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Abstract: This note addresses impracticalities or possible absurdities with regards to the definition
corresponding of some graph parameters. To remedy the impracticalities the principle of transmitting
the definition is put forward. The latter principle justifies a comprehensive review of many known
graph parameters, the results related thereto, as well as the methodology of applications which draw a
distinction between connected versus disconnected simple graphs. To illustrate the notion of transmitting
the definition, various parameters are re-examined such as, connected domination number, graph diameter,
girth, vertex-cut, edge-cut, chromatic number, irregularity index and quite extensively, the hub number of a
graph. Ideas around undefined viz-a-viz permissibility viz-a-viz non-permissibility are also discussed.
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1. Introduction

G ood reference to important concepts, notation and graph parameters are found in [1–3]. All graphs
under consideration are finite simple graphs.

The length of a shortest path having end-vertices u and v is denoted by, dG(u, v) and is called the distance
between u and v in G. Clearly, dG(u, u) = 0. If a shortest uv-path exists then, dG(u, v) ≥ 0 and finite. If
a shortest uv-path does not exist then, dG(u, v) = ∞. From the aforesaid it is evident that the notion of
distance between a pair of vertices of a graph is well-defined for both, connected and disconnected graphs. If
dG(u, v) ≥ 2 and finite then a vertex w on a uv-path, w ̸= u, w ̸= v is called an internal vertex. Let the set
X(u, v) be the set of internal vertices of a shortest path between u and v. Then |X(u, v)| = dG(u, v)− 1. Note
that X(u, u) = ∅ as well as, if dG(u, v) = 1 then X(u, v) = ∅. It follows naturally that if dG(u, v) ≥ dG(w, z)
and both are finite then, |X(u, v)| ≥ |X(w, z)|. So what can be said about X(u, v) if dG(u, v) = ∞? In the latter
case intuition provides that XG(u, v) = ∅. However, if dG(w, z) ≥ 2 and finite an absurdity comes to the fore
in view of dG(u, v) >>> dG(w, z). Hence, it is sensible to state that XG(u, v) is undefined if dG(u, v) = ∞.
Though not in all cases, it appears to be popular to define a graph parameter say, p(G) to be ∞ or to state it is
undefined if G is disconnected.

Motivation for this note: Classical graph theory originated in an era where the real world was deemed to be
physically linked. Hence, the distinction between a connected and a disconnected graph was a straightforward
fact. Networks in the modern world often present a cluster (disjoint elements) of hard connected graphs which
amongst themselves have soft connectivity (or transmitting connectivity). The modern world soft connectivity
justifies a comprehensive review of many known graph parameters, the results related thereto, as well as the
methodology of applications which draw a distinction between connected versus disconnected simple graphs.

2. Discussion

Recall that D ⊆ V(G) is a dominating set of G if and only if each vertex v ∈ V(G)\D is adjacent to some
vertex u ∈ D. The minimum cardinality of some D is called the domination number, γ(G) of G. The classical
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definition is well-defined for both connected and disconnected graphs. Conceptually, the domination number
for a disconnected graph G is obtained as if transmitting the definition component-wise. Therefore, if:

G = G1 ∪ G2 ∪ G3 ∪ · · · ∪ Gl , l ≥ 1 then, γ(G) =
l

∑
i=1

γ(Gi).

Consider a cluster of locally connected networks spread over continents. The decision is that a minimum
number of subsystems have to be implemented to dominate the cluster of connected networks. Clearly,
the result for the domination number of a disconnected graph will apply. If the principle of transmitting
the definition component-wise is applied in respect of a graph parameter say, p(G), let c-p(G) and c-pc(G)

denote the non-necessarily connected and necessarily connected parameters of graph G, respectively. Note
that inherently γ(G) = c-γ(G). Similarly, it is inherent that for the independence number of G, α(G) = c-α(G).

The notion of connected domination number was introduced in [4]. The notion is restricted to connected
graph because of the classical interpretation is that a disconnected graph must be viewed as a singular
whole rather than a cluster of connected graphs (or components). Let D be a minimum domination set of a

disconnected graph G which has l ≥ 1 components, Gi, i = 1, 2, 3, . . . , l. Then certainly D =
l⋃

i=1
Di where

|Di| = γ(Gi). Thus, if each ⟨Di⟩ is connected per component the definition can be relaxed to view D as a
derivative connected dominating set of G. For the purposes of real world applications the author views this as

a sensible alternative. Therefore, c-γc(G) =
l

∑
i=1

γc(Gi).

By analogy, assume that a maximum number of subsystems have to implemented at vertices of G by
some condition with regards to the diameter of a graph G. Let the maximum number of subsystems s(G) be
bounded by s(G) ≤ diam(G). If G is disconnected an absurdity comes to the fore. Note that if G is disconnected
a subsystem is required at each vertex of G because diam(G) = ∞. The principle of transmitting the definition
component-wise yields a new parameter with regards to the diameter of any graph. Let,

G = G1 ∪ G2 ∪ G3 ∪ · · · ∪ Gl , l ≥ 1 then, c-diam(G) =
l

∑
i=1

diam(Gi).

Requiring that s(Gi) ≤ diam(Gi) implies that, c-s(G) =
l

∑
i=1

s(Gi). This approach applies to both connected and

disconnected graphs. Furthermore, c-s(G) ≤ c-diam(G).
The notion of doubly connected domination number of a graph was introduced in [5]. In [5] it is stated

that, "For any connected graph G of order p ≥ 2, γcc(G) ≤ p − κ(G) + 1." An interesting question that comes
to the fore is, "Is it valid to state that, c-γcc(G) ≤ p − c-κ(G) + l if G = G1 ∪ G2 ∪ G3 ∪ · · · ∪ Gl , l ≥ 2?"

In [6] the irregularity index of a graph G (connected by assumption in [6]) is the number of distinct terms
in the degree sequence of G. The irregularity index is denoted by, t(G). The definition of the irregularity index
does inherently apply to a disconnected graph. Hence, t(G) = c-t(G). However, the note relies on connectivity
for its results such as the first proposition in Section 2 [6].

Proposition 1. [6] Let G be a connected graph of order n. The diameter of G satisfies the inequality

diam(G) ≤ n − t + 1,

where t is the irregularity index of G. Moreover, this inequality is sharp.

The weakest equivalent result by the principle of transmitting definition component-wise is:

Proposition 2. Let G = G1 ∪ G2 ∪ G3 ∪ · · · ∪ Gl , l ≥ 1 each of respectively order, ni, 1 ≤ i ≤ l. Then,

c-diam(G) ≤ n − t + l,

where t =
l

∑
i=1

t(Gi), n =
l

∑
i=1

ni and the inequality is sharp.

Other, improved results are valid for certain configurations of disconnected graphs. The derivative results
are:
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(i) c-diam(G) ≤ n − t + 1,
(ii) c-diam(G) ≤ n − c-t(G) + l, where c-t(G) ≤ t,
(iii) c-diam(G) ≤ n − c-t(G) + 1, where c-t(G) ≤ t.

Seeking characterization of the configurations of disconnected graphs for which each of the above is valid
is of interest.

Conjecture 3. For any graph G, c-diam(G) ≤ n − c-t(G) + q, where c-t(G) ≤ t and 1 ≤ q ≤ l.

Example 1. For a connected graph G of order n Erdós et al. presented a classical upper bound in [7] namely,
diam(G) ≤ 3n

δ(G)+1 − 1. This result can easily be generalized for disconnected graphs in that,

c-diam(G) ≤
l

∑
i=1

3ni
δ(Gi)+1 − l.

The girth of a graph G is defined as the length of a shortest cycle Ck, k ≥ 3 in G. This definition holds
for almost all simple graphs be it, connected or disconnected. The proviso is that at least one component of
a disconnected graph G must contain a cycle else, g(G) = ∞. However, if the non-proper cycle graphs K1 (a
point-cycle) and K2 (a flat-cycle) are included as cycles then the next alternative definition may be considered.

Definition 4. Let G be a graph with l ≥ 1 components, G1, G2, G3, . . . , Gl . The girth g(G) is defined to be the
length of the shortest cycle in G with the proviso that:

g(G) =


1, if G has some component(s), K1;

2, if G does not have some component(s), K1 but has some tree;

min{g(Gi) : 1 ≤ i ≤ l}, if ∀ i, Gi ≇ K1 and G has no tree.

Note that, if G is a graph with l ≥ 1 components, G1, G2, G3, . . . , Gl of which at least one has a cycle,
the classical definition provides for g(G) = min{g(Gi) : 1 ≤ i ≤ l}. The salient feature of the latter is that
the principle of transmitting the definition comparatively over all components (component-wise) is inherent.
Definition 4 invalidates a previously valid statement such as: "A connected graph G has a finite girth g(G) if
and only if G contains at least one cycle." Instead the valid statement is now: "The girth g(G) of a graph G
is finite." Much research have been publish on the domination number vis-a-vis the girth of graphs. By the
classical definition of girth such research is restricted to connected graphs. By Definition 4 a new avenue of
comparative research is open. A similar remark applies to research on the independence number vis-a-vis the
girth of a graph. See [8,9] with references thereto.

Recall that a cut-vertex v of a connected graph G ≇ Kn is such that, the induced graph ⟨V(G)\{v}⟩ has two
or more components. A vertex-cut is a set X ⊆ V(G) such that, the induced graph ⟨V(G)\X⟩ has two or more
components. The cardinality of a smallest vertex-cut of a connected graph G is called the vertex connectivity
of G and is denoted by, κ(G). To deal with complete graph such that most general results remain valid the
convention is that, κ(Kn) = n− 1, n ≥ 2 and κ(K1) = 1. By utilizing the principle of transmitting the definition
component-wise for G = G1 ∪ G2 ∪ G3 ∪ · · · ∪ Gl , l ≥ 1 it is proposed that, c-κ(G) = min{κ(Gi) : 1 ≤ i ≤ l}.
Analogous notions can be defined with regards to the edge set of a connected graph. The cardinality of a
smallest edge-cut of a connected graph G is called the edge connectivity of G and is denoted by, λ(G). It is
proposed that for G = G1 ∪ G2 ∪ G3 ∪ · · · ∪ Gl , l ≥ 1 the edge connectivity is, c-λ(G) = min{λ(Gi) : 1 ≤ i ≤ l}.
Whereas, for a connected graph G it is known that, κ(G) ≤ λ(G) no such relationship exists between c-κ(G)

and c-λ(G) if G = G1 ∪ G2 ∪ G3 ∪ · · · ∪ Gl , l ≥ 2.
Recall that the chromatic number χ(G) of a graph G is the minimum number of distinct colors with

which the vertices can be colored such that no pair of adjacent vertices (distinct) has the same color. Such
coloring is called a χ-coloring of G. The classical definition provides for disconnected graphs in that, if G =

G1 ∪ G2 ∪ G3 ∪ · · · ∪ Gl , l ≥ 1 then, χ(G) = max{χ(Gi) : 1 ≤ i ≤ l}. Researchers typically argue that the study
in respect of connected graphs is sufficient. However, certain results did not necessarily translate as valid for
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disconnected graphs. If a connected graph G has a cut-vertex v and G− v has the components G1, G2, G3, . . . , Gl
then it is known that,

max{χ(Gi) : 1 ≤ i ≤ l} ≤ χ(G) ≤ max{χ(Gi) : 1 ≤ i ≤ l}+ 1.

Hence, if in the first instance G = G1 ∪ G2 ∪ G3 ∪ · · · ∪ Gl , l ≥ 1 then by the principle of transmitting the
definition component-wise it follows that, c-χ(G) = max{χ(Gi) : 1 ≤ i ≤ l}. For connected graphs the famous
Brooks’ Theorem [10] states that, χ(G) ≤ ∆(G) + 1. It is easy to verify that for G = G1 ∪ G2 ∪ G3 ∪ · · · ∪ Gl ,
l ≥ 1 it follows that, c-χ(G) ≤ c-∆(G) + 1 where c-∆(G) = max{∆(Gi) : 1 ≤ i ≤ l}. Consider a graph G
(connected or disconnected) and let the set of colors C = {c1, c2, c3, . . . , cχ(G)} which yields a minimum proper
coloring. Let η(ci) be the number of times ci has been allocated. It is always possible to color a graph such
that, without loss of generality the color c1 is allocated a minimum times. For example, the odd cycle Cn has
χ(Cn) = 3. It is easy to see that the color c1 can be allocated once or more times in a proper coloring of Cn.
Assume that in a disconnected graph, subsystems have to be placed at the vertices colored c1 subject to a

minimum in total. Then clearly, the solution is given by some c-χ-coloring such that, min{
l

∑
i=1

η(c1) : over all

c-χ-colorings} is obtained.
The parameter called the hub number of a graph G and denoted by h(G) was introduced in [11]. The hub

number and derivative parameters such as the connected hub number hc(G), and the doubly connected hub
number hcc(G) (see [12]) enjoy noticeable research interest. A reader can do an easy Google search to find an
abundance of published work.

See page 1 (journal page 117), paragraph 2, of [11] for a motivation of a study of the hub number linked
to a possible real world application. A salient feature of a hub-vertex in a hub set is that it has (or should have)
utility value. It is then stated that, "if G is disconnected, any hub set must contain all of the vertices in all but one
of the components, as well as a hub set in the remaining component." Hence, if G = G1 ∪ G2 ∪ G3 ∪ · · · ∪ Gl ,
l ≥ 2 and say, h(G) = h(Gj) + ∑

k=1,2,3,...,j−1,j+1,...,l
|V(Gk)|, the aforesaid signals a possible absurdity in practical

terms. For example if Gj is complete the vast RTS network is redundant because easy walks in Gj do not
require traversing a hub-vertex. Furthermore, if the cluster of connected graphs represents different networks
in metropolises or on continents and all but one say, Gj are complete graphs then only Gj requires the RTS. The
stated impracticality can be overcome by utilizing the principle of transmitting the definition component-wise.
Author proposes that in the latter case the definition should provide that, c-h(G) = h(Gj). Hence, let c-h(G) =

l
∑

i=1
h(Gj).

Example 2. Lemma 4.1 [11] states that, "For any graph G, γ(G) ≤ h(G) + 1." The aforesaid is certainly valid
for any connected graph. Under the definition in [11] it also holds for disconnected graphs because of the vast
and mostly redundant hub set which is defined. If the principle of transmitting the definition component-wise
is applied to G = G1 ∪ G2 ∪ G3 ∪ · · · ∪ Gl , l ≥ 1 the result will be:

Lemma 5. For any graph G with l ≥ 1 components, γ(G) ≤
l

∑
i=1

h(Gi) + l.

Note that the upper bound improves on the stated upper bound in [11].

Alternatively, let Yi, i = 1, 2, 3, . . . , l be the respective minimum hub sets of Gi. Lemma 5 will then state

that, "For any graph G with l ≥ 1 components, c-γ(G) ≤ |
l⋃

i=1
Yi|+ l." Similarly, Lemma 4.2 in [11] will state:

"For any graph G with l ≥ 1 components, c-hc(G) ≤ c-γc(G)." Also, Lemma 4.3 in [11] will state: "For any
graph G with l ≥ 1 components, c-h(G) ≥ c-diam(G)− l and the inequality is sharp.

2.1. Permissibility viz-a-viz non-permissibility

From the definition of the hub number of a graph read together with the fact that adjacent vertices say
u, v if such exist, represent an easy walk along the uv edge it follows that, h(Kn) = 0, n ≥ 1. The aforesaid also
implies that the empty set is a permissible hub set. In fact, h(G) = 0 if and only if G is complete. Inherently, the
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only interest one has with a hub set H(G) of a connected graph G is whether it is possible to traverse between
two non-adjacent vertices u, v in V(G)\H(G) such that all internal vertices are in H(G). There is no interest in
how to traverse between any two vertices in H(G). However, the conditions on traversability changes with the
introduction of the hubtic number of a graph. The hubtic number denoted by ξ(G) is defined as the maximum
order of a partition of the vertex set into hub sets, [13]. The salient feature of the aforesaid definition is that the
partition hub sets are not required to be minimum. A further salient feature is that adjacent vertices must be
able to find a path through the hub set. The aforesaid explains why Observation 2.2(1) in [13] correctly yields
ξ(Kp) = p, p ≥ 1. To clarify the definition note that if ξ(G) = 2 and V(G) = H1(G)∪H2(G) then for each pair
u, v ∈ H1(G) there must be a uv-path with all internal vertices in H2(G) and vice versa. The aforesaid property
is called bi-traversability. For ξ(G) ≥ 3 it means that for each pair of subsets, Hj and V(G)\Hj, 1 ≤ j ≤ ξ(G)

bi-traversability must be possible. We called such partition a hubtic partition. It means that if ξ(G) = 2 then it is
possible to write V(G) = H1 ∪H2 and by the definition of a partition both H1, H2 are non-empty. If ξ(G) = 1
or put differently, the hubtic partition is V(G) ≡ V(G)∪∅ (for sake of argument ∅ is permitted). Furthermore,
either G is possibly complete (for sake of argument) or a non-permissible case is at hand. The latter follows
from the argument that, if G is non-complete then in some cases at least one pair of non-adjacent vertices u, v
exists with no defined (or permissible) path which has all internal vertices in the empty set. Observation 2.2(2)
in [13] presents such a case for Cp, p ≥ 7. Similarly, for paths Pp, p ≥ 5. Coming back to the argument that
G is possibly complete another fallacy comes to the fore. Note that Observation 2.2(1) in [13] correctly yields
ξ(Kp) = p, p ≥ 1. However, for p ≥ 2, ξ(Kp) ̸= 1. Hence, for a non-complete connected graph G, ξ(G) ̸= 1 or
put differently, a hubtic partition is not permitted. By the aforesaid Theorem 2.4 in [13] is false as well. For a
connected graph we put forward the following conjecture.

Conjecture 6. (i) If G is connected let H be a minimum hub set of G then, G permits a hubtic partition if and only if
V(G)\H is a hub set.
(ii) If G of order n is connected then G permits a hubtic partition if and only if 0 ≤ h(G) ≤ ⌊ n

2 ⌋.

Observation 1. Let ξ(G) = l ≥ 2. There exists a hubtic partition V(G) = H1 ∪H2 ∪H3 ∪ · · · ∪ Hl such that,

h(G) = min{|Hi| : 1 ≤ i ≤ l}.

The analysis worsens if a disconnected graph is considered. In Proposition 2.14 of [13] it is stated that, for
any two connected graphs G1 and G2,

ξ(G1 ∪ G2) =

{
1, if G1 or G2 is non-complete;

2, if G1 and G2 are complete.

In the first case i.e. ξ(G1 ∪ G2) = 1 the reasoning in the proof suggests that the hub set is say, V(G1) ∪H(G2).
The aforesaid means that, ξ(G1 ∪ G2) = 2 ̸= 1. However, the set,

(V(G1) ∪ V(G2))\(V(G1) ∪H(G2))

cannot serve as a hub for non-adjacent vertices in V(G1). Hence, the first case (ξ = 1 or 2) is false. Similarly,
the second case is false. A valid statement would be that, for any two connected graphs G1 and G2 of order
n1 ≥ 2, n2 ≥ 2 respectively, and ξ(G1) ≥ 2, ξ(G2) ≥ 2 it follows that,

ξ(G1 ∪ G2) =

{
min{ξ(G1), ξ(G2)}, if G1 or G2 is non-complete;

min{n1, n2}, if G1 and G2 are complete.

In the conclusion of [13] the characterization in 2. has been answered i.e. "A graph G has ξ(G) = 1 if and only
if G = K1."

The notion of hub number has evolved to the notion of the edge hub number of a graph. Essentially the
edge hub number is equivalent to the hub number of the line graph L(G) of G. Furthermore, the ideas have
been extended to fuzzy graphs. See [14,15] and related research. It will be worthy to revisit the results in an
attempt to eliminate absurdities with regards to real world applications.
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3. Conclusion

Through this philosophical note the observation is that all graph parameters which are defined with the
restriction that the graph G must be connected can be revisited and possibly relaxed sensibly for application in
modern day network structures. Few examples have been highlighted to show that existing results can either
be extended or require reconsideration. To provide for classical (or historical) results the alternative notation
i.e. c-p(G) and c-pc(G) where p(G) is some graph parameter is proposed. It permits alternative derivative

parameters such as the upper minimum degree of G (connected or disconnected) denoted by, c-δ(G) =
l

∑
i=1

δ(Gi)

(opposed to the classical definition i.e. δ(G) = min{δ(Gi) : 1 ≤ i ≤ l}). Note that, if l = 1 hence, G is

connected then δ(G) = c-δ(G). Similarly, the upper maximum degree of G is denoted by, c-∆(G) =
l

∑
i=1

∆(Gi).

Theorem 4.7 in [11] remains valid for any graph G of order n in that,

c-h(G) ≤ n − c-∆(G).

Author argues that the principle of transmitting the definition component-wise together with the notion of
permissibility will greatly enhance the revised results. Author believes that this philosophical note has opened
a wide avenue for at least, Bachelor Thesis researchers.
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