G be a simple connected graph with $v_2(G) \ge 4$, $|E(G)| > v_2(G)$ and R be a maximum 2-degree-packing of G, such that G[R] is a connected graph. If $\beta(G) = \lceil v_2(G)/2 \rceil$, then either $G \in \hat{C}^k_{T,\hat{T},I}$ or $G \in \hat{\mathcal{P}}^k_{T,\hat{T},I'}$ where T is a minimum vertex cover of either C^k or P^k , $\hat{T} = V(G[R]) \setminus T$ and $I = V(G) \setminus V(G[R])$.

Proof. By Proposition 13, we have either \hat{C}_{I}^{k} is a subgraph of *G* or P_{I}^{k} is a subgraph of *G*. Let *T* be a minimum vertex cover of *G* (hence, a minimum vertex cover of *G*[*R*], by Proposition 18). Hence, by definition, if $e \in E(G) \setminus E(G[R])$, then *e* has an end in *T*, which implies that *G* is a subgraph of $\hat{C}_{T,\hat{T},I}^{k}$. Therefore, either $G \in \hat{C}_{T,\hat{T},I}^{k}$ or $G \in \hat{\mathcal{P}}_{T,\hat{T},I}^{k}$.

By Proposition 18, Proposition 22 and Corollary 21, we have:

Corollary 23. Let *G* be a simple connected graph with $v_2(G) \ge 4$, $|E(G)| > v_2(G)$, R_1, \ldots, R_k be the components of a maximum 2-degree-packing *R* of *G*, with *k* as small as possible, and $I = I_1 \cup \cdots \cup I_k = V(G) \setminus V(G[R])$, where either $I_i = \emptyset$ or for every $u \in I_i$ satisfies $N(u) \subseteq V(R_i)$, for $i = 1, \ldots, k$. If $\beta(G) = [v_2(G)/2]$, then either $G[V_i] \in \hat{C}_{T_i,\hat{T}_i,I_i}^{k_i}$ or $G[V_i] \in \hat{\mathcal{P}}_{T_i,\hat{T}_i,I_i}^{k_i}$, where $V_i = V(G[R_i]) \cup I_i$, $k_i = v_2(G[R_i])$, T_i is a minimum vertex cover of either C^{k_i} or P^{k_i} and $\hat{T}_i = V(G[R_i]) \setminus T_i$.

Hence, by Proposition 14, Proposition 22, Corollary 15 and Corollary 23, we have:

Theorem 24. Let G be a simple connected graph with $v_2(G) \ge 4$, $|E(G)| > v_2(G)$, R_1, \ldots, R_k be the components of a maximum 2-degree-packing R of G, with k as small as possible, and $I = I_1 \cup \cdots \cup I_k = V(G) \setminus V(G[R])$, where either $I_i = \emptyset$ or for every $u \in I_i$ satisfies $N(u) \subseteq V(R_i)$, for $i = 1, \ldots, k$. Then $\beta(G) = [v_2(G)/2]$, if and only if, either $G[V_i] \in \hat{C}_{T_i, \hat{T}_i, I_i}^{k_i}$ or $G[V_i] \in \hat{P}_{I_i, \hat{T}_i, I_i}^{k_i}$, where $V_i = V(G[R_i]) \cup I_i$, $k_i = v_2(G[R_i])$, T_i is a minimum vertex cover of either C^{k_i} or P^{k_i} and $\hat{T}_i = V(G[R_i]) \setminus T_i$, being

- 1. $|R_i|$ an even integer, for i = 1, ..., k, if $v_2(G)$ an even number.
- 2. $|R_1|$ is an odd integer and $|R_i|$ is an even integer, for i = 2, ..., k, if $v_2(G)$ is an odd number.

Acknowledgments: The author would like to thank the referees for careful reading of the manuscript. Research was partially supported by SNI and CONACyT.

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflicts of Interest: "The authors declare no conflict of interest."

References

- [1] Bondy, J.A. (1976), Graph theory with applications. Elsevier Science Ltd., Oxford, UK,.
- [2] Alon, N., & Kleitman, D. J. (1992). Piercing convex sets and the Hadwiger-Debrunner (p, q)-problem. *Advances in Mathematics*, 96(1), 103-112.
- [3] Alon, N., & Kleitman, D. J. (1992). Piercing convex sets. Bulletin of the American Mathematical Society, 29, 252-256.
- [4] Alon, N., Kalai, G., Matoušek, J., & Meshulam, R. (2002). Transversal numbers for hypergraphs arising in geometry. *Advances in Applied Mathematics*, 29(1), 79-101.
- [5] Araujo-Pardo, G., Montejano, A., Montejano, L. & Vázquez-Ávila, A. (2017). On transversal and 2-packing numbers in straight line systems on ℝ², *Utilitas Mathematica*, 105, 317–336.
- [6] Huicochea, M., Montejano, L. & Oliveros, D. (2015). About the Piercing Number of a Family of Intervals. *Discrete Mathematics*, 338(12), 2545–2548.
- [7] Kynčl, J. & Tancer, M. (2008). The Maximum Piercing Number for some Classes of Convex Sets with the (4,3)-property. *The Electronic Journal of Combinatorics*, 15, #R27.
- [8] Montejano, L. & Soberón, P. (2011), Piercing numbers for balanced and unbalanced families. Discrete & Computational Geometry, 45(2), 358–364.

- [9] Alfaro, C.A., Araujo-Pardo, G., Rubio-Montiel C. & Vázquez-Ávila, A. (2020). On transversal and 2-packing numbers in uniform linear systems. *AKCE International Journal of Graphs and Combinatorics*, *17*(1), 335-3341.
- [10] Alfaro, C. & Vázquez-Ávila, A. (2020). A note on a problem of Henning and Yeo about the transversal number of uniform linear systems whose 2-packing number is fixed. *Discrete Mathematics Letters*, 3, 61–66.
- [11] Vázquez-Ávila, A. (2022), On intersecting straight line systems. *Journal of Discrete Mathematical Sciences and Cryptography*, 25(6), 1931–1936.
- [12] Vázquez-Ávila, A. (2019), A note on domination in intersecting linear systems. *Applied Mathematics E-Notes*, 19, 310–314.
- [13] Vázquez-Ávila, A. (Submitted). On domination and 2-packing numbers in intersecting linear systems.
- [14] Topp, J. & Volkmann, L. (1991), On packing and covering numbers of graphs, Discrete Mathematics, 96(3), 229–238.
- [15] Vázquez-Ávila, A., (To appear). Domination and 2-degree-packing number in graphs. RAIRO Operations Research.

© 2024 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).