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Abstract: This note presents some upper bounds for the size of the upper deg-centric grapg Gud of a simple
connected graph G. Amongst others, a result for graphs for which a compliant graph G has Gud ≅ G is
presented. Finally, results for size minimality in respect upper deg-centrication and minimum size of such
graph G are presented.
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1. Introduction

I t is assumed that the reader is familiar with the basic notions and notation of graph theory. Where deemed
necessary, useful definitions will be recalled from [1–3]. Only finite, undirected and connected simple

graphs are considered. Furthermore, since the number of distinct connected graphs on n = 1, 2, 3 vertices is
respectively given by 1, 1, 2 this note will, unless stated otherwise, consider graphs of order n ≥ 4. Results for
n = 1, 2, 3 can easily be verified. Reference to vertices vi, vj will mean that vi and vj are distinct vertices. A
classical graph from a graph G is its complement, G. The complement of a graph G can be defined in terms of
a distance condition i.e. V(G) = V(G) and E(G) = {vivj ∶ if and only if dG(vi, vj) ≠ 1}. Clearly, a generalized
notion of a k-complement of graph G could be that for k ≥ 1 the k-complement of G is defined as a graph say,
G
(k) where, V(G

(k)) = V(G) and E(G
(k)) = {vivj ∶ dG(vi, vj) ≠ k}. If a graphical parameter of a vertex such

as its degree, eccentricity, coloring or alike is utilized in a relation condition to obtain a graph from a graph the
study becomes interesting. Published studies with a distance condition in terms of the vertex eccentricity are
found in [4,5]. With the world-wide interest in artificial intelligence, machine learning, deep data mining and
alike, the notion of graphs from a graph may bring various futuristic applications to the fore. The era of evolving
graphs has arrived.

2. Preliminaries

In a recently communicated paper the notion of upper degree-centrication has been introduced. This note
has relevance to the upper deg-centric graph. See [6].

Definition 1. [6] Let G = (V(G), E(G)) be a graph. Then the upper deg-centric graph of G denoted by, Gud has
vertices V(Gud) = V(G) and E(Gud) = {vivj ∶ dG(vi, vj) ≥ degG(vi)}.

Clearly, an edge vivj ∈ E(G) and vivj ∈ E(Gud) if and only if vi or vj is a pendant vertex in G. Put differently,
an edge vivj ∈ E(G) and vivj ∈ E(Gud) if and only if degG(vi) = 1 or degG(vj) = 1. Therefore, E(Gud) ⊆ E(G) if
and only if δ(G) ≥ 2.

Theorem 2. A 2-regular graph G has Gud ≅ G.
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Proof. Assume G is a 2-regular graph. Thus degG(vi) = 2, ∀ vi. So NGud(vi) = V(G)/NG[vi], ∀ i which implies
that E(Gud) = E(G). Since V(G) = V(G) it follows that Gud ≅ G.

The converse of Theorem 2 does not hold. An example is the windmill graph Wd(k) which is obtained
by joining k ≥ 2 copies of K3 at a shared central vertex. Clearly, the central vertex has degree equal to 2k > 2 so
Wd(k) is not 2-regular. However, Wd(k)ud ≅Wd(k).

Theorem 3. A graph G has Gud ≅ G if and only if V(G) can be partitioned into sets

X = {vj ∶ degG(vi) = 2} and Y = V(G)/X

such that the induced subgraph ⟨Y⟩ is complete or empty.

Proof. For any vertex vi ∈ V(G) the open neighborhood NGud(vi) can be partitioned into three sets that is:

(i) N→Gud
(vi) = {vj ∶ degG(vi) ≤ dG(vi, vj) and degG(vj) > dG(vj, vi)}.

(ii) N←Gud
(vi) = {vj ∶ degG(vi) > dG(vi, vj) and degG(vj) ≤ dG(vj, vi)}.

(iii) N↔Gud
(vi) = {vj ∶ degG(vi) ≤ dG(vi, vj) and degG(vj) ≤ dG(vj, vi)}.

Hence, (iii) represents the commutative initiation of edges.
Part 1: Assume that V(G) can be partitioned into sets

X = {vj ∶ degG(vi) = 2} and Y = V(G)/X

such that the induced subgraph ⟨Y⟩ is complete or empty. From Definition 1 it is obvious that each vi ∈ X
initiates an edge to all vertices vj if dG(vi, vj) ≥ 2. All these edges are also obtained in G. Since each vj ∈ Y has
degG(vj) ≥ 3 it cannot initiate all edges in accordance to the definition of G. Hence, for such vj the iniation of
an edge is prohibited. The aforesaid is in compliance because ⟨Y⟩ is complete.
Part 2: Conversely, if Gud ≅ G then possibly G is 2-regular. In such case X = V(G) and Y = ∅. Otherwise,
any vertex vi which yields an edge (or edges) in accordance with the definition of G has degG(vi) = 2 by
necessity. Hence a non-empty set X exists. If Y is non-empty then any vj ∈ Y has degG(vj) ≥ 3. A commutative
initiated edge from vj to vi ∈ X is in order. However, an intiated edge amongst vertices in Y is prohibited. Such
prohibition is only possible if ⟨Y⟩ is complete.

3. Bounds

Recall that the number of edges of a graph G is called the size of G and is denoted by, ε(G). From Theorem
2 a self-evident corollary follows.

Corollary 4. For G and δ(G) ≥ 2 it follows that,

0 ≤ ε(Gud) ≤ n(n−1)
2 − ε(G) = ε(G).

There exists a finite number say, γn of distinct unlabeled trees on n vertices. The vertices of these distinct
trees on n vertices may be labeled vi, i = 1, 2, 3, . . . , n in any fashion. Let these distinct and labeled trees be Ti,
1 ≤ i ≤ γn such that:

ε(T1ud) ≤ ε(T2ud) ≤ ε(T3ud) ≤ ⋯ ≤ ε(Tγnud
).

Lemma 5. Amongst all distinct trees Ti, 1 ≤ i ≤ γn the upper deg-centric graph of a path Pn and a star S1,n−1 has
respectively, the minimum and maximum size, i.e.

ε(Pnud) ≤ ε(Tiud
) ≤ ε(S1,n−1ud).

Proof. The result follows from the fact that for a given n a path has minimum pendants and a star has
maximum pendants read together with Definition 1. Indeed, S1,n−1ud ≅ Kn.

Recall that G + e means the adding of an edge e to G. If two or more edges say, e1, e2, e3, . . . , ek are added to G it
is denoted by G + (e1, e2, e3, . . . , ek).
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Lemma 6. For any tree T and G = T + e it follows that,

ε(Gud) ≤ ε(Tud).

Proof. The result follows from the fact that if e is added between vertices vi, vj then, degT(vi) < degG(vi) and
degT(vj) < degG(vj). The aforesaid implies that for each vertes vt for which dT(vi, vt) = degT(vi) at least the
edge vivt ∈ E(Tud) and vivt ∉ E(Gud). Similar argument follows in respect of vertex vj. Finally, certain distances
between pairs of vertices may have decreased whilst none increased. This settles the result.

To further this note Lemma 6 has been formulated specifically for trees. A similar result holds for graphs
in general. We state it as an axiomatic corollary.

Corollary 7. For any graph G and H = G + e it follows that,

ε(Hud) ≤ ε(Gud).

It is known that any graph G has a finite number of distinct spanning trees. It is also known that a graph
G can be reconstructed from any of its spanning trees by adding the required edges (or corresponding edges)
needed.

Theorem 8. Let S be the set of distinct spanning trees of a graph G. Then,

ε(Gud) ≤ ε(T−ud) where, ε(T−ud) = min{ε(Tud) ∶ T ∈ S}.

Proof. Through immediate induction on the result of Lemma 6, it follows for any spanning tree T of G that,
if H = T + (e1, e2, e3, . . . , ek) then ε(Hud) ≤ ε(Tud). Furthermore, amongst the finite number of distinct spanning
trees of G there exists some T− such that ε(T−ud) = min{ε(Tud) ∶ T ∈ S}. That settles the result.

Recall that a graph G is traceable if G contains a Hamiltonian path.

Proposition 9. Let G be traceable then,

ε(Gud) ≤ ε(Pnud) =
n2
−3n+6

2 .

Proof. Since G is traceable it contains a Hamilton path. Since ε(Pnud) ≤ ε(Tud) where T is a tree of order n and
read together with Theorem 8 the result follows.

Proposition 10. Let G be Hamiltonian then,

ε(Gud) ≤ ε(Cnud) =
n(n−3)

2 .

Proof. Since G is Hamiltonian it contains a Hamilton cycle. Since a result similar to Lemma 6 holds for cycles
and ε(Cnud) =

n(n−3)
2 ≤ ε(Pnud), the result follows.

Proposition 11. Let distinct graphs G and H both be of order n.
(i) If G is a spanning subgraph of H then, ε(Hud) ≤ ε(Gud).
(ii) If G is not a spanning subgraph of H but G and H share a common spanning tree as well as ε(G) < ε(H) then,
ε(Hud) ≤ ε(Gud).

Proof. (i) Clearly, the result in Corollary 7 can be applied by iteratively adding appropriate edges to G one at
a time to obtain H. For each iteration Corollary 7 remains valid. That settles the result.
(ii) Clearly, the result in Lemma 6 can be applied by iteratively adding appropriate edges to two copies of a
common spanning T of G and H, one at a time to first obtain G and thereafter obtain G. For each iteration
Lemma 6 remains valid. That settles the result.
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4. Minimum graph size

For n = 1, 3, 4 it is easy to verify that the only graphs G for which Gud =Nn (alternatively, Gud = Kn) are the
corresponding complete graphs. The graph K2 is excluded because K2ud = K2. It is obvious that for n ≥ 5 there
exists a non-complete graph G with minimum size such that Gud =Nn. If Gud =Nn and for any edge e the upper
deg-centric graph of G− e is not empty then G is said to be a minimal graph in respect of upper deg-centrication.
For a given n ≥ 5 let the set of all minimal graphs in respect of upper deg-centrication be G(n). A graph of order
n and of minimum size such that Gud =Nn is a graph G ∈ G(n) for which ε(G) =min{ε(H) ∶ H ∈ G(n)}. Clearly,
such G cannot have an pendant vertex. Hence, for minimality of G such that Gud = Nn the graph G must have
diam(G) = 2 and δ(G) = 3. For a graph G of order n = 5 which has diam(G) = 2 and has δ(G) = 3 it must have
ε(G) ≥ 8. Hence, if ε(G) = 8 it represents the minimum size of a graph G of order 5 such that Gud ≅ N5. The
chorded cycle C5 + (v1v3, v1v4, v2v5) complies. For a graph G of order n = 6 which is 2-equi-eccentric (hence,
diam(G) = 2) and has δ(G) = 3 it must have ε(G) ≥ 9. Hence, if ε(G) = 9 it represents the minimum size
of a graph G of order 6 such that Gud ≅ N6. The chorded cycle C6 + (v1v4, v2v5, v3v6) complies. It is known
that the Petersen graph denoted by, P is both 3-regular and 2-equi-eccentric. Hence ε(P) = 15 represents the
minimum size of a graph G of order 10 such that Gud =N10. We are left to consider graphs of order n ≥ 7, n ≠ 10.

In [1] a graph Gn = Km ○K1⊕K1, m ≥ 1 and n = 2m + 1 is defined as:
(i) Construct the corona graph Km ○K1 and label the vertices of Km as v1, v2, v3, . . . ,
vm and the m-copies of K1 vertices as u1, u2, u3, . . . , um and thereafter,
(ii) Join an addition vertex w1 as a common neighbor to all vertices ui, 1 ≤ i ≤ m.
From Theorem 3 in [1] it is known that such graph Gn is a minimal 2-equi-eccentric graph hence, diam(Gn) = 2.
Note that this construction yields graphs of odd order. Furthermore, for n is odd the size of Gn is a quadratic
function of m where, m = n−1

2 .

Our first step is to search for graphs which are minimal in respect of 2-equi-eccentricity and have
minimum size. Thereafter the minimum number of edges must be added to obtain graphs G of minimum size
such that δ(G) = 3. In [1] the base graphs K2 and K3 were used to construct a graph for a given n ≥ 7, n ≠ 10
(our lower bound) by:
(i) Take base graph K2 or K3 on vertices v1, v2 or v1, v2, v3 respectively.
(ii) Take t = n − 3 (for K2) or t = n − 4 (for K3) isolated vertices ui, 1 ≤ i ≤ t, (n − 3 or n − 4) and attach
q1, q2 or q1, q2, q3, where qi ≥ 2 as pendants to the corresponding v1, v2 or v1, v2, v3 where q1 + q2 = n − 3 or
q1 + q2 + q3 = n − 4.
(iii) Take an isolated vertex w1 and add the edges uiw1, ∀ i so that w1 serves as a common neighbor.

It is known that both graphs obtained above are 2-equi-eccentric and of minimum size. See Theorem
7 in [1]. Note that in both cases the size is given by 2(n − 3) + 1 = 2n − 5 or 2(n − 4) + 3 = 2n − 5. Observe
that if K1 is used as a base graph the size is 2n − 4 and 2n − 4 > 2n − 5. Label any of these graphs as M2

n (for
base graph K2) and M3

n (for base graph K3). By excluding n = 10 and adding the minimum additional edges
u1u2, u3u4, . . . , ut−1ut the graphs M2+

n , M3+
n can be obtained. The aforesaid is always possible by selecting the

base graph either K2 or K3. Clearly, both M2+
n , M3+

n are of minimum size, 2-equi-eccentric with δ(M2+
n ) =

δ(M3+
n ) = 3. Hence, M2+

nud
= M3+

nud
=Nn. We state a theorem.

Theorem 12. A graph of order n = 10 and of minimum size, has Gud =Nn if and only if G = P , (the Petersen graph).

Proof. Firstly, that Pud = N10 follows from Definition 1. Since each vertex in the Petersen graph has degree
equal to 3 and diam(P) = 2 the size is a minimum. Conversely, the fact that both ε(M2+

10 ) > 15 and ε(M3+
10 ) > 15

whereas, ε(P) = 15 settles the result.

Theorem 13. A graph G of order n ≥ 7, n ≠ 10 and of minimum size such that Gud =Nn has,

ε(G) = (2n − 5) + ⌈ n−4
2 ⌉.
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Proof. Clearly, a graph G of order n ≥ 7 and of minimum size such that Gud = Nn has ε(G) =
min{ε(M2+

n ), ε(M3+
n )}. It is known that ε(M2

n) = ε(M3
n) = 2n − 5 and a minimum size. Furthermore, from

the definition of the upper ceiling function it follows that ⌈ n−4
2 ⌉ = x implies that, n−4

2 < x ≤ n−4
2 and ⌈ n−3

2 ⌉ = y
implies that, n−3

2 < y ≤ n−3
2 . Furthermore, y ≥ x. Hence, (2n − 5) + x ≤ (2n − 5) + y. It means that the minimum

size is given by ε(M3+
n ) = (2n − 5) + ⌈ n−4

2 ⌉. The ceiling function is required because of the dependency on n − 4
is odd or even.

5. Conclusion

The note concludes with a conjecture.

Conjecture 1. Consider distinct graphs G and H. If ε(G) < ε(H) then, ε(Hud) ≤ ε(Gud).
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