

Article Note: Certain bounds in respect of upper deg-centric graphs

Johan Kok

Independent Mathematics Researcher, City of Tshwane, South Africa & Visiting Faculty at CHRIST (Deemed to be a University), Bangalore, India. * Correspondence: jacotype@gmail.com; johan.kok@christuniversity.in; Tel.: +27646547285

Received: 08 March 2023; Accepted: 01 January 2024; Published: 31 May 2024 Communicated by: Roslan Hasni

Abstract: This note presents some upper bounds for the size of the upper deg-centric grapg G_{ud} of a simple connected graph G. Amongst others, a result for graphs for which a compliant graph G has $G_{ud} \cong \overline{G}$ is presented. Finally, results for size minimality in respect upper deg-centrication and minimum size of such graph G are presented.

Keywords: Upper deg-centric graph; upper deg-centrication; equi-eccentric graph.

MSC: Primary 05C12; Secondary 05C45.

1. Introduction

I is assumed that the reader is familiar with the basic notions and notation of graph theory. Where deemed necessary, useful definitions will be recalled from [1–3]. Only finite, undirected and connected simple graphs are considered. Furthermore, since the number of distinct connected graphs on n = 1,2,3 vertices is respectively given by 1,1,2 this note will, unless stated otherwise, consider graphs of order $n \ge 4$. Results for n = 1,2,3 can easily be verified. Reference to vertices v_i, v_j will mean that v_i and v_j are distinct vertices. A classical graph from a graph *G* is its complement, \overline{G} . The complement of a graph *G* can be defined in terms of a distance condition i.e. $V(\overline{G}) = V(G)$ and $E(\overline{G}) = \{v_i v_j : \text{ if and only if } d_G(v_i, v_j) \ne 1\}$. Clearly, a generalized notion of a *k*-complement of graph *G* could be that for $k \ge 1$ the *k*-complement of *G* is defined as a graph say, $\overline{G}_{(k)}$ where, $V(\overline{G}_{(k)}) = V(G)$ and $E(\overline{G}_{(k)}) = \{v_i v_j : d_G(v_i, v_j) \ne k\}$. If a graphical parameter of a vertex such as its degree, eccentricity, coloring or alike is utilized in a relation condition to obtain a graph from a graph the study becomes interesting. Published studies with a distance condition in terms of the vertex eccentricity are found in [4,5]. With the world-wide interest in artificial intelligence, machine learning, deep data mining and alike, the notion of graphs from a graph may bring various futuristic applications to the fore. The era of *evolving* graphs has arrived.

2. Preliminaries

In a recently communicated paper the notion of upper degree-centrication has been introduced. This note has relevance to the upper deg-centric graph. See [6].

Definition 1. [6] Let G = (V(G), E(G)) be a graph. Then the upper deg-centric graph of G denoted by, G_{ud} has vertices $V(G_{ud}) = V(G)$ and $E(G_{ud}) = \{v_i v_j : d_G(v_i, v_j) \ge deg_G(v_i)\}$.

Clearly, an edge $v_i v_j \in E(G)$ and $v_i v_j \in E(G_{ud})$ if and only if v_i or v_j is a pendant vertex in G. Put differently, an edge $v_i v_j \in E(G)$ and $v_i v_j \in E(G_{ud})$ if and only if $deg_G(v_i) = 1$ or $deg_G(v_j) = 1$. Therefore, $E(G_{ud}) \subseteq E(\overline{G})$ if and only if $\delta(G) \ge 2$.

Theorem 2. A 2-regular graph G has $G_{ud} \cong \overline{G}$.

Proof. Assume *G* is a 2-regular graph. Thus $deg_G(v_i) = 2$, $\forall v_i$. So $N_{G_{ud}}(v_i) = V(G) \setminus N_G[v_i]$, $\forall i$ which implies that $E(G_{ud}) = E(\overline{G})$. Since $V(G) = V(\overline{G})$ it follows that $G_{ud} \cong \overline{G}$.

The converse of Theorem 2 does not hold. An example is the windmill graph Wd(k) which is obtained by joining $k \ge 2$ copies of K_3 at a shared central vertex. Clearly, the central vertex has degree equal to 2k > 2 so Wd(k) is not 2-regular. However, $Wd(k)_{ud} \cong Wd(k)$.

Theorem 3. A graph G has $G_{ud} \cong \overline{G}$ if and only if V(G) can be partitioned into sets

 $X = \{v_i : deg_G(v_i) = 2\} and Y = V(G) \setminus X$

such that the induced subgraph $\langle Y \rangle$ is complete or empty.

Proof. For any vertex $v_i \in V(G)$ the open neighborhood $N_{G_{ud}}(v_i)$ can be partitioned into three sets that is:

(i)
$$N_{G_{ud}}^{\rightarrow}(v_i) = \{v_j : deg_G(v_i) \le d_G(v_i, v_j) \text{ and } deg_G(v_j) > d_G(v_j, v_i)\}.$$

(ii) $N_{G_{ud}}^{\leftarrow}(v_i) = \{v_j : deg_G(v_i) > d_G(v_i, v_j) \text{ and } deg_G(v_j) \le d_G(v_j, v_i)\}.$
(iii) $N_{G_{ud}}^{\leftarrow}(v_i) = \{v_j : deg_G(v_i) \le d_G(v_i, v_j) \text{ and } deg_G(v_j) \le d_G(v_j, v_i)\}.$

Hence, (iii) represents the commutative initiation of edges. Part 1: Assume that V(G) can be partitioned into sets

 $X = \{v_i : deg_G(v_i) = 2\}$ and $Y = V(G) \setminus X$

such that the induced subgraph $\langle Y \rangle$ is complete or empty. From Definition 1 it is obvious that each $v_i \in X$ initiates an edge to all vertices v_j if $d_G(v_i, v_j) \ge 2$. All these edges are also obtained in \overline{G} . Since each $v_j \in Y$ has $deg_G(v_j) \ge 3$ it cannot initiate all edges in accordance to the definition of \overline{G} . Hence, for such v_j the initiation of an edge is prohibited. The aforesaid is in compliance because $\langle Y \rangle$ is complete.

Part 2: Conversely, if $G_{ud} \cong \overline{G}$ then possibly *G* is 2-regular. In such case X = V(G) and $Y = \emptyset$. Otherwise, any vertex v_i which yields an edge (or edges) in accordance with the definition of \overline{G} has $deg_G(v_i) = 2$ by necessity. Hence a non-empty set *X* exists. If *Y* is non-empty then any $v_j \in Y$ has $deg_G(v_j) \ge 3$. A commutative initiated edge from v_j to $v_i \in X$ is in order. However, an initiated edge amongst vertices in *Y* is prohibited. Such prohibition is only possible if $\langle Y \rangle$ is complete.

3. Bounds

Recall that the number of edges of a graph *G* is called the size of *G* and is denoted by, $\varepsilon(G)$. From Theorem 2 a self-evident corollary follows.

Corollary 4. For G and $\delta(G) \ge 2$ it follows that,

$$0 \le \varepsilon(G_{ud}) \le \frac{n(n-1)}{2} - \varepsilon(G) = \varepsilon(\overline{G}).$$

There exists a finite number say, γ_n of distinct unlabeled trees on *n* vertices. The vertices of these distinct trees on *n* vertices may be labeled v_i , i = 1, 2, 3, ..., n in any fashion. Let these distinct and labeled trees be T_i , $1 \le i \le \gamma_n$ such that:

$$\varepsilon(T_{1_{ud}}) \le \varepsilon(T_{2_{ud}}) \le \varepsilon(T_{3_{ud}}) \le \cdots \le \varepsilon(T_{\gamma_{n_{ud}}}).$$

Lemma 5. Amongst all distinct trees T_i , $1 \le i \le \gamma_n$ the upper deg-centric graph of a path P_n and a star $S_{1,n-1}$ has respectively, the minimum and maximum size, i.e.

$$\varepsilon(P_{n_{ud}}) \le \varepsilon(T_{i_{ud}}) \le \varepsilon(S_{1,n-1_{ud}}).$$

Proof. The result follows from the fact that for a given *n* a path has minimum pendants and a star has maximum pendants read together with Definition 1. Indeed, $S_{1,n-1_{ud}} \cong K_n$.

Recall that G + e means the adding of an edge e to G. If two or more edges say, $e_1, e_2, e_3, \ldots, e_k$ are added to G it is denoted by $G + (e_1, e_2, e_3, \ldots, e_k)$.

Lemma 6. For any tree T and G = T + e it follows that,

$$\varepsilon(G_{ud}) \leq \varepsilon(T_{ud}).$$

Proof. The result follows from the fact that if *e* is added between vertices v_i, v_j then, $deg_T(v_i) < deg_G(v_i)$ and $deg_T(v_j) < deg_G(v_j)$. The aforesaid implies that for each vertes v_t for which $d_T(v_i, v_t) = deg_T(v_i)$ at least the edge $v_i v_t \in E(T_{ud})$ and $v_i v_t \notin E(G_{ud})$. Similar argument follows in respect of vertex v_j . Finally, certain distances between pairs of vertices may have decreased whilst none increased. This settles the result.

To further this note Lemma 6 has been formulated specifically for trees. A similar result holds for graphs in general. We state it as an axiomatic corollary.

Corollary 7. For any graph G and H = G + e it follows that,

$$\varepsilon(H_{ud}) \leq \varepsilon(G_{ud}).$$

It is known that any graph *G* has a finite number of distinct spanning trees. It is also known that a graph *G* can be reconstructed from any of its spanning trees by adding the required edges (or corresponding edges) needed.

Theorem 8. Let S be the set of distinct spanning trees of a graph G. Then,

$$\varepsilon(G_{ud}) \leq \varepsilon(T_{ud})$$
 where, $\varepsilon(T_{ud}) = \min\{\varepsilon(T_{ud}) : T \in S\}$

Proof. Through immediate induction on the result of Lemma 6, it follows for any spanning tree *T* of *G* that, if $H = T + (e_1, e_2, e_3, ..., e_k)$ then $\varepsilon(H_{ud}) \le \varepsilon(T_{ud})$. Furthermore, amongst the finite number of distinct spanning trees of *G* there exists some *T*⁻ such that $\varepsilon(T_{ud}) = min\{\varepsilon(T_{ud}) : T \in S\}$. That settles the result.

Recall that a graph G is traceable if G contains a Hamiltonian path.

Proposition 9. Let G be traceable then,

$$\varepsilon(G_{ud}) \leq \varepsilon(P_{n_{ud}}) = \frac{n^2 - 3n + 6}{2}.$$

Proof. Since *G* is traceable it contains a Hamilton path. Since $\varepsilon(P_{n_{ud}}) \le \varepsilon(T_{ud})$ where *T* is a tree of order *n* and read together with Theorem 8 the result follows.

Proposition 10. Let G be Hamiltonian then,

$$\varepsilon(G_{ud}) \le \varepsilon(C_{n_{ud}}) = \frac{n(n-3)}{2}$$

Proof. Since *G* is Hamiltonian it contains a Hamilton cycle. Since a result similar to Lemma 6 holds for cycles and $\varepsilon(C_{n_{ud}}) = \frac{n(n-3)}{2} \le \varepsilon(P_{n_{ud}})$, the result follows.

Proposition 11. Let distinct graphs G and H both be of order n. (i) If G is a spanning subgraph of H then, $\varepsilon(H_{ud}) \le \varepsilon(G_{ud})$. (ii) If G is not a spanning subgraph of H but G and H share a common spanning tree as well as $\varepsilon(G) < \varepsilon(H)$ then, $\varepsilon(H_{ud}) \le \varepsilon(G_{ud})$.

Proof. (i) Clearly, the result in Corollary 7 can be applied by iteratively adding appropriate edges to *G* one at a time to obtain *H*. For each iteration Corollary 7 remains valid. That settles the result.

(ii) Clearly, the result in Lemma 6 can be applied by iteratively adding appropriate edges to two copies of a common spanning *T* of *G* and *H*, one at a time to first obtain *G* and thereafter obtain *G*. For each iteration Lemma 6 remains valid. That settles the result. \Box

4. Minimum graph size

For n = 1, 3, 4 it is easy to verify that the only graphs *G* for which $G_{ud} = \mathfrak{N}_n$ (alternatively, $G_{ud} = K_n$) are the corresponding complete graphs. The graph K_2 is excluded because $K_{2ud} = K_2$. It is obvious that for $n \ge 5$ there exists a non-complete graph *G* with minimum size such that $G_{ud} = \mathfrak{N}_n$. If $G_{ud} = \mathfrak{N}_n$ and for any edge *e* the upper deg-centric graph of G - e is not empty then *G* is said to be a *minimal* graph in respect of upper deg-centrication. For a given $n \ge 5$ let the set of all minimal graphs in respect of upper deg-centrication be $\mathcal{G}(n)$. A graph of order *n* and of minimum size such that $G_{ud} = \mathfrak{N}_n$ is a graph $G \in \mathcal{G}(n)$ for which $\varepsilon(G) = \min\{\varepsilon(H) : H \in \mathcal{G}(n)\}$. Clearly, such *G* cannot have an pendant vertex. Hence, for minimality of *G* such that $G_{ud} = \mathfrak{N}_n$ the graph *G* must have $\epsilon(G) \ge 3$. Hence, if $\varepsilon(G) = 3$ it represents the minimum size of a graph *G* of order 5 such that $G_{ud} \cong \mathfrak{N}_5$. The chorded cycle $C_5 + (v_1v_3, v_1v_4, v_2v_5)$ complies. For a graph *G* of order n = 6 which is 2-equi-eccentric (hence, diam(G) = 2) and has $\delta(G) = 3$ it must have $\varepsilon(G) \ge 9$. Hence, if $\varepsilon(G) = 9$ it represents the minimum size of a graph *G* of order 6 such that $G_{ud} \cong \mathfrak{N}_6$. The chorded cycle $C_6 + (v_1v_4, v_2v_5, v_3v_6)$ complies. It is known that the Petersen graph denoted by, \mathcal{P} is both 3-regular and 2-equi-eccentric. Hence $\varepsilon(\mathcal{P}) = 15$ represents the minimum size of a graph *G* of order $n \ge 7$, $n \ne 10$.

In [1] a graph $G_n = K_m \circ K_1 \bigoplus K_1$, $m \ge 1$ and n = 2m + 1 is defined as:

(i) Construct the corona graph $K_m \circ K_1$ and label the vertices of K_m as v_1, v_2, v_3, \ldots ,

 v_m and the *m*-copies of K_1 vertices as $u_1, u_2, u_3, \ldots, u_m$ and thereafter,

(ii) Join an addition vertex w_1 as a common neighbor to all vertices u_i , $1 \le i \le m$.

From Theorem 3 in [1] it is known that such graph G_n is a minimal 2-equi-eccentric graph hence, $diam(G_n) = 2$. Note that this construction yields graphs of odd order. Furthermore, for *n* is odd the size of G_n is a quadratic function of *m* where, $m = \frac{n-1}{2}$.

Our first step is to search for graphs which are minimal in respect of 2-equi-eccentricity and have minimum size. Thereafter the minimum number of edges must be added to obtain graphs *G* of minimum size such that $\delta(G) = 3$. In [1] the *base* graphs K_2 and K_3 were used to construct a graph for a given $n \ge 7$, $n \ne 10$ (our lower bound) by:

(i) Take base graph K_2 or K_3 on vertices v_1 , v_2 or v_1 , v_2 , v_3 respectively.

(ii) Take t = n - 3 (for K_2) or t = n - 4 (for K_3) isolated vertices u_i , $1 \le i \le t$, (n - 3 or n - 4) and attach q_1, q_2 or q_1, q_2, q_3 , where $q_i \ge 2$ as pendants to the corresponding v_1, v_2 or v_1, v_2, v_3 where $q_1 + q_2 = n - 3$ or $q_1 + q_2 + q_3 = n - 4$.

(iii) Take an isolated vertex w_1 and add the edges $u_i w_1$, $\forall i$ so that w_1 serves as a common neighbor.

It is known that both graphs obtained above are 2-equi-eccentric and of minimum size. See Theorem 7 in [1]. Note that in both cases the size is given by 2(n-3) + 1 = 2n - 5 or 2(n-4) + 3 = 2n - 5. Observe that if K_1 is used as a base graph the size is 2n - 4 and 2n - 4 > 2n - 5. Label any of these graphs as M_n^2 (for base graph K_2) and M_n^3 (for base graph K_3). By excluding n = 10 and adding the minimum additional edges $u_1u_2, u_3u_4, \ldots, u_{t-1}u_t$ the graphs M_n^{2+}, M_n^{3+} can be obtained. The aforesaid is always possible by selecting the base graph either K_2 or K_3 . Clearly, both M_n^{2+}, M_n^{3+} are of minimum size, 2-equi-eccentric with $\delta(M_n^{2+}) = \delta(M_n^{3+}) = 3$. Hence, $M_{nud}^{2+} = \mathfrak{N}_n$. We state a theorem.

Theorem 12. A graph of order n = 10 and of minimum size, has $G_{ud} = \mathfrak{N}_n$ if and only if $G = \mathcal{P}$, (the Petersen graph).

Proof. Firstly, that $\mathcal{P}_{ud} = \mathfrak{N}_{10}$ follows from Definition 1. Since each vertex in the Petersen graph has degree equal to 3 and $diam(\mathcal{P}) = 2$ the size is a minimum. Conversely, the fact that both $\varepsilon(M_{10}^{2+}) > 15$ and $\varepsilon(M_{10}^{3+}) > 15$ whereas, $\varepsilon(\mathcal{P}) = 15$ settles the result.

Theorem 13. A graph G of order $n \ge 7$, $n \ne 10$ and of minimum size such that $G_{ud} = \mathfrak{N}_n$ has,

$$\varepsilon(G) = (2n-5) + \left\lceil \frac{n-4}{2} \right\rceil.$$

Proof. Clearly, a graph *G* of order $n \ge 7$ and of minimum size such that $G_{ud} = \mathfrak{N}_n$ has $\varepsilon(G) = min\{\varepsilon(M_n^{2^+}), \varepsilon(M_n^{3^+})\}$. It is known that $\varepsilon(M_n^2) = \varepsilon(M_n^3) = 2n - 5$ and a minimum size. Furthermore, from the definition of the upper ceiling function it follows that $\lceil \frac{n-4}{2} \rceil = x$ implies that, $\frac{n-4}{2} < x \le \frac{n-4}{2}$ and $\lceil \frac{n-3}{2} \rceil = y$ implies that, $\frac{n-3}{2} < y \le \frac{n-3}{2}$. Furthermore, $y \ge x$. Hence, $(2n-5) + x \le (2n-5) + y$. It means that the minimum size is given by $\varepsilon(M_n^{3^+}) = (2n-5) + \lceil \frac{n-4}{2} \rceil$. The ceiling function is required because of the dependency on n-4 is odd or even.

5. Conclusion

The note concludes with a conjecture.

Conjecture 1. Consider distinct graphs G and H. If $\varepsilon(G) < \varepsilon(H)$ then, $\varepsilon(H_{ud}) \le \varepsilon(G_{ud})$.

Dedication: This paper is dedicated to late Theresa Bernadette Kok (née Tomlinson) in acknowledgement of; and with deep gratitude for the profound influence she had on the author's endeavors to become a research mathematician.

Acknowledgement. The author would like to thank the anonymous referees for their constructive comments.

Conflict of interest:

The author declares there is no conflict of interest in respect of this research.

References

- Akiyama, J., Ando, K., & Avis, D. (1984). Miscellaneous properties of equi-eccentric graphs. Annals of Discrete Mathematics, 20, 13-23.
- [2] Bondy, J. A., & Murty, U. S. R. (1976). Graph Theory with Applications. London: Macmillan Press.
- [3] Harary, F. (1969). Graph Theory. Reading, MA: Addison-Wesley.
- [4] Raja, M. R., Mangam, T. A., & Naduvath, S. (2022). Eccentric completion of a graph. Communications in Combinatorics and Optimization, 7(2), 193-201.
- [5] Raja, M. R., Kok, J., Mangam, T. A., & Naduvath, S. (2023). Cyclic property of iterative eccentrication of a graph. Discrete Mathematics, Algorithms and Applications, 15(7), 2250155(1-13).
- [6] Thalavayalil, T. T., Kok, J., & Naduvath, S. A study on upper deg-centric graphs. (Communicated).

© 2024 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).