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Abstract: This note presents some upper bounds for the size of the upper deg-centric grapg G,; of a simple
connected graph G. Amongst others, a result for graphs for which a compliant graph G has G,; = G is
presented. Finally, results for size minimality in respect upper deg-centrication and minimum size of such
graph G are presented.
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1. Introduction

tis assumed that the reader is familiar with the basic notions and notation of graph theory. Where deemed
m necessary, useful definitions will be recalled from [1-3]. Only finite, undirected and connected simple
graphs are considered. Furthermore, since the number of distinct connected graphs on n = 1,2,3 vertices is
respectively given by 1, 1,2 this note will, unless stated otherwise, consider graphs of order n > 4. Results for
n = 1,2,3 can easily be verified. Reference to vertices i, will mean that v; and v; are distinct vertices. A
classical graph from a graph G is its complement, G. The complement of a graph G can be defined in terms of
a distance condition i.e. V(G) = V(G) and E(G) = {vjv; : if and only if dg(v;,v;) # 1}. Clearly, a generalized
notion of a k-complement of graph G could be that for k > 1 the k-complement of G is defined as a graph say,
Gxy where, V(Gy) = V(G) and E(G)) = {vjvj : dg(v;,v;) # k}. If a graphical parameter of a vertex such
as its degree, eccentricity, coloring or alike is utilized in a relation condition to obtain a graph from a graph the
study becomes interesting. Published studies with a distance condition in terms of the vertex eccentricity are
found in [4,5]. With the world-wide interest in artificial intelligence, machine learning, deep data mining and
alike, the notion of graphs from a graph may bring various futuristic applications to the fore. The era of evolving
graphs has arrived.

2. Preliminaries

In a recently communicated paper the notion of upper degree-centrication has been introduced. This note
has relevance to the upper deg-centric graph. See [6].

Definition 1. [6] Let G = (V(G), E(G)) be a graph. Then the upper deg-centric graph of G denoted by, G,,; has
vertices V(G,4) = V(G) and E(Gyy) = {v;v} : dg(v;,v}) 2 degg(v;)}-

Clearly, an edge v;v; € E(G) and v;v; € E(G,4) if and only if v; or v; is a pendant vertex in G. Put differently,
an edge v;v; € E(G) and v;v; € E(G,) if and only if degs(v;) = 1 or degg(v;) = 1. Therefore, E(G,4) € E(G) if
and only if 6(G) > 2.

Theorem 2. A 2-reqular graph G has G4 = G.
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Proof. Assume G is a 2-regular graph. Thus deg¢(v;) = 2, V v;. So Ng,,(v;) = V(G)\Ng[v;], V i which implies

that E(G,4) = E(G). Since V(G) = V(G) it follows that G,; = G. O

The converse of Theorem 2 does not hold. An example is the windmill graph Wd(k) which is obtained
by joining k > 2 copies of K3 at a shared central vertex. Clearly, the central vertex has degree equal to 2k > 2 so
Wd(k) is not 2-regular. However, Wd(k),; = Wd (k).

Theorem 3. A graph G has G,,3 = G if and only if V(G) can be partitioned into sets
X ={vj:degc(v;) =2} and Y = V(G)\X

such that the induced subgraph (Y) is complete or empty.

Proof. For any vertex v; € V(G) the open neighborhood Ng ,(v;) can be partitioned into three sets that is:

(i) Ng (i) = {0} : degg(v;) < dg(vj, vj) and degc(v;) > dc (v, v;)}-
(i) NG (vi) = {v; : degg(v;) > dg (v, vj) and degg(vj) < dg(vj,vi)}-
(iii) Ng’“d(vi) = {UJ : degG(vi) < dc(l)i,’(]]') and d@gG(ZJ]') < dc(v]-,vi)}.
Hence, (iii) represents the commutative initiation of edges.
Part 1: Assume that V(G) can be partitioned into sets

X ={vj:degc(v;) =2} and Y = V(G)\X

such that the induced subgraph (Y) is complete or empty. From Definition 1 it is obvious that each v; € X
initiates an edge to all vertices v; if dg(v;, v;) > 2. All these edges are also obtained in G. Since each vj € Y has
degg(vj) > 3 it cannot initiate all edges in accordance to the definition of G. Hence, for such v; the iniation of
an edge is prohibited. The aforesaid is in compliance because (Y) is complete.

Part 2: Conversely, if G4 = G then possibly G is 2-regular. In such case X = V(G) and Y = @. Otherwise,
any vertex v; which yields an edge (or edges) in accordance with the definition of G has degg(v;) = 2 by
necessity. Hence a non-empty set X exists. If Y is non-empty then any v; € Y has degg(v;) > 3. A commutative
initiated edge from v; to v; € X is in order. However, an intiated edge amongst vertices in Y is prohibited. Such
prohibition is only possible if (Y) is complete. O

3. Bounds

Recall that the number of edges of a graph G is called the size of G and is denoted by, ¢(G). From Theorem
2 a self-evident corollary follows.

Corollary 4. For G and 6(G) > 2 it follows that,

0<e(Gug) < "1 _¢(G) = ¢(G).

There exists a finite number say, <, of distinct unlabeled trees on 7 vertices. The vertices of these distinct
trees on n vertices may be labeled v;, i = 1,2,3,...,n in any fashion. Let these distinct and labeled trees be T;,
1<i< vy, such that:

E(Tlud) < E(Tzud) < €(T3ud) << g(T%‘ud)‘

Lemma 5. Amongst all distinct trees T;, 1 < i < vy the upper deg-centric graph of a path P, and a star Sy ,_1 has
respectively, the minimum and maximum size, i.e.

e(P'Vlud) < E(Til,d) < s(sl,n—lud)'

Proof. The result follows from the fact that for a given n a path has minimum pendants and a star has
maximum pendants read together with Definition 1. Indeed, Sy ,,_1,, = K. O

Recall that G + ¢ means the adding of an edge e to G. If two or more edges say, 1,2, ¢3, ..., ¢ are added to G it
is denoted by G + (eq, ez, 3, ..., ).
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Lemma 6. For any tree T and G = T + e it follows that,
e(Gua) <e(Tyq).

Proof. The result follows from the fact that if e is added between vertices v;, v; then, degr(v;) < degg(v;) and
degr(v;) < degg(v;). The aforesaid implies that for each vertes v; for which dr(v;,v¢) = degr(v;) at least the
edge v;0t € E(T,q) and v;v; ¢ E(Gq). Similar argument follows in respect of vertex v;. Finally, certain distances
between pairs of vertices may have decreased whilst none increased. This settles the result. O

To further this note Lemma 6 has been formulated specifically for trees. A similar result holds for graphs

in general. We state it as an axiomatic corollary.

Corollary 7. For any graph G and H = G + e it follows that,
e(Hya) < €(Gua)-

It is known that any graph G has a finite number of distinct spanning trees. It is also known that a graph
G can be reconstructed from any of its spanning trees by adding the required edges (or corresponding edges)
needed.

Theorem 8. Let S be the set of distinct spanning trees of a graph G. Then,

e(Gyug) <e(T,,;) where, e(T, ;) = min{e(T,q): T € S}.

Proof. Through immediate induction on the result of Lemma 6, it follows for any spanning tree T of G that,
if H=T+ (e1,ep,e3,...,¢) thene(H,;) < &(T,4). Furthermore, amongst the finite number of distinct spanning
trees of G there exists some T~ such that e(T, ;) = min{e(T,4) : T € S}. That settles the result. O

Recall that a graph G is traceable if G contains a Hamiltonian path.

Proposition 9. Let G be traceable then,
2
E(Gud) < E(Pnud) = %

Proof. Since G is traceable it contains a Hamilton path. Since e(P; ,) < €(T,;) where T is a tree of order n and
read together with Theorem 8 the result follows. O

Proposition 10. Let G be Hamiltonian then,
-3
e(Gua) < (Cn,g) = "5,

Proof. Since G is Hamiltonian it contains a Hamilton cycle. Since a result similar to Lemma 6 holds for cycles
and e(Cy, ;) = @ <&(Py,,), the result follows. O

Proposition 11. Let distinct graphs G and H both be of order n.

(i) If G is a spanning subgraph of H then, e(H,4) < e(G,4).

(ii) If G is not a spanning subgraph of H but G and H share a common spanning tree as well as e(G) < e(H) then,
e(Hua) < e(Gua)-

Proof. (i) Clearly, the result in Corollary 7 can be applied by iteratively adding appropriate edges to G one at
a time to obtain H. For each iteration Corollary 7 remains valid. That settles the result.

(ii) Clearly, the result in Lemma 6 can be applied by iteratively adding appropriate edges to two copies of a
common spanning T of G and H, one at a time to first obtain G and thereafter obtain G. For each iteration
Lemma 6 remains valid. That settles the result. O
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4. Minimum graph size

For n = 1,3,4 it is easy to verify that the only graphs G for which G4 = 0, (alternatively, G,; = K,) are the
corresponding complete graphs. The graph K; is excluded because K3 , = K. It is obvious that for n > 5 there
exists a non-complete graph G with minimum size such that G,,; = 91,,. If G,; = M, and for any edge e the upper
deg-centric graph of G —e is not empty then G is said to be a minimal graph in respect of upper deg-centrication.
For a given n > 5 let the set of all minimal graphs in respect of upper deg-centrication be G(#). A graph of order
n and of minimum size such that G,,; = 91, is a graph G € G(n) for which ¢(G) = min{e(H) : H € G(n)}. Clearly,
such G cannot have an pendant vertex. Hence, for minimality of G such that G,; = 91, the graph G must have
diam(G) =2 and 6(G) = 3. For a graph G of order n = 5 which has diam(G) = 2 and has §(G) = 3 it must have
€(G) > 8. Hence, if ¢(G) = 8 it represents the minimum size of a graph G of order 5 such that G,; = Ms. The
chorded cycle Cs + (v1v3, 7104, v205) complies. For a graph G of order n = 6 which is 2-equi-eccentric (hence,
diam(G) = 2) and has 6(G) = 3 it must have ¢(G) > 9. Hence, if ¢(G) = 9 it represents the minimum size
of a graph G of order 6 such that G,; = 9. The chorded cycle Cg + (v1v4, 205, v304) complies. It is known
that the Petersen graph denoted by, P is both 3-regular and 2-equi-eccentric. Hence e(P) = 15 represents the
minimum size of a graph G of order 10 such that G,; = 91;9. We are left to consider graphs of order n > 7, n # 10.

In[1] a graph G, = Ky, oK1 @ Ky, m > 1 and n = 2m + 1 is defined as:
(i) Construct the corona graph K, o Ky and label the vertices of K, as v1, v, 73, ...,
vy and the m-copies of Ky vertices as uy,up, u3,. .., u;; and thereafter,
(ii) Join an addition vertex w; as a common neighbor to all vertices u;, 1 <i < m.
From Theorem 3 in [1] it is known that such graph G, is a minimal 2-equi-eccentric graph hence, diam(Gy,,) = 2.
Note that this construction yields graphs of odd order. Furthermore, for # is odd the size of Gy, is a quadratic

function of m where, m = "2;1

Our first step is to search for graphs which are minimal in respect of 2-equi-eccentricity and have
minimum size. Thereafter the minimum number of edges must be added to obtain graphs G of minimum size
such that §(G) = 3. In [1] the base graphs K; and K3 were used to construct a graph for a givenn > 7, n # 10
(our lower bound) by:

(i) Take base graph K3 or K3 on vertices v1, v, or v1,v2, v3 respectively.

(ii) Take t = n -3 (for Kp) or t = n -4 (for K3) isolated vertices u;, 1 < i < t,(n-3 or n-4) and attach
41,42 Or 41,492,493, where g; > 2 as pendants to the corresponding v1,v; or vy,v,,v3 where g1 + g2 = n -3 or
q1+q2+q3=n—-4.

(iii) Take an isolated vertex w; and add the edges u;w;, V i so that w; serves as a common neighbor.

It is known that both graphs obtained above are 2-equi-eccentric and of minimum size. See Theorem
7 in [1]. Note that in both cases the size is given by 2(n -3) +1 = 2n -5 or 2(n -4) +3 = 2n - 5. Observe
that if K; is used as a base graph the size is 2 — 4 and 21 — 4 > 2n - 5. Label any of these graphs as M2 (for
base graph K,) and M (for base graph K3). By excluding n = 10 and adding the minimum additional edges
Uiy, Uzily, ..., us_1u; the graphs M%Jr, M2+ can be obtained. The aforesaid is always possible by selecting the
base graph either K, or K3. Clearly, both M2*, M>* are of minimum size, 2-equi-eccentric with §(M2*) =
S(M3*) = 3. Hence, M%L = M,%:d =91,. We state a theorem.

Theorem 12. A graph of order n = 10 and of minimum size, has G,3 = Wy, if and only if G = P, (the Petersen graph).
Proof. Firstly, that P,; = 9o follows from Definition 1. Since each vertex in the Petersen graph has degree
equal to 3 and diam(P) = 2 the size is a minimum. Conversely, the fact that both S(M%a' ) > 15 and s(M‘I’ar )>15

whereas, e(P) = 15 settles the result. O

Theorem 13. A graph G of order n > 7, n + 10 and of minimum size such that G,; = 9, has,
e(G) = (2n-5) +[54].
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Proof. Clearly, a graph G of order n > 7 and of minimum size such that G,; = 9, has ¢(G) =
min{e(M2*),e(M>*)}. It is known that e(M2) = ¢(M;) = 2n -5 and a minimum size. Furthermore, from
the definition of the upper ceiling function it follows that [%] = x implies that, ’%4 <x< ”2;4 and [%] =y
implies that, "7_3 <y< "7_3 Furthermore, y > x. Hence, (2n-5) + x < (2n—-5) +y. It means that the minimum
size is given by e(M>*) = (2n-5) + ["7_4] The ceiling function is required because of the dependency on n -4
is odd or even. O

5. Conclusion

The note concludes with a conjecture.
Conjecture 1. Consider distinct graphs G and H. If e(G) < e(H) then, e(H,3) < e(G4).
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