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Abstract: An edge irregular k-labeling of a graph G is a labeling of vertices of G with labels from the set
{1, 2, 3, . . . , k} such that no two edges of G have same weight. The least value of k for which a graph G has
an edge irregular k-labeling is called the edge irregularity strength of G. Ahmad et. al. [1] showed the edge
irregularity strength of some particular classes of Toeplitz graphs. In this paper we generalize those results
and finds the exact values of the edge irregularity strength for some generalize classes of Toeplitz graphs.
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1. Introduction and preliminaries

For various classes of graphs in the order to determine whether or not the certain type of a graph labelling
exists, there is no polynomial time bounded algorithm is found in the literature of graph labellings. Thus,
the problem of finding whether a specific classes of graphs posses a particular labeling is still extensively
open. Labeling a graph is a one-to-one mapping that takes set of graph objects (vertex and edge) onto a set of
numbers, called labels. Most of the graph labelling techniques traces their beginning to one defined by Rosa [2]
in 1967 or one introduced by Graham et. al 1980 [3]. In the past 50 years, more than two hundred graph labeling
techniques have been studied in more than two thousand papers. The idea of labelling a graph attained a lot
of popularity in the field of combinatorial graph theory, this gained reputation is not only because of the
challenges face while solving the problems of graph labelling but also because of their enormous applications
in many other branches of science, for example, radar, missile guidance, networking, crystallography, code
writing, cryptography (secret sharing schemes), data base management, astronomy, and in the design of
circuits. Graph labeling is one of the fast growing research areas. New results are being discovered and
published at a rapidly increasing rate [4]. There are massive number of problems and conjectures which are
still unsolved in graph labeling. By a graph labeling we mean an assignment of numbers (usually positive
integers) to a set of graph elements (vertices, edges, faces) subject to certain conditions, assigned numbers are
called labels.
In 1988, Chartand et al.[5] defined vertex irregular labeling of a graph G (without isolated vertices) as an
assignment of positive integers to the edges of G with the condition that no two distinct vertices have same
weight where weights of vertices are defined as the sum of the assigned labels to the edges at each vertex.
The minimum of the largest weight of an edge over all irregular assignments is called the irregularity strength
s(G) of G. If no such weight exists, s (G) = ∞. Let G be a graph with the vertex set V and the edge set E. A
vertex k-labeling ϕ ∶ V(G) Ð→ {1, 2, 3, . . . , k} is called an edge irregular k-labeling if for any e, f ∈ E (G) with
e ≠ f , we have wϕ (e) ≠ wϕ ( f ), where weight of an edge e = xy ∈ E (G) is wϕ (e) = ϕ (x) + ϕ (y) . The least
integer k for which the graph G has an edge irregular k-labeling is called the edge irregularity strength of G
and is denoted by es(G). Motivated by the paper on irregular labeling [5] various types of irregular labelings
are defined for details and results see [6–15]. Irregular labeling in graph theory involves assigning distinct
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labels to graph elements under specific constraints, resulting in unique weights for vertices or edges. Various
types include product-irregular labeling, where the product of labels of incident edges at each vertex is unique
[16], and edge-irregular labeling, where the sum of labels of incident vertices for each edge is unique [17].
Distance irregular labeling ensures the sum of labels of vertices adjacent to each vertex is unique [18], while
total irregularity strength involves unique sums of labels of vertices and edges incident to each vertex [19].
Modular irregular labeling uses sums modulo the number of vertices [20], and vertex-antimagic total labeling
follows arithmetic progression rules [21]. Edge-irregular reflexive labeling ensures unique weights for each
edge [22], while inclusive distance vertex irregular labeling focuses on unique sums in closed neighborhoods
[23]. Finally, face irregular labeling applies to plane graphs, ensuring unique sums of vertices, edges, and faces
[24].
Ahmad et al, in [25] introduced edge irregularity strength as a modification of an irregular assignment defined
in [5].

In [25], along with the exact values of edge irregularity strength for path graph Pn, star graph K1,n, n ≥ 1,
double star graph Sm,n, 3 ≤ m ≤ n and Cartesian product graph Pn × Pm, a result about the lower bound of the
edge irregularity strength of a graph G is also given.

Theorem 1. [25] Let G be a simple graph with maximum degree ∆ = ∆ (G). Then es (G) ≥

max{⌈(∣E (G)∣+ 1) /2⌉ , ∆ (G)}.

Toeplitz graphs were introduced by Sierksma and since then this class of graphs is being investigated
for different graph properties such as connectivity, planarity, hamiltonicity, bipartitness and colourability.
A simple undirected graph is called a Toeplitz graph if its adjacency matrix is Toeplitz. For definition and
properties of a Toeplitz graph see [26]. Here, we are considering only the definition of Toeplitz graph:

Let t1 < t2 ⋅ ⋅ ⋅ < tk ≤ n − 1 be a sequence of positive integers. The Toeplitz graph T = Tn ⟨t1, t2, ..., tk⟩ is a
graph with vertex set {vi ∶ i = 1, 2, ..., n}, where the vertices vi and vj are adjacent when ∣vi − vj∣ = tl , for some
l = 1, 2, ..., k. See [26] for detail of Toeplitz graphs.

The reader can easily verify that a Toeplitz graph is not necessarily connected. In this regard consider
following result given in [26]:

Theorem 2. Tn ⟨t1, t2, . . . , tk⟩ has at least gcd (t1, t2, . . . , tk) connected components.

In [1], Ahmad et.al determined the exact values of the edge irregularity strength of Tn ⟨1, 2⟩, Tn ⟨1, 3⟩,
Tn ⟨2, 4⟩ and Tn ⟨1, 2, 3⟩ Toeplitz graphs. In this paper we extend those results and finds the exact values of the
edge irregularity strength of Tn⟨3, 6⟩, Tn⟨4, 8⟩, Tn⟨5, 10⟩ and Tn⟨6, 12⟩ of Toeplitz graphs.

2. Main Results

Theorem 3. Let Tn⟨3, 6⟩ be the Toeplitz graph with at least 9 vertices. Then es(Tn⟨3, 6⟩) = n − 2.

Proof. Let Tn⟨3, 6⟩ is a Toeplitz graph by the addition of vertex set V(Tn⟨3, 6⟩) = {rj ∶ 1 ≤ j ≤ n} and the edge
set E(Tn⟨3, 6⟩) = {rjrj+3 ∶ 1 ≤ j ≤ n − 3}∪ {rjrj+6 ∶ 1 ≤ j ≤ n − 6}. Keeping in view the lower bound theorem, there
is es(Tn⟨3, 6⟩) ≥ n − 2. The process of conversion, it will be described as an appropriate edge irregular labeling
φ ∶ V(Tn⟨3, 6⟩)→ {1, 2, . . . , n − 2} be the vertex labeling such that

φ(rj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

j+2
3 , if j ≡ 1 (mod 3)

⌈
n+j−2

3 ⌉ , if j ≡ 2 (mod 3)

⌈
2n+j−6

3 ⌉ , if j ≡ 0 (mod 3)

The edge weights for wφ(rjrj+3) are as follows
For n ≡ 1 (mod 3) the weights are given below,
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wφ(rjrj+3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2j+7
3 , if j ≡ 1 (mod 3)

2n+2j+3
3 , if j ≡ 2 (mod 3)

4n+2j−7
3 , if j ≡ 0 (mod 3)

For n ≡ 2 (mod 3) the weights are given below,

wφ(rjrj+3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2j+7
3 , if j ≡ 1 (mod 3)

2n+2j+1
3 , if j ≡ 2 (mod 3)

4n+2j−5
3 , if j ≡ 0 (mod 3)

For n ≡ 0 (mod 3) the weights are given below,

wφ(rjrj+3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2j+7
3 , if j ≡ 1 (mod 3)

2n+2j−1
3 , if j ≡ 2 (mod 3)

4n+2j−9
3 , if j ≡ 0 (mod 3)

The edge weights for wφ(rjrj+6) are as follows
For n ≡ 1 (mod 3) the weights are given below,

wφ(rjrj+6) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2j+10
3 , if j ≡ 1 (mod 3)

2n+2j+6
3 , if j ≡ 2 (mod 3)

4n+2j−4
3 , if j ≡ 0 (mod 3)

For n ≡ 2 (mod 3) the weights are given below,

wφ(rjrj+6) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2j+10
3 , if j ≡ 1 (mod 3)

2n+2j+4
3 , if j ≡ 2 (mod 3)

4n+2j−2
3 , if j ≡ 0 (mod 3)

For n ≡ 0 (mod 3) the weights are given below,

wφ(rjrj+6) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2j+10
3 , if j ≡ 1 (mod 3)

2n+2j+2
3 , if j ≡ 2 (mod 3)

4n+2j−6
3 , if j ≡ 0 (mod 3)

As the edge weights are distinct in the sense of all its pairs of distinct edges, as the vertex labeling φ is
appropriate edge irregular (n − 2)-labeling. Therefore, es(Tn⟨3, 6⟩) = n − 2.

Theorem 4. Let Tn⟨4, 8⟩ be the Toeplitz graph with at least 12 vertices. Then es(Tn⟨4, 8⟩) = n − 3.

Proof. Let Tn⟨4, 8⟩ is a Toeplitz graph by the addition of vertex set V(Tn⟨4, 8⟩) = {rj ∶ 1 ≤ j ≤ n} and the edge
set E(Tn⟨3, 6⟩) = {rjrj+4 ∶ 1 ≤ j ≤ n − 4}∪ {rjrj+8 ∶ 1 ≤ j ≤ n − 8}. Keeping in view the lower bound theorem, there
is es(Tn⟨4, 8⟩) ≥ n − 3. The process of conversion, it will be described as an appropriate edge irregular labeling
φ ∶ V(Tn⟨4, 8⟩)→ {1, 2, . . . , n − 3} be the vertex labeling such that
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φ(rj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j+3
4 , if j ≡ 1 (mod 4)

⌈
n+j−2

4 ⌉ , if j ≡ 2 (mod 4)

⌈
2n+j−6

4 ⌉ , if j ≡ 3 (mod 4) and n ≡ 1, 2, 3 (mod 4)
2n+j−7

4 , if j ≡ 3 (mod 4) and n ≡ 0 (mod 4)

⌈
2n+j−6

3 ⌉ , if j ≡ 0 (mod 4)

The edge weights for wφ(rjrj+4) are as follows
For n ≡ 1 (mod 4) the weights are given below,

wφ(rjrj+4) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j+5
2 , if j ≡ 1 (mod 4)

n+j+3
2 , if j ≡ 2 (mod 4)

2n+j−3
2 , if j ≡ 3 (mod 4)

3n+j−9
2 , if j ≡ 0 (mod 4)

For n ≡ 2 (mod 4) the weights are given below,

wφ(rjrj+4) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j+5
2 , if j ≡ 1 (mod 4)

n+j+2
2 , if j ≡ 2 (mod 4)

2n+j−1
2 , if j ≡ 3 (mod 4)

3n+j−8
2 , if j ≡ 0 (mod 4)

For n ≡ 3 (mod 4) the weights are given below,

wφ(rjrj+4) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j+5
2 , if j ≡ 1 (mod 4)

n+j+1
2 , if j ≡ 2 (mod 4)

2n+j−3
2 , if j ≡ 3 (mod 4)

3n+j−7
2 , if j ≡ 0 (mod 4)

For n ≡ 0 (mod 4) the weights are given below,

wφ(rjrj+4) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j+5
2 , if j ≡ 1 (mod 4)

n+j
2 , if j ≡ 2 (mod 4)

2n+j−5
2 , if j ≡ 3 (mod 4)

3n+j−10
2 , if j ≡ 0 (mod 4)

The edge weights for wφ(rjrj+8) are as follows
For n ≡ 1 (mod 4) the weights are given below,

wφ(rjrj+8) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j+7
2 , if j ≡ 1 (mod 4)

n+j+5
2 , if j ≡ 2 (mod 4)

2n+j−1
2 , if j ≡ 3 (mod 4)

3n+j−7
2 , if j ≡ 0 (mod 4)
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For n ≡ 2 (mod 4) the weights are given below,

wφ(rjrj+8) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j+7
2 , if j ≡ 1 (mod 4)

n+j+4
2 , if j ≡ 2 (mod 4)

2n+j+1
2 , if j ≡ 3 (mod 4)

3n+j−6
2 , if j ≡ 0 (mod 4)

For n ≡ 3 (mod 4) the weights are given below,

wφ(rjrj+8) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j+7
2 , if j ≡ 1 (mod 4)

n+j+3
2 , if j ≡ 2 (mod 4)

2n+j−1
2 , if j ≡ 3 (mod 4)

3n+j−5
2 , if j ≡ 0 (mod 4)

For n ≡ 0 (mod 4) the weights are given below,

wφ(rjrj+8) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j+7
2 , if j ≡ 1 (mod 4)

n+j+2
2 , if j ≡ 2 (mod 4)

2n+j−3
2 , if j ≡ 3 (mod 4)

3n+j−8
2 , if j ≡ 0 (mod 4)

As the edge weights are distinct in the sense of all its pairs of distinct edges, as the vertex labeling φ is
appropriate edge irregular (n − 3)-labeling. Therefore, es(Tn⟨4, 8⟩) = n − 3.

Theorem 5. Let Tn⟨5, 10⟩ be the Toeplitz graph with at least 15 vertices. Then es(Tn⟨5, 10⟩) = n − 4.

Proof. Let Tn⟨5, 10⟩ is a Toeplitz graph by the addition of vertex set V(Tn⟨5, 10⟩) = {rj ∶ 1 ≤ j ≤ n} and the edge
set E(Tn⟨5, 10⟩) = {rjrj+5 ∶ 1 ≤ j ≤ n − 5} ∪ {rjrj+10 ∶ 1 ≤ j ≤ n − 10}. Keeping in view the lower bound theorem,
there is es(Tn⟨5, 10⟩) ≥ n − 4. The process of conversion, it will be described as an appropriate edge irregular
labeling φ ∶ V(Tn⟨5, 10⟩)→ {1, 2, . . . , n − 4} be the vertex labeling such that

φ(rj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j+4
5 , if j ≡ 1 (mod 5)

⌈
n+j−2

5 ⌉ , if j ≡ 2 (mod 5)

⌈
2n+j−6

5 ⌉ , if j ≡ 3 (mod 5) and n ≡ 1, 2, 3, 4 (mod 5)
2n+j−8

5 , if j ≡ 3 (mod 5) and n ≡ 0 (mod 5)

⌈
3n+j−12

5 ⌉ , if j ≡ 4 (mod 5) and n ≡ 1, 2, 3, 4 (mod 5)
3n+j−14

5 , if j ≡ 4 (mod 5) and n ≡ 0 (mod 5)

⌈
4n+j−20

5 ⌉ , if j ≡ 0 (mod 5)

The edge weights for wφ(rjrj+5) are as follows
For n ≡ 1 (mod 5) the weights are given below,
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wφ(rjrj+5) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2j+13
5 , if j ≡ 1 (mod 5)

2n+2j+9
5 , if j ≡ 2 (mod 5)

4n+2j−5
5 , if j ≡ 3 (mod 5)

6n+2j−19
5 , if j ≡ 4 (mod 5)

8n+2j−33
5 , if j ≡ 0 (mod 5)

For n ≡ 2 (mod 5) the weights are given below,

wφ(rjrj+5) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2j+13
5 , if j ≡ 1 (mod 5)

2n+2j+7
5 , if j ≡ 2 (mod 5)

4n+2j+1
5 , if j ≡ 3 (mod 5)

6n+2j−15
5 , if j ≡ 4 (mod 5)

8n+2j−31
5 , if j ≡ 0 (mod 5)

For n ≡ 3 (mod 5) the weights are given below,

wφ(rjrj+5) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2j+13
5 , if j ≡ 1 (mod 5)

2n+2j+5
5 , if j ≡ 2 (mod 5)

4n+2j−3
5 , if j ≡ 3 (mod 5)

6n+2j−11
5 , if j ≡ 4 (mod 5)

8n+2j−29
5 , if j ≡ 0 (mod 5)

For n ≡ 4 (mod 5) the weights are given below,

wφ(rjrj+5) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2j+13
5 , if j ≡ 1 (mod 5)

2n+2j+3
5 , if j ≡ 2 (mod 5)

4n+2j−7
5 , if j ≡ 3 (mod 5)

6n+2j−17
5 , if j ≡ 4 (mod 5)

8n+2j−27
5 , if j ≡ 0 (mod 5)

For n ≡ 0 (mod 5) the weights are given below,

wφ(rjrj+5) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2j+13
5 , if j ≡ 1 (mod 5)

2n+2j+1
5 , if j ≡ 2 (mod 5)

4n+2j−11
5 , if j ≡ 3 (mod 5)

6n+2j−23
5 , if j ≡ 4 (mod 5)

8n+2j−35
5 , if j ≡ 0 (mod 5)

The edge weights for wφ(rjrj+10) are as follows
For n ≡ 1 (mod 5) the weights are given below,
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wφ(rjrj+10) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2j+18
5 , if j ≡ 1 (mod 5)

2n+2j+14
5 , if j ≡ 2 (mod 5)

4n+2j
5 , if j ≡ 3 (mod 5)

6n+2j−14
5 , if j ≡ 4 (mod 5)

8n+2j−28
5 , if j ≡ 0 (mod 5)

For n ≡ 2 (mod 5) the weights are given below,

wφ(rjrj+10) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2j+18
5 , if j ≡ 1 (mod 5)

2n+2j+12
5 , if j ≡ 2 (mod 5)

4n+2j+6
5 , if j ≡ 3 (mod 5)

6n+2j−10
5 , if j ≡ 4 (mod 5)

8n+2j−26
5 , if j ≡ 0 (mod 5)

For n ≡ 3 (mod 5) the weights are given below,

wφ(rjrj+10) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2j+18
5 , if j ≡ 1 (mod 5)

2n+2j+10
5 , if j ≡ 2 (mod 5)

4n+2j+2
5 , if j ≡ 3 (mod 5)

6n+2j−6
5 , if j ≡ 4 (mod 5)

8n+2j−24
5 , if j ≡ 0 (mod 5)

For n ≡ 4 (mod 5) the weights are given below,

wφ(rjrj+10) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2j+18
5 , if j ≡ 1 (mod 5)

2n+2j+8
5 , if j ≡ 2 (mod 5)

4n+2j−2
5 , if j ≡ 3 (mod 5)

6n+2j−12
5 , if j ≡ 4 (mod 5)

8n+2j−22
5 , if j ≡ 0 (mod 5)

For n ≡ 0 (mod 5) the weights are given below,

wφ(rjrj+10) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2j+18
5 , if j ≡ 1 (mod 5)

2n+2j+6
5 , if j ≡ 2 (mod 5)

4n+2j−6
5 , if j ≡ 3 (mod 5)

6n+2j−18
5 , if j ≡ 4 (mod 5)

8n+2j−30
5 , if j ≡ 0 (mod 5)

As the edge weights are distinct in the sense of all its pairs of distinct edges, as the vertex labeling φ is
appropriate edge irregular (n − 4)-labeling. Therefore, es(Tn⟨5, 10⟩) = n − 4.

Theorem 6. Let Tn⟨6, 12⟩ be the Toeplitz graph with at least 18 vertices. Then es(Tn⟨6, 18⟩) = n − 5.
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Proof. Let Tn⟨6, 12⟩ is a Toeplitz graph by the addition of vertex set V(Tn⟨6, 12⟩) = {rj ∶ 1 ≤ j ≤ n} and the edge
set E(Tn⟨6, 12⟩) = {rjrj+6 ∶ 1 ≤ j ≤ n − 6} ∪ {rjrj+12 ∶ 1 ≤ j ≤ n − 12}. Keeping in view the lower bound theorem,
there is es(Tn⟨6, 12⟩) ≥ n − 5. The process of conversion, it will be described as an appropriate edge irregular
labeling φ ∶ V(Tn⟨6, 12⟩)→ {1, 2, . . . , n − 5} be the vertex labeling such that

φ(rj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j+5
6 , if j ≡ 1 (mod 6)

⌈
n+j−2

6 ⌉ , if j ≡ 2 (mod 6)

⌈
2n+j−6

6 ⌉ , if j ≡ 3 (mod 6) and n ≡ 1, 2, 3, 4 (mod 6)

⌈
2n+j−9

6 ⌉ , if j ≡ 3 (mod 6) and n ≡ 0, 5 (mod 6)

⌈
3n+j−12

6 ⌉ , if j ≡ 4 (mod 6) and n ≡ 2, 3, 4 (mod 6)

⌈
3n+j−16

6 ⌉ , if j ≡ 4 (mod 6) and n ≡ 0, 1, 5 (mod 6)

⌈
4n+j−20

6 ⌉ , if j ≡ 5 (mod 6) and n ≡ 2, 3, 4 (mod 6)

⌈
4n+j−24

6 ⌉ , if j ≡ 5 (mod 6) and n ≡ 0, 1, 5 (mod 6)

⌈
5n+j−30

6 ⌉ , if j ≡ 0 (mod 6)

The edge weights for wφ(rjrj+6) are as follows
For n ≡ 1 (mod 6) the weights are given below,

wφ(rjrj+6) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j+8
3 , if j ≡ 1 (mod 6)

n+j+6
3 , if j ≡ 2 (mod 6)

2n+j−2
3 , if j ≡ 3 (mod 6)

3n+j−10
3 , if j ≡ 4 (mod 6)

4n+j−18
3 , if j ≡ 5 (mod 6)

5n+j−26
3 , if j ≡ 0 (mod 6)

For n ≡ 2 (mod 6) the weights are given below,

wφ(rjrj+6) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j+8
3 , if j ≡ 1 (mod 6)

n+j+5
3 , if j ≡ 2 (mod 6)

2n+j+2
3 , if j ≡ 3 (mod 6)

3n+j−7
3 , if j ≡ 4 (mod 6)

4n+j−16
3 , if j ≡ 5 (mod 6)

5n+j−25
3 , if j ≡ 0 (mod 6)

For n ≡ 3 (mod 6) the weights are given below,
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wφ(rjrj+6) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j+8
3 , if j ≡ 1 (mod 6)

n+j+4
3 , if j ≡ 2 (mod 6)

2n+j
3 , if j ≡ 3 (mod 6)

3n+j−4
3 , if j ≡ 4 (mod 6)

4n+j−14
3 , if j ≡ 5 (mod 6)

5n+j−24
3 , if j ≡ 0 (mod 6)

For n ≡ 4 (mod 6) the weights are given below,

wφ(rjrj+6) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j+8
3 , if j ≡ 1 (mod 6)

n+j+3
3 , if j ≡ 2 (mod 6)

2n+j−2
3 , if j ≡ 3 (mod 6)

3n+j−7
3 , if j ≡ 4 (mod 6)

4n+j−12
3 , if j ≡ 5 (mod 6)

5n+j−23
3 , if j ≡ 0 (mod 6)

For n ≡ 5 (mod 6) the weights are given below,

wφ(rjrj+6) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j+8
3 , if j ≡ 1 (mod 6)

n+j+2
3 , if j ≡ 2 (mod 6)

2n+j−4
3 , if j ≡ 3 (mod 6)

3n+j−10
3 , if j ≡ 4 (mod 6)

4n+j−16
3 , if j ≡ 5 (mod 6)

5n+j−22
3 , if j ≡ 0 (mod 6)

For n ≡ 0 (mod 6) the weights are given below,

wφ(rjrj+6) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j+8
3 , if j ≡ 1 (mod 6)

n+j+1
3 , if j ≡ 2 (mod 6)

2n+j−6
3 , if j ≡ 3 (mod 6)

3n+j−13
3 , if j ≡ 4 (mod 6)

4n+j−20
3 , if j ≡ 5 (mod 6)

5n+j−27
3 , if j ≡ 0 (mod 6)

The edge weights for wφ(rjrj+12) are as follows
For n ≡ 1 (mod 6) the weights are given below,
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wφ(rjrj+12) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j+11
3 , if j ≡ 1 (mod 6)

n+j+9
3 , if j ≡ 2 (mod 6)

2n+j+1
3 , if j ≡ 3 (mod 6)

3n+j−7
3 , if j ≡ 4 (mod 6)

4n+j−15
3 , if j ≡ 5 (mod 6)

5n+j−23
3 , if j ≡ 0 (mod 6)

For n ≡ 2 (mod 6) the weights are given below,

wφ(rjrj+12) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j+11
3 , if j ≡ 1 (mod 6)

n+j+8
3 , if j ≡ 2 (mod 6)

2n+j+5
3 , if j ≡ 3 (mod 6)

3n+j−4
3 , if j ≡ 4 (mod 6)

4n+j−13
3 , if j ≡ 5 (mod 6)

5n+j−22
3 , if j ≡ 0 (mod 6)

For n ≡ 3 (mod 6) the weights are given below,

wφ(rjrj+12) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j+11
3 , if j ≡ 1 (mod 6)

n+j+7
3 , if j ≡ 2 (mod 6)

2n+j+3
3 , if j ≡ 3 (mod 6)

3n+j−1
3 , if j ≡ 4 (mod 6)

4n+j−11
3 , if j ≡ 5 (mod 6)

5n+j−21
3 , if j ≡ 0 (mod 6)

For n ≡ 4 (mod 6) the weights are given below,

wφ(rjrj+12) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j+11
3 , if j ≡ 1 (mod 6)

n+j+6
3 , if j ≡ 2 (mod 6)

2n+j+1
3 , if j ≡ 3 (mod 6)

3n+j−4
3 , if j ≡ 4 (mod 6)

4n+j−9
3 , if j ≡ 5 (mod 6)

5n+j−20
3 , if j ≡ 0 (mod 6)

For n ≡ 5 (mod 6) the weights are given below,
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wφ(rjrj+12) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j+11
3 , if j ≡ 1 (mod 6)

n+j+5
3 , if j ≡ 2 (mod 6)

2n+j−1
3 , if j ≡ 3 (mod 6)

3n+j−7
3 , if j ≡ 4 (mod 6)

4n+j−13
3 , if j ≡ 5 (mod 6)

5n+j−19
3 , if j ≡ 0 (mod 6)

For n ≡ 0 (mod 6) the weights are given below,

wφ(rjrj+12) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j+11
3 , if j ≡ 1 (mod 6)

n+j+4
3 , if j ≡ 2 (mod 6)

2n+j−3
3 , if j ≡ 3 (mod 6)

3n+j−10
3 , if j ≡ 4 (mod 6)

4n+j−17
3 , if j ≡ 5 (mod 6)

5n+j−24
3 , if j ≡ 0 (mod 6)

As the edge weights are distinct in the sense of all its pairs of distinct edges, as the vertex labeling φ is
appropriate edge irregular (n − 5)-labeling. Therefore, es(Tn⟨6, 10⟩) = n − 5.

3. Conclusions

In this paper, the existence of the irregular labeling and edge irregularity strength of Toeplitz graphs
Tn⟨3, 6⟩, Tn⟨4, 8⟩, Tn⟨5, 10⟩ and Tn⟨6, 12⟩ is studied. Though there are the other research scholars who have
made research papers on this topic, yet this work is unique in its significance and scope because no one has
worked on it. We determined the labeling of above Toeplitz graphs which includes vertex labeling and edge
labeling, and investigated the edge irregularity strength of Toeplitz graphs. We proved that

es(Tn⟨3, 6⟩) = n − 2

es(Tn⟨4, 8⟩) = n − 3

es(Tn⟨5, 10⟩) = n − 4

es(Tn⟨6, 12⟩) = n − 5

we believe that the value of edge irregularity strength of above Toeplitz graphs are exact and therefore these
values are helpful to find the edge irregularity strength of others Toeplitz graphs. We propose the following
open problems.

Open Problem 1. Determining the irregular labeling of Toeplitz graphs (Tn⟨t1, t2⟩) arbitrary t1 and t2. Similarly, how
does varying ti affect the irregular labeling and can a comprehensive characterization be developed?
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[24] Bača, M., Ovais, A., Semaničová-Feňovčíková, A., & Suparta, I. N. (2020). On Face Irregular Evaluations of Plane

Graphs.Discussiones Mathematicae Graph Theory, 42, 549-568.
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