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1. Introduction

In previous work [1] the authors took a random graph RG and grew it using the cone (Definition 2) to
construct families of higher dimensional objects called simplicial complexes. Each of these complexes comes
equipped with a vector that encodes the number of i simplicies. One of the main thrusts of [1] was to show
that the bit sequence derived from the f -vector of these higher dimensional objects was deemed “random" by
the NIST testing suite [2]. NIST–National Institute of Standards and Technology is a US Government agency
whose varied mission includes measurements and the development of standards. More information about
this agency can be found on their website: https://www.nist.gov/about-nist. The testing suite refereed to in
[2] was developed by NIST to provide a standard for testing sequences of bits for randomness. In the current
paper, we show that the NIST test suite fails to see patterns in bit sequences derived from combinatorial objects
that are symmetrical in a certain sense (Definition 14).

Given a simplicial complex K it is possible to determine a related combinatorial object called a simple
convex polyhedron whose faces are roughly built out of cones over the geometric realization of certain posets.
In the case that K is nice, say a simplicial sphere, then the dual P is a simple convex polytope. Polyhedra have
f -vectors and they encode the number of faces in a given dimension, but we are primarily concerned with
those P that are dual to those “nice" K. Exactly how this duality works is explained in § 4. It is worth noting
that determining these vectors and classifying the combinatorial type of P are difficult problems [3].

Simple convex polytopes are interesting and show up in various fields of mathematics. They are well
behaved in certain ways and there are other vectors associated to them called the h-vector and they exhibit
a symmetry described by the Dehn-Sommerville relations. For such polytopes, these vectors also satisfy a
collection of inequalities that are described by the well-known g-Theorem [4,5].

In this paper we focus on a particularly nice and well-understood family of simple convex polytopes; the
standard n-simplex ∆n, for some positive integer n ≥ 1. The face structure is understood and the corresponding
vectors mentioned above can be determined as well as their dual simplicial complexes (and their respective
f -vectors). This group of polytopes is sufficient in demonstrating the claims of the paper. Namely, the bits
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derived from complexes built out of the duals of ∆n are determined to be random by the NIST test suite even
though they are not.

More is true, indeed; if we let K be the dual of ∆n, then we construct a family of simplicial complexes
Cj(K) (see section § 3) and show that they are not dual to a simple convex polytope by applying the g-Theorem.

2. Main Results

The contributions of this paper are:

1. Construct a family of simplicial complexes that exhibit a symmetry not detected by the NIST test suite.
2. Show that the family of constructed simplicial complexes are not dual to simple polyhedra.

Before stating the main results we list the most pertinent definitions. LetK be an n-dimensional simplicial
complex on the set {1, . . . , n− 1}, then the cone onK is as follows: C(K) = {x∪ {n}∣x ∈ K}∪K. Let j be a positive
integer, then when the cone is iterated j-times, we refer to it as the jth-cone on K and write it as Cj(K). The
dimension of the complex increases as j increases.

To keep track of the number of i simplicies in K or Cj(K) there is the f -vector and it is the vector with

the number of i simplicies in the ith component. We represent the ith component of
Ð→
f (K) by fi(K). The

vector is very often written ( f0, ..., fn−1)where the last component counts the number of maximal dimensional
simplicies in K (as written, this vector encodes the number of i-simplicies in an (n − 1)-dimensional simplicial
complex). A simplicial complex K is symmetrical if fi(K) = fn−i−1(K) for 0 ≤ i ≤ n − 1. When the components
of this vector are converted into bit sequences, the NIST test suite classifies these as random. The results
of the testing can be found in the following GitHub public repository https://GitHub.com/gnexeng/
coning-analysis.git.

When K is a simplicial sphere (meaning its geometric realization is homeomorphic to a sphere), then there
is a simple polytope P that is dual to K and vice-versa. We briefly recall the construction; the interested reader
can refer to § 4 where a more detailed description is given. The vertices ofK correspond to the codimension one
faces of P, the edges correspond to the codimension two faces of P so on and so forth. Given this, the polytope
P will satisfy the criteria of the g-Theorem which describes certain symmetry conditions and inequalities of
a vector related to P called the h-vector as described by [5]. It is related to the vector whose components
counts the number of faces of P [5]. Unfortunately, this too, is called the f -vector, but when K is dual to P
then there is the following relation that relates the two noting that (h0, h1, . . . , hn) is the h-vector of the dual:
h0tn +⋯+ hn−1t + hn = (t − 1)n + f0(t − 1)n−1 +⋯+ fn−1.

In [4], the g-Theorem is stated in terms of certain “gi" that satisfy a variety of inequalities and they too are
related to the components fi in the f -vector of P. If a general P does not satisfy the conditions of the g-Theorem
then it is not simple. If K is a random graph RG, then there are equations that follow from the g-Theorem that
one can use to show that the simplicial complexes Cj(RG) are not simplicial spheres (meaning, the dual P is
not simple) for j sufficiently large.

The main results are:

Proposition [13] For a graph G such that f1(G) ≠ 0, let Cj(G) = Kj+1. For j sufficiently large, the complexes
Kj+1 are not dual to a polytope that satisfies the g-Theorem.

Proposition 13 applies to the case G = RG, a random graph. In fact, it provides us with exactly the number
of cones that have to be applied before passing through the class of simple polytopes.

Theorem [15] Let n > 1 and suppose P is an n-dimensional simple convex polytope such that
Ð→
h (P) = (1, . . . , 1),

then the n − 1 dimensional dual simplicial complex K is symmetrical.

From a testing perspective the main results are as follows:

1. The components of the f -vectors dual to P in Theorem 15 can be found in Pascal’s Triangle. The NIST
test suite views the converted bit sequences as random. (see sections §5 and §7)

2. There is a family of complexes given by the jth-cone on those complexes constructed from Pascal’s
Triangle that generate bit sequences that NIST classifies as random.

https://GitHub.com/gnexeng/coning-analysis.git
https://GitHub.com/gnexeng/coning-analysis.git
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The paper is set-up as follows. In section § 3 we provide a brief overview of simplicial complexes and the
algorithms used to generate Cj(K). We also discuss the notion of the f -vector and, for the convenience of the
reader, list a few calculations made in [1]. In section § 4 polyhedra and their duals are discussed, along with
their f and h-vectors. The relation between the f and h-vectors is given as well as specific low dimensional
examples. For completeness, the g-Theorem is listed and a reference is provided for additional details. The
main theorems needed in the sequel are proved in this section too. Section § 5 contains a careful analysis of bit
conversions. Here, we discuss truncation methods that are used to ensure that the bit-stream fits into the NIST
suite. Section § 6 lists the algorithm to convert f -vectors to h-vectors and vice versa and section § 7 contains
a summary of the results. Section § 8 is an Appendix and it contains additional commentary regarding the
original code [1], the improvement that was made, and how to replicate the new and improved results.

3. Simplicial Complexes and Iterated Cones

For the convenience of the reader we list background material from [1] along with a few other additions.

Definition 1. Let X be a non-empty set. A simplicial complex K on X is a non-empty subset of the power set
of X such that if x ∈ K and y ⊂ x then y ∈ K.

Let X = {1, 2, . . . , m} = [m] where m ∈ N, then the sets in K are called simplices and the dimension of a
simplex x, denoted dim(x) is defined to be ∣x∣−1. The dimension of a simplicial complex is max{dim(x)∣x ∈ K}.
If a simplicial complex K is n − 1 dimensional, we simply write Kn−1. From the definition it follows that any
simple graph can be regarded as a simplicial complex of dimension at most one. If such a graph has at least
one edge, then it is a one dimensional.

Remark 1. Notice that since K is a non-empty set and ∅ ⊆ x for all subsets of X, then by definition ∅ ∈ K.

Example 1. The set K = {∅,{1},{2},{3},{1, 2}} is a one-dimensional simplicial complex on the set {1, 2, 3}.

1

2

3

Figure 1. Simplicial complex K

Notation 1. For a fixed m ∈ N let ∆̂m = P([m])where P([m]) is the power set on [m].

For instance, ∆̂2 is a 2-simplex. Pictorially, it is

1

2

3

Figure 2. A 2-simplex

The following can be found in [5]

Definition 2. Let K be a simplicial complex on the set {1, . . . , n − 1}. We define and denote the cone over K as
follows:

C(K) = {x ∪ {n}∣x ∈ K}∪K
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Notice that if K is an n-dimensional complex then C(K) is an (n + 1)-dimensional complex. Since C(K) is
a simplicial complex it is possible to apply the cone again. More generally, it can be iterated.

1 2
dim(K) = 0

cone

1 2

3

dim(C(K)) = 1

cone

1 2

3

4
dim(C2

(K)) = 2

Figure 3. The 2-cone on K

We write the jth-cone on K as Cj(K). We have the following from [1] regarding a graph G.

Lemma 3. The dimension of Cj(G) is j + 1.

In general, counting the number of i-simplicies for a given simplicial complex is computationally difficult
[3]. There is a vector that encodes all of these numerics. We list the following critical definition:

Definition 4. The f -vector of an (n − 1)-dimensional simplicial complex K, denoted by
Ð→
f (K), is the vector

with the number of i simplicies in the ith component. We represent the ith component of
Ð→
f (K) by fi(K).

For a given fixed K, the following notation is usually used to denote this vector
Ð→
f (K) = ( f0, f1, . . . , fn−1).

Often it is simply written as ( f0, f1, . . . , fn−1). For the purposes of making calculations, recall, f−1(K) = 1 [5].
We have the following calculations from [1]; the proofs can be found there.

Example 2. For Example 1 we have
Ð→
f (K) = (3, 1).

Lemma 5. For a graph G, f0(Cj(G)) = f0(G)+ j and f1(Cj(G)) = f1(Cj−1(G))+ f0(Cj−1(G))

As an immediate Corollary of Lemma 5 we re-write f1(Cn(RG)) by unraveling the recursion.

Corollary 6. For a graph G the number of edges of Cj(G) can be re-written as f1(Cj(G)) = f1(G)+∑
j−1
k=0 f0(Ck(G))

If RG is a random graph, we reiterate that the f -vector of Cj(RG) will be the basis, after conversion (see
section § 5), of a sequence of bits that is to be analyzed by the suite [2]. In previous work [1], the authors
discussed Cj(RG) and conducted a series of tests using [2] verifying that the construction generated families
of random bits coming from a random graph. The implication is that our initial construction preserves this
property as new simplicial complexes are “grown" from the random graph RG.

When reference to a random graph is made, it refers to those graphs described in [6] and we use the
notation RG to label such. These graphs have f -vectors: ( f0, f1) and we assume that f1(RG) ≠ 0. For the
convenience of the reader we list the algorithm implemented in [1] to generate such graphs and to determine
the f -vector when the cone is applied successively.
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Algorithm 1 Random Graph Algorithm

Input: n, p
Initialize Mij = 0 ∀i, j
Mij is the (ij)th entry in the matrix M
for i, j = 1, . . . , n do

Generate random number r
end for
if r < p and i < j then

Mij = 1
else

Mij = 0
end if
Construct RG from the matrix M

In [1] the following algorithm was used to determine the f -vector of Cj(RG):

Algorithm 2 Computing the f -vector of the jth-cone on RG

Input: Random graph RG

Compute
Ð→
f (RG)

for j = 1, . . . , n do
Compute

Ð→
f (Cj(RG)

end for

Observe: The random graph RG is generated using the random graph algorithm described above which

runs with complexityO(n2). We then compute
Ð→
f (RG) to initiate the second algorithm mentioned above which

runs with complexity O(n). Suppose
Ð→
f (Cn−1(RG)) = (x0, x1, . . . , xn), then

Ð→
f (Cn(RG)) = (y0, y1, . . . , yn+1) for

1 ≤ i ≤ n + 1

y0 = x0 + 1

yi = xi−1 + xi

yn+1 = xn

4. Dual Polyhedra and Symmetry

We begin by following the treatment in [4]. Additional details concerning polytopes and polyhedra can
be found there. For a fixed integer q > 0 we work in the Euclidean space Rq and all scalars will be assumed
to be real. Let x1, . . . , xn be points in Rq, then an affine combination is the linear combination ∑n

i=1 cixi where
c1 +⋯+ cn = 1. A collection of points is said to be affinely independent if c1x1 +⋯+ cnxn = 0 then the ci = 0. We say
a subset C of Rq is a convex set if the following conditions hold for all x1, x2 ∈ C and scalars c1 and c2 satisfying:
c1x1 + c2x2 ∈ C such that c1, c2 ≥ 0 and c1 + c2 = 1.

Affine combinations are linear combinations where the scalars satisfy the conditions above. More
specifically, let x1, . . . , xn be points in Rq, then a convex combination is a linear combination c1x1 +⋯ + cnxn

such that: c1 +⋯+ cn = 1 and ci ≥ 0.
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Theorem 7. A subset C of Rd is convex if and only if any convex combination of points from C is again in C.

Given a subset C as above, the intersection of all convex sets in Rq containing it is a convex set denoted
by conv(C). This set is often referred to as the convex hull of C. When the set is clear we will simply say the
convex hull. We have the following definition from [4] pg. 44.

Definition 8. A polytope P is the convex hull of a non-empty finite set.

Suppose P = conv({x1, . . . , xn}) for points xi ∈ Rq, then the dimension of P, dim(P) is k if the following
conditions hold for a finite number of points x1, . . . , xk from the set {x1, . . . , xn}. First, there is a finite number of
points x1, . . . , xk+1 from the set {x1, . . . , xn} that are affinely independent. Second, there is no such k+ 2 affinely
independent points that can be chosen from {x1, . . . , xn}.

A vertex of P is a zero dimensional face. The set of all vertices of P will be denoted by V(P) and ∣V(P)∣
will be the cardinality of this set. Proper faces F of P are polytopes such that V(F) = F⋂Ver(P) [4] pg. 45
Theorem 7.3. Since they are polytopes they have a dimension given by the above.

P can also be regarded as the intersection of finitely many halfspaces in a certain Euclidean space [4,5]
and such sets are often referred to as polyhedral sets. When the context is clear we will simply refer to P as
a polytope. Given a polytope and a finite collection of halfspaces defining it, a supporting hyperplane is a
hyperplaneH such that P⋂H ≠ ∅where the polytope is contained in one of the halfspaces determined by the
hyperplane [5]. In this context, a face of P isH⋂P = F.

e1 e2

e3

H

H ∩ P = F

Figure 4. P with supporting hyperplane

Other faces of P include: P, vertices and edges, to name a few. For a given P its boundary ∂P = ⋃F⊆P F.
Given P, a facet is a face of dimension n−1 and they are often called codimension one faces. A k-dimensional

polytope is called simple if each zero face can be written as the intersection of exactly k codimension one faces.
To clarify these points consider the following example, let P be the cube:

v6

v7

v5

v8

v1v2

v4v3

F5

F3

F2

F1

F6

F4

Figure 5. Polytope P3

The codimension one faces are F1, . . . , F6 (these are the faces of the cube). Each edge is the intersection
of exactly two faces and these are the codimension two faces. Each vertex is the intersection of exactly three
faces (codimension one faces) and so these are the codimension three faces. One could equally consider the
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dimensions of the faces rather than the codimension. In such a case, the faces F1, . . . , F6 would be the two
dimensional faces, the edges the one-dimensional faces and the vertices the zero-dimensional faces of the
cube.

Example 3. Following [5], let P = ∆n. Then this polytope is conv({x1, . . . , xn+1}) where xi ∈ Rn. This is called
the n-dimensional simplex and the points are not on a common affine hyperplane. This is not to be confused
with the simplicial complex ∆̂n whose simplicies are the sets in the power set of {1, . . . , n}. Given ∆n, then
for i ≤ n, ∆i is a face of P of dimension at most n. If the points xi are the unit vectors ei, then ∆n is called the
standard n-simplex [5] pg. 8. For example, in R3, the standard 2-simplex is the convex hull of the unit vectors
e1, e2 and e3. A picture can be found below:

e2

e3

e1

Figure 6. Standard 2-simplex

We now follow the treatment in [7]-specifically pages 425 and 430. The main idea is that given a polytope
one may construct a simplicial complex dual to it and vice-versa. Assume P is an n-dimensional simple
polytope (defined as above) and let I = {F0, . . . , Fm} be the set of facets. Let KP denote the dual simplicial
complex with vertex set {F0, . . . , Fm} with the requirement: σ = {F0, . . . , Fj} span a j + 1 simplex in KP if and
only if F0 ∩⋯ ∩ Fj ≠ ∅ in P. We observe that a zero face in P (a vertex) is a codimension n face; hence, it is
the intersection of exactly n facets. By the definition of the dual, such an intersection spans an n − 1 simplex.
Therefore, the dual complexKP is (n−1)-dimensional. Furthermore, it is a simplicial sphere, roughly meaning,
it is essentially a combinatorial representation of the sphere Sn−1.

Notation 2. We fix the notation regarding the dual. Given a simplicial complex K we will write the dual as
P (or PK if we need to stress certain properties of this combinatorial object). When convenient we may just
say “the dual". If P is given, then the dual, KP will be written as K when there is no room for confusion. For
reasons of convenience certain authors use the notation K∗ to denote the dual, especially when considering
K∗∗ ([8]), but we will stick with the conventions mentioned above. Given K, the notation PK is used in the
paper [7].

Example 4. For the square we have

v1

v2 v3

v4

F1

F4

F3

F2 vF2

vF1

vF4

vF4

ev1

ev4

ev2

ev2

Figure 7. P2 and KP2

We now give a slightly more complicated example

Example 5. Recall, the cube
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v6

v7

v5

v8

v1v2

v4v3

F5

F3

F2

F1

F6

F4

Figure 8. P3

If F is a codimension one face of the cube (a face of the cube) we let vF denote the dual vertex in KP3 .
Recall, the codimension one faces of the cube dualize to vertices, so each face of the cube dualizes to a vertex
vFi . Each codimension two face in the cube is the intersection of two faces (e.g., F1⋂ F6 = E where E is an
edge in P) dualizes to an edge. In this very specific example F1⋂ F6 dualizes to the edge {vF1 , vF6}. Finally, a
vertex in the cube is a codimension three face since it is the intersection of three facets. Here, the vertex v1 in
the cube is the intersection: F2⋂ F3⋂ F5 so it dualizes to {vF2 , vF3 , vF5} Table 1 lists the simplicies in the dual
two-dimensional simplicial complex KP3 .

Table 1. Simplicies in the dual two-dimensional simplicial complex KP3

0-simplices 1-simplices 2-simplices

vF1 {vF1 , vF6} {vF2 , vF3 , vF5}
vF2 {vF2 , vF6} {vF1 , vF2 , vF5}
vF3 {vF3 , vF6} {vF1 , vF4 , vF5}
vF4 {vF4 , vF6} {vF3 , vF4 , vF5}
vF5 {vF1 , vF2} {vF2 , vF3 , vF6}
vF6 {vF2 , vF3} {vF1 , vF2 , vF6}
vF7 {vF3 , vF4} {vF1 , vF4 , vF6}
vF8 {vF1 , vF4} {vF3 , vF4 , vF6}

{vF1 , vF5}
{vF2 , vF5}
{vF3 , vF5}
{vF4 , vF5}

In the case that a simplicial complex is a simplicial sphere, then the construction can made to generate a
simple polytope. Since the zero simplicies in K are dual to codimension one faces in the dual polytope, the
face structure of the polytope is given by working through higher dimensional simplicies of K and carefully
fitting together the faces of the polytope using the definition of the simplicial complex along with the process
to dualize.

If K is a general simplicial complex then it is possible to construct a simple polyhedral complex. This
involves the notion of a cone on the geometric realization of various posets. [7] pg. 428

Later we will consider K = Cj(RG) (for some positive integer j) and then analyze certain inequalities

derived from the g-Theorem. To do so requires the analysis of the h-vector (denoted
Ð→
h ) of the dual and how it

is related to the
Ð→
f of the simplicial complex we construct. Following [7] pg. 430 we have:

Definition 9. Let ( f0, . . . , fn−1) be the f -vector of an (n − 1)-dimensional simplicial complex K. Then the
h-vector of the dual, (h0, h1, . . . , hn), is defined by the following equation:
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h0tn +⋯+ hn−1t + hn = (t − 1)n + f0(t − 1)n−1 +⋯+ fn−1

Observe that the number of components in the h-vector is the dimension of K plus one. In the case that
K (simplicial sphere) is dual to P as above, then by [7], fi(K) is the number of codimension i + 1 faces of P (or

n − i − 1 faces). From [5] pg. 12 there are two compact equations that relate specific components of the
Ð→
h and

Ð→
f . For k = 0, ..., n we have:

hk =
k
∑
i=0
(−1)k−i(n − i

n − k
) fi−1

and

fn−1−k =
n
∑
q=k
(q

k
)hn−q

Example 6. Let K have the following f -vector (4, 4). Referring to Example 4 it is a square. The claim is that
the dual P has corresponding h-vector: (1, 2, 1). Specifically, h0 = 1 = h2 and h1 = 2. We have the polynomial
h0t2 + h1t + h2 = (t − 1)2 + f0(t − 1) + f1. Expanding and equating coefficients produces h0 = 1, h1 = f0 − 2 and
h2 = f1 − f0 + 1 and we obtain the vector above.

For certain types of simplicial complexes the h-vector of the dual exhibits a symmetry exhibited by
Dehn-Sommerville relations. From [5]

Theorem 10. The h-vector of any simple n-polytope is symmetric hn−i = hi for i = 0, 1, . . . , n

Example 7. For a positive integer n > 1 let P = ∆n then hi(P) = 1 for i = 0, . . . , n. This follows from [5] along
with a simple verification using Theorem 10. For each i < n − 1, the h-vectors of the proper faces ∆i and ∆i+1

have components all consisting of ones and the h-vector of ∆i+1 has one more component then the h-vector of
∆i. More specifically, consider ∆2; it has h-vector (1, 1, 1). Now ∆1 is a face and has h-vector (1, 1). We state the
following interesting fact from [7] and observe that for the examples listed here, the following equation holds.

h0 +⋯+ hn = ∣V(P)∣

Recall, RG is a random graph generated using the methods described in [1] and the simplicial complex
K = Cj(RG) is the jth-cone on RG. A fundamental question we seek to answer is the following; given K =
Cj(RG) and

Ð→
f (K) what type of symmetry does this f -vector exhibit? Another interesting formulation of this

question is to determine if the dual polytope is simple or not. Fortunately, the celebrated g-Theorem provides
an answer for a fairly general class of polyhedra. Using [4] we note that the f -vector of P has components fi
and they equal the number of i-faces of P. So using this convention, if P is simple and n-dimensional, then the
f -vector is ( f0, ..., fn−1)where f0 is the number of vertices of P and fn−1 is the number of facets of P.

The following material can be found in [4] pgs. 130-131 and we list it here for the convenience of the
reader. Let gi( f ) ∶= ∑d

j=0(−1)i+j(j
i) f j for i = 0, .., d. Let m ∶= ⌊ d−1

2 ⌋ and n ∶= ⌊ d
2 ⌋. The following is referred to

as McMullen’s Conditions [4], but other authors refer to it as the g-Theorem [5]. For additional information
regarding condition (3) the interested reader can refer to [4] pg. 130 (specifically, (2)-(4)).

Theorem 11. A d-tuple ( f0, ..., fd−1) of positive integers is the f -vector of a simple d-polytope if and only if the following
conditions hold:

1. gi( f ) = gd−i( f ) for i = 0, .., m.
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2. gi( f ) ≤ gi+1( f ) for i = 0, .., n − 1.

3. gi+1( f )− gi( f ) ≤ (gi( f )− gi−1( f ))⟨i⟩ for i = 1, ..., n − 1.

Theorem 11 encodes information regarding upper and lower bounds on the number of faces of simple
polytopes. From [4] pg. 132 one equation that can be derived is the following:

f0 =
d
∑
i=0
( i

0
)gi( f )

This can be written as f0 = (d−1) fd−1 − (d+1)(d−2) and to clarify that this equation refers to the polytope
P we will write

f0(P) = (d − 1) fd−1(P)− (d + 1)(d − 2)

Remark 2. It is important to note that the generated random graph is fixed. Therefore, the terms f0(RG) and
f1(RG) are fixed, but the parameter j can grow and this is the number of times the cone operation is performed.

To apply the g-Theorem it is critical that we understand the dimension of the simplicial complex that
results from applying the cone. We recall that Cj(RG) is a (j + 1)-dimensional simplicial complex when
f1(RG) ≠ 0.

Lemma 12. Let K be an (n − 1)-dimensional simplicial complex with given
Ð→
f (K) = ( f0, . . . , fn−1). For a positive

integer j > 0 the following holds: fn+j−1(Cj(K)) = fn−1(K)

Proof. Let σmax = {v1, . . . , vn} be a top dimensional simplex in K noting that dim(K) = ∣σmax ∣ − 1. We observe
that C(K) has the effect of adding one vertex to each simplex, but in particular for a σ

′

max ∈ C(K) we have
σ
′

max = σmax ∪ {c1}where c1 refers to the new vertex added to the simplex, the cone point, and σmax is a simplex
counted in fn−1(K). Clearly, ∣σ′max ∣ = ∣σmax ∣ + 1 = n + 1 and there are fn−1 such simplicies. Furthermore, it is
obvious that the dimension of C(K) is n. Similarly, for j > 1 we have dim(Cj(K)) = dim(K) + j = n + j − 1.
Each top dimensional simplex in the iterated cone Cj(K) are those that are the top dimensional simplicies in K
with j vertices added coming from adjoining j “cone" points. These maximal dimensional simplicies have n+ j
vertices and so the top component of

Ð→
f (Cj(K)) is fn+j−1 and such simplicies are enumerated by fn−1(K).

Remark 3. Of particular interest is the case K = RG such that f1(RG) ≠ 0. The equation above, then takes the
form: f j+1(Cj(RG)) = f1(RG) noting that f j+1 is the component of the f -vector enumerating the simplicies of
maximal cardinality.

Proposition 13. For a graph G such that f1(G) ≠ 0, let Cj(G) = Kj+1. For j sufficiently large, the complexes Kj+1 are
not dual to a polytope that satisfies the g-Theorem.

Proof. Given a fixed graph G let f0(G) = s and f1(G) = t. We argue by contradiction. Suppose for all j we
haveKj+1 is dual to a (j+ 2)-dimensional polytope P that satisfies the g-Theorem. Then the following equation
must hold where d = dim(P):

f0(P) = (d − 1) fd−1(P)− (d + 1)(d − 2)

Since f j+1 is the number of codimension one faces of P we obtain, using the dual complex, f j+1(P) = s + j.
Plugging all of this into the equation above gives:

t − s
s − 2

= j

To obtain the result observe that the left hand side of the equation is fixed and j can be arbitrarily large.
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Proposition 13 also implies that one can pass through the class of simple n polytopes. As a practical
matter, this is crucial in ensuring that the f -vectors do not exhibit a symmetry as described by the statements
that follow, in particular Definition 14. One goal is to maintain the computational complexity of the resulting
f -vector [3].

Let P = ∆n and KP = K be its dual. It is shown that when
Ð→
h (P) = (1, 1, . . . , 1), then

Ð→
f (K) satisfies a

Dehn-Sommerville type relationship. Let us recall Pascal’s Triangle:

(00)

(10) (11)

(20) (21) (22)

(30) (31) (32) (33)

(40) (41) (42) (43) (44)

We note that the triangle starts from row zero and the entry (nk) refers to row n column k. The nth row in
the triangle is

{(n
r
) ∣ 0 ≤ r ≤ n}

There is a zeroth row and it contains (00) and for each row there are columns starting at zero. For example,
row two contains: (20), (

2
1) and (22). Using this notational convention, there are three columns whereby (20) is in

column zero for this row. There are diagonals too and they begin with the zeroth diagonal consisting of (y0) for
positive integers y ≥ 0.

For the convenience of the reader we recall the following. For k = 0, . . . , n we have:

hk =
k
∑
i=0
(−1)k−i(n − i

n − k
) fi−1

fn−1−k =
n
∑
q=k
(q

k
)hn−q

Definition 14. An n− 1 dimensional simplicial complex K is called symmetrical if f j(K) = fn−j−1(K) for 0 ≤ j ≤
n − 1.

Theorem 15. Let n > 1 and suppose P is an n-dimensional simple convex polytope such that
Ð→
h (P) = (1, . . . , 1), then

the n − 1 dimensional dual simplicial complex K is symmetrical.

Proof. We assume n is fixed. Since hi = 1 for each i, then for 0 ≤ k ≤ n the components of the f -vector of K can
be written as:

fn−1−k =
n
∑
q=k
(q

k
)

We first deal with the extreme cases for k. If k = n, then it is clear that f−1 = 1. For k = 0, then

fn−1 =
n
∑
q=0
(q

0
) = n + 1
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By similar calculations we obtain for k = n − 1:

f0 = (
n − 1
n − 1

)+ ( n
n − 1

)

Hence, f0 = fn−1 = n + 1. In what follows we will use certain summations in Pascal’s triangle. Generally,
consider a set {0, . . . , t} of consecutive positive integers. Fix s ∈ {0, . . . , t} such that s ≤ t then using the f -vector
calculation above we have the summation:

ft−1−s = (
s
s
)+ (s + 1

s
)+ (s + 2

s
)+⋯+ (t

s
)

This is summation along a diagonal in Pascal’s Triangle, therefore

ft−1−s = (
t + 1
s + 1
)

Consider fn−1−k and the two substitutions for k (observe that t = n and s = k in the formulation above):

1. When k = j, then fn−1−j = (
n + 1
j + 1
).

2. When k = n − j − 1, then fn−1−j = (
n + 1
n − j
).

To complete the proof one must show that (n+1
j+1) = (

n+1
n−j), but this follows immediately from the properties

of n choose k.

We note that the
Ð→
h has a component hn but the entries of the dual (n−1) dimensional complex are located

in the n + 1 row in Pascal’s Triangle. The following statement follows immediately from Theorem 15 and the
tests found in sections §7 and in the Appendix §8.

Remark 4. There are families of bit sequences that are derived from symmetrical simplicial complexes and
their successive cones that are determined to be random using the NIST test suite described in publication
800-22 [2]. The key takeaway is that one starts with a combinatorial object with a clear pattern (symmetry) and
dualizing it produces a simplicial complex that is highly symmetrical, yet the converted bit sequence shows
up as random using the NIST test suite. More is true, using the cone it is possible to construct arbitrarily many
bit sequences (derived from this symmetrical object) that the test suite deems random.

5. Bit Conversions

The experimental implementation uses arbitrary-sized integers to represent vector components, then this
vector is converted into a sequence of integers. Since the NIST test suite [2] expects its input to be a binary file,
we must convert a sequence of integers into the corresponding binary bit-stream. To do this, we iterate over
the vector components to generate a binary representation of each integer. We then concatenate this binary
representation onto the output file. Care must be taken; it is important to use a bit-wise approach instead of
a byte-wise approach. In a byte-wise approach, the binary representation of each integer will begin on a byte
boundary, and since most integers will not completely fill their most-significant byte, there will be up to 7
extraneous leading zero bits. In practice, this means that the binary representations of each integer should be
bit-shifted before concatenation, to avoid these leading zero bits.
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To illustrate the importance of this point, our initial implementation in [1] has a minor bug in the
bit-shifting code that is only triggered for certain byte values, and when triggered drops a 0-bit from the output
stream. Despite the relative rarity of this bug being triggered, the NIST test suite did detect its non-random
contributions to the output file, as can be seen in Tables 1, 3, 13, and 15 in [1], which show a noticeable
“clustering” effect towards p-values of 0. In the current implementation used in this paper, this bug has been
fixed.

6. Algorithms

The following algorithms are polynomial time and numeric in nature, since we only calculate a vector
and its dual.

Algorithm 3 Cone operation on a simplicial complexK and its f -vector. The run time of this algorithm isO(n).

Input:
Ð→
f (K) as x1, . . . , xn

Compute Ck(K) as y1, . . . , yn+1

for i = 1, . . . , n + 1 do
if i = 1 then

y1 = x1 + 1
else if i = n + 1 then

yn+1 = xn

else
yi = xi + xi+1

end if
end for

Algorithm 4 Determine the f -vector of a k-cone on a simplicial complex K. The run time of this algorithm is
O(n).

Input : Simplicial complex K
Compute

Ð→
f (K)

for k = 1, . . . , n do
Compute

Ð→
f (Ck(K))

end for

Algorithm 5 Return the h-vector of the dual, given the f -vector of K when K is dual to P. The run time of this
algorithm is O(n2).

Input:
Ð→
f (K)

Compute
Ð→
h (P)

for k = 0, . . . , n do
for i = 0, . . . , k do

if i = 0 then
hk = ( n

n−k)
else

hk = (−1)k−i (n−i
n−k) fi−1

end if
end for

end for
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Algorithm 6 Return the f -vector of K, given the h-vector of P when P is dual to K. The run time of this
algorithm is O(n2).

Input:
Ð→
h (P)

Compute
Ð→
f (K)

for k = 0, . . . , n do
for i = 0, . . . , k do

if i = 0 then
hk = ( n

n−k)
else

hk = (−1)k−i (n−i
n−k) fi−1

end if
end for

end for

7. Results

The algorithms described in the previous section allow us to perform a particular operation on a simplicial
complex; hence changing its f -vector. These vectors will increase in size incrementally and they can be
computed explicitly, although this is a difficult problem in general. It is possible to start with a large arbitrary
vector as our initial input, but we have, by our construction, a method to generate bit sequences using a
combinatorial construction. The resulting vectors are converted to a stream of bits, which we then use as input
to the National Institute of Standards and Technology (NIST) statistical test suite. You can download the suite
at the following url: https://csrc.nist.gov/Projects/Random-Bit-Generation/Documentation-and-Software

The suite requires a bit-stream input from a random number generator that contains at least 10 megabits
of input data. For each bit-stream, the NIST test suite will output a report that shows the p-values associated
with each of the tests within the suite.

Recall, one theme of the paper is to demonstrate that the NIST test suite cannot detect certain non-random
sequences that arise from combinatorial constructions. We conducted three experiments on certain vectors.
They are: the h-vector and variants of its length, the number of cones applied to the dual simplicial complex
and the bits associated to the components of the h-vector. Our first experiment follows these steps:

1. Create an h-vector consisting of all ones coming from the standard n-simplex, ∆n.
2. Compute the f -vector of the dual K corresponding to ∆n and its h-vector from the previous step.
3. Compute the iterated cone, Ck(K), for 0 ≤ k ≤ q and some q and the resulting f -vector.
4. Run the resulting bit sequence (bit-stream) from Step 3 through the NIST test suite.

A non-random pattern should be consistently detected by the NIST test suite and shown with every data
set having a p-value close to 1.0 or 0.0. This will appear as a “clustering” of points towards the top or bottom
of the graph represented as a flatline (See Figure 9a and 9b). These sparklines represent the trend of all NIST
tests for different variations of the input h-vectors.

(a) random (b) non-random

Figure 9. Sparklines showing the difference between expected NIST results if bit-stream is identified as random
(left) vs non-random (right).

The time required to run these tests on a modern consumer CPU (Intel Core i5-4590) was originally
2.3 seconds [1]. However, performance of the code improved due to optimizations and algorithmic
improvements. Updated and improved results from [1] can be found in the Appendix §8.

For the first experiment, fix an h-vector of length 3751 consisting of all ones. This is the h-vector of ∆3751

(Remark:When computing Cj(K) for various j we may say coning operations). Proceed to steps 2 and 3 and
apply the cone to the dual simplicial complex, then compute its f -vector. We vary the number of coning

https://csrc.nist.gov/Projects/Random-Bit-Generation/Documentation-and-Software
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operations from 0 to 99 times on the dual complex K for 0 ≤ k ≤ 99 (figure 19) in Appendix §8. The sample
scatter plots in Figures 10, 11 and 12, show the p-value distributions. The graphs show that the NIST test suite
is unable to detect non-randomness.

Figure 10. Approximate Entropy NIST test p-values after applying between 0 - 99 coning operations on the dual
of the standard 3751 simplex with h-vector consisting of all 1’s

Figure 11. Linear Complexity NIST test p-values after applying between 0 - 99 coning operations on a vector of
length 3751 with a pattern of all 1’s
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Figure 12. Rank NIST test p-values after applying between 0 - 99 coning operations on a vector of length 3751
with a pattern of all 1’s

For the second experiment, we computed the f -vector dual to the h-vector without applying the cone or
jth-cone to the dual. We vary the h-vector length from 3750 to 3849. So, we have a collection of h-vectors all of
whose components are ones corresponding to a set of standard simplicies: {∆i ∣ 3750 ≤ i ≤ 3849}. This should
serve as a benchmark since there are no random processes involved that may result from the iterated coning
operation. Furthermore, we expect the NIST suite to indicate that the bit-stream is non-random. However,
the NIST test suite is unable to detect the non-randomness as illustrated in the sparklines in Figure 20 in the
Appendix §8. We have also included sample scatter plots for the Approximate Entropy test (Figure 13), the
Linear Complexity test (Figure 14) and the Rank test (Figure 15).

Figure 13. Approximate Entropy NIST test p-values on a vectors of length between 3750 and 3849 with a pattern
of all 1’s, without applying coning operations
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Figure 14. Linear Complexity NIST test p-values on a vectors of length between 3750 and 3849 with a pattern of
all 1’s, without applying coning operations

Figure 15. Rank NIST test p-values on a vectors of length between 3750 and 3849 with a pattern of all 1’s,
without applying coning operations

Motivated by the failure of the NIST test suite to detect non-random phenomena we conducted a third
experiment. Some terminology is needed. Given an h-vector (h0, ..., hn) define end elements to be h0 and hn

whilst, non-end elements are those hi such that i ≠ 0, n. Given ∆3750 fix the corresponding h-vector. Vary the
non-end elements in the vector from 1 to 100. This must be done in a manner where the Dehn-Sommerville
relations are preserved (see Theorem 4.9) as a necessary, but not sufficient condition for the vector to
correspond to a polytope. We observe that the construction is general and allows for components of the
resulting vector to have non-end points to be any integer so long as the two end elements are 1, but for
the purposes of testing, we restrict to integers between 1 and 100. We are not claiming that the resulting
vector is the h-vector of a polytope. Indeed, other condition(s) would have to hold for this to be true. From
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a testing perspective, this ad-hoc method allows for additional bit generation. Moreover, for those vectors
that correspond to polytopes, the construction allows for additional vectors to be created by dualizing and
computing the f -vector of the jth-cone. Some examples of varied non-end elements can be found below:

1 1 1 . . . 1 1 1
1 2 2 . . . 2 2 1
1 3 3 . . . 3 3 1
1 4 4 . . . 4 4 1

. . .
1 100 100 . . . 100 100 1

We included the sparklines (see Figure 21 in the Appendix §8) and sample scatter plots for the
Approximate Entropy test (see Figure 16), the Linear Complexity test (see Figure 17) and the Rank test (see
Figure 18).

Figure 16. Approximate Entropy NIST test p-values on vectors of length 3750 with non-end elements from 1 to
100.
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Figure 17. Linear Complexity NIST test p-values on vectors of length 3750 with non-end elements from 1 to 100.

Figure 18. Rank NIST test p-values on vectors of length 3750 with non-end elements from 1 to 100.



Open J. Discret. Appl. Math. 2024, 7(3), 36-58 55

8. Appendix

The following sparklines illustrate the results for all three experiments described in the Results section 7.
Each sparkline represents all p-values for all tests of the NIST suite for a particular bit-stream input.

Figure 19. 100 trendlines for all NIST tests p-values after applying between 0 and 99 coning operations on a
vector of length 3751, with a pattern of all 1’s

Figure 20. 100 trendlines for all NIST tests p-values on vectors of lengths between 3750 and 3849 with a pattern
of all 1’s
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Figure 21. 100 trendlines for all NIST tests p-values on vectors of length 3750 varying non-end elements from 1
to 100.

Since the appearance of [1] the code has been updated. Version 2.0 of the code fixes several bugs,
including one where 0’s were not being properly appended to the bit-stream. As a result, fewer false
positives appear in the output from the NIST test suite. The updated code was used to run all the tests in
this paper and to re-run the experiments from [1]. The interested reader can refer to the following GitHub
repository for the code, the updated results and the results from the experiments conducted in this publication:
https://github.com/gnexeng/coning-analysis

The following is a sample of the updated results from [1].

https://github.com/gnexeng/coning-analysis
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