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Abstract: A bijective mapping ς assigns each vertex of a graph G a unique positive integer from 1 to
∣V(G)∣, with edge weights defined as the sum of the values at its endpoints. The mapping ensures that
no two adjacent edges at a common vertex have the same weight, and each k-color class is connected to
every other k − 1 color class. A graph G possesses b-color local edge antimagic coloring if it satisfies the
aforementioned criteria and it corresponds to a maximum graph coloring. This paper extensively studies the
bounds, non-existence, and results of b-color local edge antimagic coloring in fundamental graph structures.
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1. Introduction

T his study analyzes a finite, connected, and undirected graph denoted by G. Here, V(G) and E(G) are
the set of vertices and edges. We denote the minimum and maximum degrees of G as δ(G) and ∆(G)

respectively. An antimagic vertex labeling assigns a unique positive integer to each vertex of a graph. The sum
of labels of edges incident to any two vertices is always different. The concept of b-coloring was introduced
by Irving and Manlove [1], while the concept of b-chromatic index was introduced by Carlos Vinícius G.C. Lima
et al. [2] in 2013. In a b-coloring problem, the goal is to assign k colors to the edges of the graph. We must
ensure that every set of k colors has neighbors in every set of k − 1 colors. Resolving the local edge antimagic
coloring and b-chromatic index for a given graph is widely seen as an NP-complete problem [3], leading to
the development of many algorithms to tackle this challenge. The local edge antimagic coloring (γlea(G))was
studied by I.H. Agustin [4], by which a bijective function labels the vertices of G based on the cardinality of
vertices of G. In 2018, Ika et al. [5] analysed the lower bounds of local edge antimagic coloring and exhibited the
results of comb product of path and cycle with path, cycle and star graphs. Further Rajkumar et al. [6] extended
the study of this coloring for some special graphs.

Arumugam et al. introduced the concept of local antimagic vertex coloring [7] that merges antimagic
labeling and vertex coloring. Building upon this idea, Dafik et al. [8] prposed a new notion called, Rainbow
Antimagic coloring, for which Septory et al. [9] provided a general lower bound. Motivated by these
developments, we have put forth a novel coloring scheme termed as b-color local edge antimagic coloring,
which combines the principles of local edge antimagic coloring and b-chromatic index. By combining these
ideas, our approach not only improves the existing techniques but also lets us explore new problems in graph
theory. The maximum number of colors required to achieve b-edge coloring through local edge antimagic
labeling is denoted as the b-color local edge antimagic connetion number, φ′ac(G). The b-color local edge
antimagic connection number of any given graph is bounded between maximum degree and b-chromatic
index of G, that involves the local edge antimagic coloring. Significant progress in b-coloring and b-chromatic
index is evident in works [10–14].
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Though the b-chromatic index can be determined for any graph G, the b-color local edge antimagic
connection number is not applicable universally across all the graphs. Certain graphs have exceptions to
the b-color local edge antimagic connection number. These include even order cycle Cp, except p = 6 and p = 8;
wheel graph for p = 3; fan graph for p = 3, 4; complete graph Kp, unless p ≤ 3 and complete bipartite graph
Kq,p, unless q = 1 and p ≥ 2. These exceptions highlight the nuance of b-color local edge antimagic connection
numbers that they can be applied only to specific graph structures.

2. Preliminaries

In this section, we provide definitions of the coloring under study and describe some graph structures.
For a bijective function ς ∶ V(G) → {1, 2, 3, . . . , ∣V(G)∣} whose corresponding edge weights are defined by,
Wi

ς(xy) = ς(x)+ ς(y), G is said to have b-color local edge antimagic coloring if:

(i) For every i ≠ j, Wi
ς(e) ≠W j

ς(e′) for edges e, e′ ∈ E(G) incident on a common vertex x ∈ V(G), and
(ii) Each k-color class has neighbors in every other k − 1 color class.

A simple connected graph obtained by adding a hub vertex and connecting all the p vertices of a cycle to
the hub vetex is called a wheel graph (W1,p) [15,16]. It has p + 1 vertices and 2p edges with a maximum degree
of p. If the cycle in the wheel graph is replaced by a path and all the p vertices of a path are connected to a
hub vertex, it forms a fan graph (F1,p) [17] that has p + 1 vertices and 2p − 1 edges with maximum degree p. A
friendship graph (Fp) [18] is a simple connected graph constructed by taking p copies of cycle C3 and joining
one vertex from each copy of C3 to form a hub vertex. The resulting graph has 2p + 1 vertices and 3p edges
with a maximum degree of 2p.

Vizing [19] proved that for any graph G, χ′(G) lies in the range ∆(G) and ∆(G)+ 1. Graphs whose edge
coloring is ∆(G) are called class I graphs, and those whose edge coloring is ∆(G)+ 1 are called class II graphs.
Eventually, the b-chromatic index of the above graphs have close accordance with its maximum degree ∆(G),
except in the case of cycle Cp when p = odd and wheel graph when p = 4, whose b-chromatic index is ∆(G)+ 1.

Lemma 1. [4,6] The local edge antimagic chromatic number of certain graphs (path, cycle, wheel, fan, friendship,
complete and star graphs) are:

1. For p ≥ 3, γlea(Pp) = 2
2. For p ≥ 3, γlea(Cp) = 3

3. For p ≥ 3, γlea(W1,p) =
⎧⎪⎪⎨⎪⎪⎩

5, for p = 3, 4

p, for p ≥ 5

4. For p ≥ 2, γlea(F1,p) =
⎧⎪⎪⎨⎪⎪⎩

p + 1, for p = 2, 3

p, for p ≥ 4

5. For p ≥ 1, γlea(Fp) =
⎧⎪⎪⎨⎪⎪⎩

3, for p = 1

2p, for p ≥ 2
6. For p ≥ 3, γlea(Kp) = 2p − 3
7. For p ≥ 2, γlea(K1,p) = p

Lemma 2. [11] The b-chromatic index of certain graphs (path, cycle, wheel, fan, friendship, complete, star and complete
bipartite graphs) are:

1. For p ≥ 3, φ′(Pp) =
⎧⎪⎪⎨⎪⎪⎩

2, for 3 ≤ p ≤ 5

3, for p ≥ 6

2. For p ≥ 3, φ′(Cp) =
⎧⎪⎪⎨⎪⎪⎩

2, for p = 4

3, for p ≥ 3; p ≠ 4

3. For p ≥ 3, φ′(W1,p) =
⎧⎪⎪⎨⎪⎪⎩

5, for p = 4

p, for p ≥ 3; p ≠ 4
4. For p ≥ 3, φ′(F1,p) = p
5. For p ≥ 2, φ′(Fp) = 2p
6. For 3 ≤ p ≤ 6, φ′(K3) = φ′(K4) = 3, φ′(K5) = 5 and φ′(K6) = 6
7. For p ≥ 2, φ′(K1,p) = p
8. For p ≤ r ≤ p(p − 1), φ′(Kp,r) ≤ min{p(p − 1), p + r − 1}
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3. Bounds and Non-Existence of b-Color Local Edge Antimagic Coloring

Lemma 3. For any connected graph G, the bound of b-color local edge antimagic coloring is given by, ∆(G) ≤ γlea(G) ≤
φ′ac(G) ≤ φ′(G).

Proof. By the definition of b-chromatic index [11], ∆(G) ≤ χ′(G) ≤ φ′(G) ≤ 2∆(G) − 1. Eventually, ∆(G) ≤
φ′(G). By [4], γlea(G) ≥ ∆(G). Since, b-coloring is a maximum coloring it constitues an upper bound of
the b-color local edge antimagic coloring, as such we can write, ∆(G) ≤ γlea(G) ≤ φ′ac(G) ≤ φ′(G). In case,
φ′(G) = ∆(G), then φ′ac(G) ≤ ∆(G).

Theorem 4. The b-color local edge antimagic connection number does not exist for:

i. An even order cycle Cp, except p = 6, 8.
ii. A complete graph Kp, unless p ≤ 3.

iii. A wheel graph W1,p, when p = 3.
iv. A fan graph F1,p, when p = 3.
v. Complete bipartite graph Kq,p, unless q = 1; p ≥ 2.

Proof. The b-color local edge antimagic connection number of the following graphs does not exist:

i. For an even order cycle Cp, for p = 4 and p ≥ 10, assign an antimagic labeling as, ς(x1, x3, x5, . . . , xp−1) =
{1, 2, 3, . . . , p

2 } and ς(x2, x4, x6, . . . , xp) = {p, p − 1, p − 2, . . . , p
2 + 1}. The corresponding edge weights are

{p + 1, p + 2, p
2 + 2}, among which only p + 1 is adjacent with all the other color classes, whereas other

colors fails to satisfy the adjacency.
ii. For a complete graph Kp, p > 3, assign an antimagic labeling as, ς(x1, x2, x3, . . . , xp) = {1, 2, 3, . . . , p}

whose corresponding edge weights are {3, 4, 5, . . . , 2p − 1} in which p + 1 occuring at an edge {xpx1} ∈
E(Kp) is the only color that is adjacent with all the other color classes, whereas other colors fails to satisfy
the adjacency.

iii. Since W1,3 ≅ K4, following (ii), it is clear that b-color local edge antimagic connection number of W1,3

does not exist.
iv. A fan graph F1,3 can be obtained either by joining or deleting an edge e1e3 or e2e4 in C4 or K4 respectively.

Since b-color local edge antimagic connection number of both the cases does not exist, it is easy to show
that b-color local edge antimagic connection number of F1,3 does not exist.

v. A complete bipartite graph Kp,r with p = 1 and r ≥ 2 is a star graph [20] whose φ′ac(K1,r) = r for r ≥ 2. For
p, r ≥ 2, label the vertices antimagically as, A

{x1,x2,x3,...,xp} = i, for 1 ≤ i ≤ p and B
{y1,y2,y3,...,yr} = p + j, for

1 ≤ j ≤ r. The corresponding edge weights are, {p+ 2, p+ 3, p+ 4, . . . , 2p+ r} among which only few colors
are adjacent with all the other color classes, whereas other colors fails to satisfy the adjacency.

4. Some Results on Fundamental Graph Structures

Theorem 5. For any positive integer p ≥ 3, the b-color local edge antimagic connection number of a path is

φ′ac(Pp) =
⎧⎪⎪⎨⎪⎪⎩

2, for 3 ≤ p ≤ 5 and p = even; p ≠ 6, 8

3, for p = 6, 8 and p = odd; p ≠ 3, 5

Proof. Let Pp be a path graph, whose vertex and edge cardinalities are, ∣V(Pp)∣ = p and ∣E(Pp)∣ = p − 1. The
maximum and minimum degrees are, ∆(Pp) = 2 and δ(Pp) = 1.

Case 1: When 3 ≤ p ≤ 5, φ′(Pp) = ∆(Pp), so by Lemma 3, φ′(Pp) ≤ 2 is the upper bound. Also, when p = even,
except for p = 6, 8, using Lemma 1, 2 and 3, the upper bound is, φ′ac(Pp) ≤ 3. In order to prove the lower bound,
label the vertices local antimagically as, ς(x1, x2, x3, . . . , xp) = {1, p, 2, p − 1, 3, p − 2, . . .}. The corresponding
edge weights are: p + 1 and p + 2, i.e., φ′ac(Pp) ≥ 2. Thus, φ′ac(Pp) = 2, for 3 ≤ p ≤ 5 and p = even; p ≠ 6, 8. Figure
1 shows the difference arising in the b-chromatic index and b-color local edge antimagic coloring of P10.
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Case 2: When p = 6, 8 and when p = odd, except for p = 3, 5, through Lemma 1, 2 and 3, the upper bound is,
φ′ac(Pp) ≤ 3. In order to prove the lower bound for p = 6, 8, label the vertices as follows:

ς(xt ∶ 1 ≤ t ≤ 6) = {1, 4, 5, 2, 3, 6} and ς(xt ∶ 1 ≤ t ≤ 8) = {1, 6, 5, 2, 7, 4, 3, 8}

The corresponding edge weights are: p − 1, p + 1 and p + 3 then, φ′ac(Pp) ≥ 3. Thus, φ′ac(Pp) = 3, for p = 6, 8. To
prove the lower bound, when p = odd; p ≠ 3, 5, label the vertices local antimagically as,

ς(x1, x2, x3, . . . , xp) = {1, p, 3, p − 2, 5, p − 4, . . . , 4, p − 1, 2}

whose corresponding edge weights are: p + 1, p + 2 and p + 3 then, φ′ac(Pp) ≥ 3. Thus, φ′ac(Pp) = 3, when p =
odd; p ≠ 3, 5.

(a) φ′(P10) = 3 (b) φ′ac(P10) = 2

Figure 1. Difference in b-chromatic index and b-color local edge antimagic coloring of path P10

Theorem 6. For any odd positive integer p ≥ 3, the b-color local edge antimagic connection number of cycle is φ′ac(Cp) =
3.

Proof. Let Cp be a cycle whose vertex set is V(Cp) = {xt ∶ 1 ≤ t ≤ p} and edge set is E(Cp) = {{xtxt+1 ∶ 1 ≤
t ≤ p − 1}∪ {xpx1}}. Through Lemma 1, 2 and 3, the upper bound is, φ′ac(Cp) ≤ 3. In order to prove the lower
bound, define an antimagic labeling ς1 ∶ V(Cp)→ {1, 2, 3, . . . , p} by,

ς1(xt) =
⎧⎪⎪⎨⎪⎪⎩

t+1
2 , for t = 1, 3, 5, . . . , p

p − t
2 + 1, for t = 2, 4, 6, . . . , p − 1

Based on the labeling, the corresponding edge weights are:

W1
ς1
(xtxt+1) = p + 1 for t = 1, 3, 5, . . . , p − 2

W2
ς1
(xtxt+1) = p + 2 for t = 2, 4, 6, . . . , p − 1

W3
ς1
(xpx1) =

p + 3
2

∀p ∈ N

The edge weight calculation shows that, φ′ac(Cp) ≥ 3. On combining the upper and lower bounds, φ′ac(Cp) = 3.
Table 1 shows that each color class has at least one dominating b-edge which is incident with all the other
neighboring color classes.

Table 1. b-Edges of cycle.

Color Class b-Edges

W1
ς1
= p + 1 x1x2

W2
ς1
= p + 2 xp−1xp

W3
ς1
= p+3

2 xpx1
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Corollary 7. For any even positive integer p, the b-color local edge antimagic connection number of cycle exists only for
p = 6, 8.

Proof. Using Lemma 1, 2 and 3, the upper bound is, φ′ac(Cp) ≤ 3. To prove the lower bound, define a local
edge antimagic labeling by,

ς(xt ∶ 1 ≤ t ≤ 6) = {1, 4, 5, 2, 3, 6} for p = 6

ς(xt ∶ 1 ≤ t ≤ 8) = {1, 6, 5, 2, 7, 4, 3, 8} for p = 8

The corresponding edge weights are: p− 1, p+ 1 and p+ 3 and the dominant b-edges are: x1x2, xpx1 and xp−1xp

respectively. The total number of edge weights are φ′ac(Cp) ≥ 3. Thus, φ′ac(Cp) = 3. In all the other cases of
even p, the coloring exceeds and fails to satisfy b-edge coloring. Figure 2 can be used to check the optimal
coloring patterns for even order cycles. Moreover, all the coloring pattern fails to satisfy b-edge coloring
property for even cycle p, when p ≥ 10.

Figure 2. Optimal coloring patterns of b-color local edge antimagic coloring for C10

Theorem 8. For any positive integer p ≥ 4, the b-color local edge antimagic connection number of wheel graph is

p ≤ φ′ac(W1,p) ≤
⎧⎪⎪⎨⎪⎪⎩

5 if p = 4

p if p ≥ 5

Proof. Let W1,p be a wheel graph with vertex set V(W1,p) = {{h} ∪ {xt ∶ 1 ≤ t ≤ p}} and edge set E(W1,p) =
{{xtxt+1 ∶ 1 ≤ t ≤ p − 1}∪ {xpx1}∪ {hxt ∶ 1 ≤ t ≤ p}}. To prove the theorem, consider the following two cases.
Case 1: For p = 4
Using Lemma 1, 2 and 3, the upper bound is, φ′ac(W1,4) ≤ p + 1 = 5. In order to prove the lower bound, label
the vertices as follows:

ς2(h) = 3

ς2(xt) =
⎧⎪⎪⎨⎪⎪⎩

p+1
2 , t = 1, 3

p
2 + 3, t = 2, 4
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Based on the labeling, the corresponding edge weights are:

W1
ς2
(hx1) = 4

W2
ς2
(hx3) =W2

ς2
(x1x2)= 5

W3
ς2
(x2x3) =W3

ς2
(x4x1)= 6

W4
ς2
(hx2) =W4

ς2
(x3x4)= 7

W5
ς2
(hx4) = 8

The edge weight calculation shows that, φ′ac(W1,p) ≥ 5. On combining the upper and lower bounds,
φ′ac(W1,4) = 5. Table 2 shows that each color class has at least one dominating b-edge which is incident with all
the other neighboring color classes.

Table 2. b-Edges of Wheel W1,4.

Color Class b-Edges

W1
ς2
= 4 hx1

W2
ς2
= 5 hx3

W3
ς2
= 6 x4x1

W4
ς2
= 7 hx2

W5
ς2
= 8 hx4

Case 2: If p ≥ 5
Since, φ′(W1,p) = ∆(W1,p), by Lemma 3, φ′ac(W1,p) ≤ p is the upper bound. In order to prove the lower bound,
consider the following subcases.
Subcase 1: When p ≡ 1(mod 2), define a local edge antimagic labeling ς3 ∶ V(W1,p)→ {1, 2, 3, . . . , p + 1} by,

ς3(h) = p+1
2

ς3(xt) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

t+1
2 for t = 1, 3, 5, . . . , p − 2

p − t
2 + 2 for t = 2, 4, 6, . . . , p − 1

p+3
2 for t = p

Based on the labeling, the corresponding edge weights are:

W1
ς3
(hxt) =

p + t + 2
2

for t = 1, 3, 5, . . . , p − 2

W2
ς3
(hxt) =

3p − t + 5
2

for t = 2, 4, 6, . . . , p − 1

W3
ς3
(hxt) = p + 2 for t = p

W4
ς3
(xtxt+1) = p + 2 for t = 1, 3, 5, . . . , p − 2

W5
ς3
(xtxt+1) = p + 3 for t = 2, 4, 6, . . . , p − 3

W6
ς3
(xtxt+1) = p + 4 for t = p − 1

W7
ς3
(xpx1) =

p + 5
2

∀p ∈ N

As the edge weights W4
ς3

, W5
ς3

, W6
ς3

and W7
ς3

has already been included in W1
ς3

, W2
ς3

and W3
ς3

, they are deemed
superfluous and therefore, it is excluded. The total number of edge weights are obtained using N-term
formula:

U
W1

ς3
N = a + (N − 1)d ←→ p = p+3

2 + (N − 1)(1) ←→ N = ∣W1
ς3
∣ = p−1

2

U
W2

ς3
N = a + (N − 1)d ←→ 2p+6

2 = 3p+3
2 + (N − 1)(−1)←→ N = ∣W2

ς3
∣ = p−1

2
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Notably, ∣W3
ς3
∣ = 1. Hence, ∑3

i=1 ∣Wi
ς3
∣ = p−1

2 +
p−1

2 + 1 = p, implies φ′ac(W1,p) ≥ p. Table 3 shows that each color
class has at least one dominating b-edge which is incident with all the other neighboring color classes.

Table 3. b-Edges of Wheel for p ≡ 1(mod 2).

Color Class b-Edges

W1
ς3
= p+t+2

2 hx1, hx3, hx5, . . . , hxp−2

W2
ς3
= 3p−t+5

2 hx2, hx4, hx6, . . . , hxp−1
W3

ς3
= p + 2 hxp

Subcase 2: When p ≡ 0(mod 2); p ≠ 4, define a local edge antimagic labeling ς4 ∶ V(W1,p) → {1, 2, 3, . . . , p + 1}
by,

ς4(h) = p+2
2

ς4(xt) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

t+1
2 for t = 1, 3, 5, . . . , p − 1

p+4
2 for t = 2

p − t
2 + 3 for t = 4, 6, 8, . . . , p

Based on the labeling, the corresponding edge weights are:

W1
ς4
(hxt) =

p + t + 3
2

for t = 1, 3, 5, . . . , p − 1

W2
ς4
(hxt) =

3p − t
2
+ 4 for t = 4, 6, 8, . . . , p

W3
ς4
(hxt) = p + 3 for t = 2

W4
ς4
(xtxt+1) =

p
2
+ 3 for t = 1

W5
ς4
(xtxt+1) =W5

ς4
(xpx1) =

p
2
+ 4 for t = 2

W6
ς4
(xtxt+1) = p + 3 for t = 3, 5, 7, . . . , p − 1

W7
ς4
(xtxt+1) = p + 4 for t = 4, 6, 8, . . . , p − 2

As the edge weights W4
ς4

, W5
ς4

, W6
ς4

and W7
ς4

has already been included in W1
ς4

, W2
ς4

and W3
ς4

, they are deemed
superfluous and therefore, it is excluded. The total number of edge weights are obtained using N-term
formula:

U
W1

ς4
N = a + (N − 1)d ←→ 2p+2

2 = p+4
2 + (N − 1)(1) ←→ N = ∣W1

ς4
∣ = p

2

U
W2

ς4
N = a + (N − 1)d ←→ p + 4 = 3p+4

2 + (N − 1)(−1) ←→ N = ∣W2
ς4
∣ = p

2 − 1

Notably, ∣W3
ς4
∣ = 1. Hence,∑3

i=1 ∣Wi
ς4
∣ = p

2 +
p
2 − 1+ 1 = p, implies φ′ac(W1,p) ≥ p. Figure 3 illustrates the local edge

antimagic labeling of W1,p that satisfies the b-edge coloring and Table 4 clearly shows that each color class has
at least one dominating b-edge which is incident with all the other neighboring color classes.

Table 4. b-Edges of Wheel for p ≡ 0(mod 2).

Color Class b-Edges

W1
ς4
= p+t+3

2 hx1, hx3, hx5, . . . , hxp−1

W2
ς4
= 3p−t

2 + 4 hx4, hx6, hx8, . . . , hxp
W3

ς4
= p + 3 hx2
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From Subcase 1 and Subcase 2, it is evident that, φ′ac(W1,p) ≥ p. On combining both upper and lower bounds,
we get, φ′ac(W1,p) = p, for p ≥ 5.

Figure 3. Local edge antimagic labeling of W1,p satisfying b-edge coloring

Theorem 9. For any positive integer p ≥ 4, the b-color local edge antimagic connection number of fan graph is
φ′ac(F1,p) = p

Proof. Let F1,p be a fan graph with vertex set V(F1,p) = {{h} ∪ {xt ∶ 1 ≤ t ≤ p}} and edge set
E(F1,p) = {{xtxt+1 ∶ 1 ≤ t ≤ p − 1}∪ {hxt ∶ 1 ≤ t ≤ p}}. Since, φ′(F1,p) = ∆(F1,p), by Lemma 3, φ′ac(F1,p) ≤ p is the
upper bound. In order to prove the lower bound, consider the following two cases.

Case 1: When p ≡ 1(mod 2), define a local edge antimagic labeling ς5 ∶ V(F1,p)→ {1, 2, 3, . . . , p + 1} by,

ς5(h) = p+1
2

ς5(xt) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

t+1
2 for t = 1, 3, 5, . . . , p − 2

p − t
2 + 2 for t = 2, 4, 6, . . . , p − 1

p+3
2 for t = p

Based on the labeling, the corresponding edge weights are:

W1
ς5
(hxt) =

p + t
2
+ 1 for t = 1, 3, 5, . . . , p − 2

W2
ς5
(hxt) =

3p − t + 5
2

for t = 2, 4, 6, . . . , p − 1

W3
ς5
(hxt) = p + 2 for t = p

W4
ς5
(xtxt+1) = p + 2 for t = 1, 3, 5, . . . , p − 2

W5
ς5
(xtxt+1) = p + 3 for t = 2, 4, 6, . . . , p − 1

W6
ς5
(xp−1xp) = p + 4 for t = 3, 5, 7, . . . , p − 1
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As the edge weights W4
ς5

, W5
ς5

and W6
ς5

has already been included in W2
ς5

and W3
ς5

, they are deemed superfluous
and therefore, it is excluded. The total number of edge weights are obtained using N-term formula:

U
W1

ς5
N = a + (N − 1)d ←→ p = p+3

2 + (N − 1)(1) ←→ N = ∣W1
ς5
∣ = p−1

2

U
W2

ς5
N = a + (N − 1)d ←→ 2p+6

2 = 3p+3
2 + (N − 1)(−1) ←→ N = ∣W2

ς5
∣ = p−1

2

Notably, ∣W3
ς5
∣ = 1. Hence, ∑3

i=1 ∣Wi
ς5
∣ = p−1

2 +
p−1

2 + 1 = p, implies φ′ac(F1,p) ≥ p. Table 5 shows that each color
class has at least one dominating b-edge which is incident with all the other neighboring color classes.

Table 5. b-Edges of Fan for p ≡ 1(mod 2).

Color Class b-Edges

W1
ς4
= p+t+3

2 hx1, hx3, hx5, . . . , hxp−1

W2
ς4
= 3p−t

2 + 4 hx4, hx6, hx8, . . . , hxp
W3

ς4
= p + 3 hx2

Case 2: When p = 4, the antimagic labeling of vertices are, ς(h) = {4} and ς(x1, x2, x3, x4) = {1, 5, 2, 3}, whose
corresponding edge weights are, Wς = {5, 6, 7, 9}. Hence, ∣Wς∣ = 4. Further, when p ≡ 0(mod 2); p ≠ 4, define a
local edge antimagic labeling ς6 ∶ V(F1,p)→ {1, 2, 3, . . . , p + 1} by,

ς6(h) = p
2

ς6(xt) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

t+1
2 for t = 1, 3, 5, . . . , p − 3

p − t
2 + 2 for t = 2, 4, 6, . . . , p

p+2
2 for t = p − 1

Based on the labeling, the corresponding edge weights are:

W1
ς6
(hxt) =

p + t + 1
2

for t = 1, 3, 5, . . . , p − 3

W2
ς6
(hxt) =

3p − t
2
+ 2 for t = 2, 4, 6, . . . , p

W3
ς6
(hxt) = p + 1 for t = p − 1

W4
ς6
(xtxt+1) = p + 2 for t = 1, 3, 5, . . . , p − 3

W5
ς6
(xtxt+1) = p + 3 for t = 2, 4, 6, . . . , p and t = p − 1

W6
ς6
(xtxt+1) = p + 4 for t = p − 2

As the edge weights W4
ς6

, W5
ς6

and W6
ς6

has already been included in W2
ς6

, they are deemed superfluous and
therefore, it is excluded. The total number of edge weights are obtained using N-term formula:

U
W1

ς6
N = a + (N − 1)d ←→ 2p−2

2 = p+2
2 + (N − 1)(1) ←→ N = ∣W1

ς6
∣ = p

2 − 1

U
W2

ς6
N = a + (N − 1)d ←→ p + 2 = 3p+2

2 + (N − 1)(−1) ←→ N = ∣W2
ς6
∣ = p

2

Notably, ∣W3
ς6
∣ = 1. Hence, ∑3

i=1 ∣Wi
ς6
∣ = p

2 − 1 + p
2 + 1 = p, implies φ′ac(F1,p) ≥ p. Table 6 shows that each color

class has at least one dominating b-edge which is incident with all the other neighboring color classes.
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Table 6. b-Edges of Fan for p ≡ 0(mod 2).

Color Class b-Edges

W1
ς6
= p+t+1

2 hx1, hx3, hx5, . . . , hxp−3

W2
ς6
= 3p−t

2 + 2 hx2, hx4, hx6, . . . , hxp
W3

ς6
= p + 2 hxp−1

From Case 1 and Case 2, it is evident that φ′ac(F1,p) ≥ p. On combining both the upper and lower bounds, we
get, φ′ac(F1,p) = p.

Theorem 10. For any positive integer p ≥ 2, the b-color local edge antimagic connection number of friendship graph is
φ′ac(Fp) = 2p.

Proof. Let Fp be a friendship graph whose vertex set V(Fp) = {h} ∪ {xt ∶ 1 ≤ t ≤ p} and edge set E(Fp) =
{hxt, hyt, xtyt ∶ 1 ≤ t ≤ p}. Since, φ′(Fp) = ∆(Fp), by Lemma 3, φ′ac(Fp) ≤ 2p is the upper bound. In order to
prove the lower bound, define a local edge antimagic labeling ς7 ∶ V(Fp)→ {1, 2, 3, . . . , 2p + 1} by,

ς7(h) = p

ς7(xt) =
⎧⎪⎪⎨⎪⎪⎩

t for 1 ≤ t ≤ p − 1

t + 1 for t = p

ς7(yt) =
⎧⎪⎪⎨⎪⎪⎩

2p − t + 2 for 1 ≤ t ≤ p − 1

t + 2 for t = p

Based on the labeling, the corresponding edge weights are:

W1
ς7
(hxt) = p + t for 1 ≤ t ≤ p − 1

W2
ς7
(hxt) = 2(p + 1) for t = p

W3
ς7
(hyt) = 3p − t + 2 for 1 ≤ t ≤ p − 1

W4
ς7
(hyt) = 2p + 1 for t = p

W5
ς7
(xtyt) = 2(p + 1) for 1 ≤ t ≤ p − 1

W6
ς7
(xtyt) = 2p + 3 for t = p

Since the edge weights W5
ς7

and W6
ς7

are already included in W2
ς7

and W3
ς7

, they are deemed superfluous and
therefore, it is excluded. The total number of edge weights can be obtained using N-term formula:

U
W1

ς7
N = a + (N − 1)d ←→ 2p − 1 = p + 1+ (N − 1)(1) ←→ N = ∣W1

ς7
∣ = p − 1

U
W3

ς7
N = a + (N − 1)d ←→ 2p + 3 = 3p + 1+ (N − 1)(−1) ←→ N = ∣W3

ς7
∣ = p − 1

Notably, ∣W2
ς7
∣ = ∣W4

ς7
∣ = 1. Hence, ∑4

i=1 ∣Wi
ς7
∣ = p − 1+ 1+ p − 1+ 1 = 2p, implies φ′ac(Fp) ≥ 2p is the lower bound.

On combining the upper and lower bounds, φ′ac(Fp) = 2p. Table 7 shows that each color class has at least one
dominating b-edge which is incident with all the other neighboring color classes.
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Table 7. b-Edges of Friendship Graph.

Color Class b-Edges

W1
ς7
= p + t hx1, hx2, hx3, . . . , hxp−1

W2
ς7
= 2(p + 1) hxp

W3
ς7
= 3p − t + 2 hy1, hy2, hy3, . . . , hyp−1

W4
ς7
= 2p + 1 hyp

Theorem 11. For any positive integer p ≥ 2, the b-color local edge antimagic connection number of star graph is
φ′ac(K1,p) = p.

Proof. Since, φ′(K1,p) = ∆(K1,p), by Lemma 3, φ′ac(K1,p) ≤ p is the upper bound. Since all the edges of a
star graph are incident to a single hub vertex h, each edge has a unique edge weight and every color class
has neighbors in every other classes. Hence the total number of edge weights are p, i.e., φ′ac(K1,p) ≥ p. On
combining both the upper and lower bounds, φ′ac(K1,p) = p.

5. Conclusion

The proposed b-color local edge antimagic coloring of graphs represents a new and innovative approach
to this field of research, which is currently wide open for exploration. This innovative coloring technique
takes inspiration from the successful implementation of rainbow antimagic coloring [8,9] and b-chromatic
index in diverse graph structures. The paper offers meticulous proofs that establish the optimality of the
proposed coloring approach for specific graphs, with future endeavors aimed at extending these findings to
other captivating graph families.
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