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Abstract: In this paper, we introduce a new resolvability parameter named as the local edge partition
dimension (LEPD) of graphs. The local edge partition dimension (LEPD) makes a specialty of partitioning
the vertex set of a graph into awesome instructions based totally on localized resolving properties. Our
findings offer a fresh angle on graph resolvability, offering capability insights for optimizing network overall
performance and structural analysis. Let G = (V, E) be a connected graph with vertex set V and edge set E.
A partition set Rp = {Rp1, Rp2, Rp3 . . . , Rpn} contain subsets of vertices of G. If for every pair of adjacent edges
p and q in G, then d(p, Rp) ≠ d(q, Rp) and if p and q are non-adjacent then not necessary d(p, Rp) ≠ d(q, Rp)

then Rp is called a local edge resolving partition set and minimum cardinality of such set is called local
edge partition dimension. We discussed local metric, local edge metric, metric, edge metric dimension, local
partition, local edge partition, partition dimension, and edge partition dimension of the Petersen graph.
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1. Introduction

G raph theory is a branch of mathematics that studies the properties and systems of graphs, which
include vertices (or nodes) related via edges (or links). It performs a crucial role in modeling

relationships and systems in numerous fields, such as computer science, biology, chemistry, social sciences, and
engineering. A graph can be directed, where edges have a particular route, or undirected, wherein connections
among vertices are bidirectional. Key standards in graph concepts include paths, cycles, connectivity, and
graph coloring. Specialized topics like metric size, side metric size, and partitioning have wide packages, from
community safety and verbal exchange structures to molecular chemistry and computational biology. The
versatility of the graph principle permits it to be an effective device for studying each theoretical and practical
troubles in complicated networks [1].

Resolvability parameters in graph theory refer to certain properties that allow for the distinction between
vertices in a graph based on their distances to a selected subset of vertices, known as a resolving set. The most
basic of these parameters is the metric dimension, which is the minimum number of vertices in a resolving set.
Every vertex in the graph can be uniquely identified by its distance to the vertices in the set. It is introduced
by P. J. Slater in 1975 [2] and later on by [3]. Blumenthal had already described the metric dimension and the
rotating set [4]. After this the extension of this work is done by G. Chartrand in 2000 that is partition dimension
[5] Another related parameter is the edge metric dimension, which focuses on uniquely distinguishing edges
rather than vertices by using similar principles. It is introduced by A Kelenc in 2018 [6]. Extensions of these
concepts include the mixed metric dimension, which simultaneously considers both vertices and edges in
the graph and it is also introduced by A. Kelenc in 2017 [7]. These parameters are critical in understanding
the structural complexity and uniqueness of graphs, as they provide a way to quantify how well the graph
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can be resolved or "mapped" by using a minimal set of references within the graph. Other parameters,
Latter on the edge partition dimension introduced by I.G. Yero et. al in [8] and after this, in 2024 a novel
resolvability parameter is introduced by Sikander Ali et. al [9], take a different approach by grouping vertices
or edges into partitions that can still uniquely identify other elements in the graph based on distances. These
resolvability parameters are key tools in the theoretical study of graphs, offering insight into their structure
and distinguishability.

In this article, we discuss about local metric dimension and introduce a new parameter known as the local
edge partition dimension. The local metric dimension of a graph is a variation of the classic metric dimension
that focuses on resolving the neighborhoods of vertices, rather than the entire graph. Specifically, for a given
vertex, the aim is to distinguish vertices within its local neighborhood based on their distances to a specific
subset of vertices known as a local resolving set. A local resolving set for a vertex v is a set of vertices such that
for any two distinct vertices in the neighborhood of v, their distances to the vertices in the set uniquely identify
them. The local metric dimension of the graph is the minimum number of vertices required in a resolving set to
locally resolve all vertices in the graph. This concept is useful in scenarios where the focus is on distinguishing
vertices within localized regions of the graph rather than the entire structure. It is introduced by F. Okamoto et,
al [10]. A location partition dimension of a graph G is a partition of its vertex set into subsets P1, P2, P3, . . . , Pk
such that for any two distinct vertices uu and v in the graph, the distance from u and v to each subset is distinct.
This means that for any pair of distinct vertices u and v, the ordered tuple of distances from u to each subset
Pi(and similarly for v) should be different [11].

The local edge metric dimension of a graph is a variation of the edge metric dimension that focuses
on distinguishing edges within the local neighborhood of a vertex. In this context, the goal is to uniquely
identify the edges connected to a given vertex by using a subset of vertices, called a local edge resolving
set [12]. The local edge partition dimension is the extension of the local edge partition dimension. Let R =
{Rp1, Rp2, Rp3 . . . , Rpi} be the set of subsets of vertices of G, and Rp1 ∪ Rp2 ∪ Rp3 ⋅ ⋅ ⋅ ∪ Rpi = V(G), Rp1 ∩ Rp2 ∩

Rp3 ⋅ ⋅ ⋅ ∩ Rpi = ∅ then R is said to be partition set of G. Let R show the unique representation with every
pair(adjacent) of edges of G then R is called the local edge resolving partition set and its minimum cardinality
is known as the local edge partition dimension. It is introduced in this article and we apply the definition of
path, cycle, and Petersen graph.

The concept of metric dimension finds applications in various fields and has been the subject of extensive
research. The researchers have employed it in a wide range of applications, showcasing its versatility
and importance. For instance, metric dimension has been used to determine similarities between different
medications [13]. Metamaterials refer to artificially designed materials and structures [14], which is crucial
in the pharmaceutical industry. Other applications include solving combinatorial optimization problems
[15], facilitating robot navigation [16], addressing pharmaceutical chemistry issues [17], optimizing computer
networks [18], and canonically labeling graphs [19]. The utility of metric dimension extends to solving location
problems, aiding in the operation of sonar and coast guard Loran systems [20], facilitating image processing,
and solving complex weighing problems [21]. Additionally, it has found applications in coding and decoding
strategies for games like Mastermind [22]. The use of metric dimension in the development of city [23].

During the past 40 years, there has been a lot of research done on the metric dimension of various types
of graphs. For instance constant time calculation of the metric dimension of the join of path graphs discussed
in [24], the double resolvability parameters of Fosmidomycin anti-malaria drug and exchange property is
studied in [25], metric dimensions of bicyclic graphs with potential applications in supply chain logistics
studied in [26], double resolving set and exchange property in nanotube discussed in [27], metric dimensions
of bicyclic graphs discussed by [28], the double edge resolving set and exchange property for nanosheet
discussed in [29]. The concept of the metric dimension is applied to resolve a wide range of challenging
issues due to its diversity. We mention [30–32] for the resolvability criteria of various chemical structures.
Structural analysis of octagonal nanotubes via double edge-resolving partitions [33]. Mixed metric dimension
and exchange property of hexagonal nano-network discussed in [34] and fault-tolerant basis of generalized
fat trees and perfect binary tree derived architectures [35], fault-tolerance and unique identification of vertices
and edges in a graph, the fault-tolerant mixed metric dimension studied by [36], and Redefining fractal cubic
networks and determining their metric dimension and fault-tolerant metric dimension discussed in [37] and
in other field see[38]. Fault-tolerant metric dimensions of leafless cacti graphs with application in supply chain
management[39]. The concept of metric dimension has been applied to solve challenging problems in various
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contexts. The resolving set of silicate stars was explored in a publication by George [40]. Cellulose networks’
upper bounds for metric dimension were determined in research conducted by [41]. The discussion on the
graph of convex polytopes was presented in a work by [42].

Definition 1. Let N(v) be the neighborhood of a vertex v ∈ V, i.e., the set of all vertices adjacent to v, formally:

N(v) = {u ∈ V ∶ uv ∈ E}.

A set of vertices S ⊆ V is called a local resolving set for v if for any two distinct vertices u, w ∈ N(v), there
exists a vertex s ∈ S such that the distance from u to s, denoted d(u, s), is different from the distance from w to
s [10], i.e.,

d(u, s) ≠ d(w, s).

Definition 2. The local partition dimension [11] of a graph G = (V, E) is defined as follows:
Let N(v) be the open neighborhood of a vertex v ∈ V, defined as the set of vertices adjacent to v:

N(v) = {u ∈ V ∶ uv ∈ E}.

A partition Π = {P1, P2, . . . , Pk} of the vertex set V is called a local resolving partition for a vertex v ∈ V
if for any two distinct vertices u, w ∈ N(v), the distance between u and each partition set Pi differs from the
distance between w and each partition set Pi. That is, for each pair of distinct vertices u, w ∈ N(v), there exists
a partition Pi ∈ Π such that:

d(u, Pi) ≠ d(w, Pi),

where d(x, Pi) =min{d(x, z) ∶ z ∈ Pi} is the minimum distance from vertex x to any vertex in Pi.
The local partition dimension of the graph G, denoted as LPD(G), is the minimum number of partitions

required to form a local resolving partition for each vertex v ∈ V. Formally:

LPD(G) =min{k ∶ Π = {P1, P2, . . . , Pk} is a local resolving partition for each v ∈ V} .

Definition 3. The local edge metric dimension [43] of a graph G = (V, E) is defined as follows:
Let N(v) be the open neighborhood of a vertex v ∈ V, defined as the set of vertices adjacent to v:

N(v) = {u ∈ V ∶ uv ∈ E}.

A set of vertices S ⊆ V is called a local edge resolving set for v if for any two distinct edges uv, vw incident
to v, there exists a vertex s ∈ S such that the distance from the endpoints of the edges to s differs. That is, for
the edges uv and vw, we have:

d(u, s) ≠ d(v, s) and d(v, s) ≠ d(w, s).

The local edge metric dimension of the graph G, denoted as LEMD(G), is the minimum size of a local
edge resolving set that can distinguish all incident edges at each vertex v ∈ V. Formally:

LEMD(G) =min{∣S∣ ∶ S ⊆ V is a local edge resolving set for each vertex v ∈ V} .

Definition 4. The local edge partition dimension of a graph G = (V, E) is defined as follows:
Let N(v) be the neighborhood of a vertex v ∈ V, defined as the set of vertices adjacent to v:

N(v) = {u ∈ V ∶ uv ∈ E}.

A partition Π = {P1, P2, . . . , Pk} of the vertex set V is called a local resolving partition for a vertex v ∈ V
if for any two distinct edges u, w ∈ N(E), the distance between u and each partition set Pi differs from the
distance between w and each partition set Pi. That is, for each pair of distinct vertices u, w ∈ N(v), there exists
a partition Pi ∈ Π such that:

d(u, Pi) ≠ d(w, Pi),
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where d(x, Pi) =min{d(x, z) ∶ z ∈ Pi} is the minimum distance from edge x to any vertex in Pi.
The local edge partition dimension of the graph G, denoted as LEPD(G), is the minimum number of

partitions required to form a local edge resolving partition for each vertex v ∈ V. Formally:

LEPD(G) =min{k ∶ Π = {P1, P2, . . . , Pk} is a local edge resolving partition for each v ∈ V} .

2. Main Results

In this section, we discussed novel resolvability parameters, the local edge partition dimension of the
path, cycle, and Petersen graph, the local metric dimension of the cycle for even and odd lengths, and other
resolvability parameters of the Petersen graph.

a1 a2 an

Figure 1. Path graph

Theorem 5. The local edge partition dimension of a graph G is 2 if and only if G = Pn.

Proof. We begin by noting that lepd(Pn) = 2, which can be demonstrated by dividing the vertices of Pn into
two groups: one set containing a single leaf, and the other set containing the remaining vertices. Now, let’s
consider a graph G where lepd(G) = 2, and assume V1, V2 forms an local edge-resolving partition set. If there
exist two edges, m = pq and n = st, such that without loss of generality, p, s ∈ V1 and q, t ∈ V2, then the distances
d(m, V1) = d(m, V2) = d(n, V1) = d(n, V2) would all be zero, which is a contradiction. Therefore, since G is a
connected graph, there must be exactly one edge, say h = q1q2, where q1 ∈ V1 and q2 ∈ V2.

Next, assume the maximum degree of G is at least 3. Let w be the closest vertex to q1 with the highest
degree, and suppose u ∈ V1. Consider two vertices adjacent to u, labeled u1 and u′1, that also belong to V1 and
are not part of the shortest path between V1 and u. Under these conditions, the edges uu1 and uu′1 would result
in d(uu1, V2) = d(uu1, V1) + 1 and d(uu′1, V2) = d(uu′1, V1) + 1. This creates a contradiction, implying that the
maximum degree of G must be no greater than 2. If G were a cycle, any partition of its vertices into two sets
would generate at least two edges with one endpoint in each set, which is not feasible. Consequently, G must
be a path, thus completing the proof.

Cycle Graph

A cycle graph is also a simple graph in graph theory it is denoted by Cn where n ≥ 3. It is defined as, a
closed walk in which all the vertices are different except (an = a1) is called a cycle graph. The total number of
vertices is n and the total number of edges is also n and the vertex and edge set is defined as

V(Cn) = {ai+1; 1 ≤ i ≤ n}

E(Cn) = {aiai+1, ana1; 1 ≤ i ≤ n,}

a1

a2

a3a7

a4

a5

a6

an e1

e2

e3

e4e5

e6

en

Figure 2. Cycle graph
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Theorem 6. The local edge partition dimension of cycle graph Cn is 3, where n ≥ 3.

Proof. Assume that a subset of the vertices of Cn is R = {Rp1, Rp2, Rp3} where Rp1 = {a1}, Rp2 = {a2}, and
Rp3 = V(Cn)/{a1, a2}. We shall demonstrate that R is a local edge partition resolving set to demonstrate that
lepd(Cn) ≤ 3. The distinct representations of all the edges of Cn in Table 1
are shown below.

Table 1. Edges representation for local edge partition dimension

The representation of R = {a1, a2, an} for n ≥ 3 present in Table 1
r(. ∣ R) (Rp1, Rp2, Rp3)

e1 (0, 0, 1)
e2 (1, 0, 0)
e3 (2, 1, 0)
e4 (3, 2, 0)
e5 (4, 3, 0)
. .
. .
. .
en−1 (1, 2, 0)
en (0, 1, 0)

From Table 1 it is clear that the R has unique representation with all edges of Cn so R is local edge partition
resolving set of cardinality 3.

2.1. Generalize Formulas of distance of Edge of Cycle Graph

The generalized formulas for all edges of the cycle graph show that the local edge partition dimensions
are 3 because all adjacent edges are distinct. Let η be the distance’s symbol. Let η(ei, Rp1) = w′1, η(ei, Rp2) =

w′2, η(ei, Rp3) = w′3, and r(ai ∣ R) = (w′1, w′2, w′3)

w′1 = {
i − 1 for 1 ≤ i ≤ ⌈ n

2 ⌉ ,
n − i for ⌈ n

2 ⌉ < i ≤ n,

w′2 =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

0 for i = 1,
i − 2 for 1 ≤ i ≤ ⌈ n

2 ⌉+ 1,
n − i + 1 for ⌈ n

2 ⌉+ 1 < i ≤ n,

w′3 = {
1 for e1

0 otherwise

The minimum cardinality of R is the local edge partition dimension so the local edge partition dimension of
Cn is 3. From all the above discussion it is clear that the metric dimension of Cn is less or equal to 3. Now we
are going to prove that the local edge partition dimension of Cn is not less than 3. The local edge partition
dimension 2 is possible only in the case of a path graph see Theorem 5. Hence the the local edge partition
dimension of Cn is 3.

Theorem 7. The local metric dimension of cycle graph Cn is 2 where n is odd.
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Figure 3. Cycles of Odd length

Proof. Let R = {a1} be the subset of the vertices of Cn in Figure 3(a). We note that the distance of a4 and a5 are
the same and both are adjacent so R is not a local resolving set. We want to prove that the R is a local resolving
so R must have a unique representation with all adjacent vertices of Cn. In general we can say that if we take
the cardinality of R is one then the representation of two adjacent vertices a n+1

2
and a n+3

2
remain same. In Figure

3(b) we note that a n+1
2

and a n+3
2

have unique representation with R = {a1, a2} and all other adjacent vertices of
odd cycle when R has cardinality 2. So R is the local resolving set and the minimum cardinality of the local
resolving set is the local metric dimension. Hence the local metric dimension of cycle graph Cn is two when n is
odd. Let η be the distance’s symbol. Let η(ai, a1) = w1, η(ai, a2) = w2, η(ai, an) = w3, and r(ai ∣ R) = (w1, w2, w3).

w1 = {
i − 1 for 1 ≤ i ≤ ⌈ n

2 ⌉ ,
n − i + 1 for ⌈ n

2 ⌉ < i ≤ n,

w2 =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 for i = 1,
i − 2 for 1 ≤ i ≤ ⌈ n

2 ⌉+ 1,
n − i + 2 for ⌈ n

2 ⌉+ 1 < i ≤ n,

Theorem 8. The local metric dimension of a complete bipartite graph also is 1.
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Figure 4. Bipartite graph

Proof. Suppose R = {a1} be the subset of the vertices of Km,n. We want to prove that the R is a local resolving set
so R must have a unique representation with all adjacent vertices of Km,n. In Figure 4 we note that all adjacent
vertices have unique distance from a1 because all ai vertices have distance 2 with a1 but all are non-adjacent.
All bi have 1 distance from a1 because all are attached with a1 but these are also non-adjacent and R = {a1}

so R has unique representation. Hence R is the local resolving set and the minimum cardinality of the local
resolving set is the local metric dimension. Hence the local metric dimension of the bipartite graph is one.

Theorem 9. The local metric dimension of the Petersen graph is 3.

a1

a2

a3

a7

a4

a5 a6

a8a9

a10

Figure 5. Petersen graph for LMD

Proof. We want to prove that Rl = {a1, a4, a10} is the local resolving set of minimum cardinality. Let Rl be the
subset of the vertices of the Petersen graph and the representation of all vertices of the graph is present in Table
2.

Table 2. Representation of adjacent vertices w.r.t Rl of Figure 5

Rl = {a1, a4, a10}

vertex a1 a2 a3 a4 a5
r(. ∣ Rl) (0,2,2) (1,2,2) (2,2,1) (2,2,0) (1,1,1)
vertex a6 a7 a8 a9 a10

r(. ∣ Rl) (1,2,2) (2,1,2) (2,1,2) (2,2,1) (2,0,2)
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Table 2 is the avoidance that the representation of adjacent vertices is unique so Rl is a local resolving set
of cardinality 3 and Rl is the set of minimum cardinality that show unique coding for each vertex. Hence the
local metric dimension of the Petersen graph is 3.

Theorem 10. The local edge metric dimension of the Petersen graph is 4.

Proof. Let Rle = {a1, a4, a9, a10} be the subset of the vertices of Petersen graph and we want to show that it is
an edge resolving set. The representation of all edges of the graph is present in Table 5.

a1

a2

a3

a7

a4

a5 a6

a8

e1

e2

e3

e4

e5

e6

a9

a10
e7

e8e9

e10 e15

e12

e13

e14

e11

Figure 6. Petersen graph for LEMD

Table 3. Representation of adjacent edges w.r.t Rle of Figure 6

Rle = {a1, a4, a9, a10}

Edges e1 e2 e3 e4 e5
r(. ∣ Rle) (0,2,1,2) (1,1,2,2) (2,0,2,2) (1,0,2,1) (0,1,1,1)

Edges e6 e7 e8 e9 e10
r(. ∣ Rle) (0,2,0,2) (1,2,2,1) (2,1,1,1) (2,0,1,2) (1,1,2,0)

Edes e11 e12 e13 e14 e15
r(. ∣ Rle) (1,2,0,1) (1,2,0,1) (2,2,1,0) (1,1,0,2) (2,2,2,0)

From 3 it is clear that the representation of adjacent edges is unique so Rle is the local edge resolving set
of cardinality 4 and Rle is the set of minimum cardinality that show unique coding for adjacent edges. Hence
the local edge metric dimension of the Petersen graph is 4.

Theorem 11. The metric dimension of the Petersen graph is 4.

a1

a2

a3

a7

a4

a5 a6

a8a9

a10

Figure 7. Petersen graph for MD

Proof. Suppose R = {a1, a4, a8, a10} be the subset of the vertices of Petersen graph and we want to show that it
is a resolving set. The representation of all vertices of the graph is present in Table 4.
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Table 4. Representation of vertices w.r.t R of Figure 7

R = {a1, a4, a10, a8}

vertex a1 a2 a3 a4 a5
r(. ∣ R) (0,2,2,2) (1,2,2,2) (2,1,1,2) (2,0,2,2) (1,1,2,2)
vertex a6 a7 a8 a9 a10
r(. ∣ R) (1,2,1,2) (2,2,2,1) (2,2,1,0) (2,1,2,2) (2,2,0,1)

From Table 4 it is clear that the representation is unique so R is resolving set of cardinality 4 and R is
the set of minimum cardinality that shows unique coding for each vertex. Hence the metric dimension of the
Petersen graph is 4.

Theorem 12. The edge metric dimension of the Petersen graph is 5.

a1
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a3

a7

a4

a5 a6
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e4

e5

e6
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e7

e8e9

e10 e15

e12

e13

e14

e11

Figure 8. Petersen graph for EMD

Proof. Let Re = {a1, a4, a8, a9, a10} be the subset of the vertices of Petersen graph and we want to show that it is
an edge resolving set. The representation of all edges of the graph is present in Table 5.

Table 5. Representation of edges w.r.t Re of Figure 8

Re = {a1, a4, a8, a9, a10}

Edges e1 e2 e3 e4 e5
r(. ∣ Re) (0,2,2,1,2) (1,1,1,2,2) (2,0,1,1,2) (1,0,2,1,1) (0,1,2,2,1)
Edges e6 e7 e8 e9 e10

r(. ∣ Re) (0,2,1,1,2) (1,2,2,2,1) (2,1,0,2,1) (2,0,2,1,2) (1,1,1,2,0)
Edes e11 e12 e13 e14 e15

r(. ∣ Re) (1,2,0,1,1) (2,1,2,0,1) (2,2,0,2,0) (1,1,1,0,2) (2,2,1,2,0)

Table 5 shows that the representation of edges is unique so Re is edge resolving set of cardinality 5 and Re

is the set of minimum cardinality that show unique coding for each edge. Hence the edge metric dimension of
the Petersen graph is 5.

Theorem 13. The local partition dimension of the Petersen graph is 4.

Proof. Rp1 = a1, Rp2 = a4, Rp3 = a10, Rp4 = {a2, a3, a5, a6, a7, a8, a9} and Rp = {Rp1, Rp2, Rp3, Rp4}. Rp is the set of
the subset of the vertices of the Petersen graph and we want to show that it is a local partition resolving set.
The representations of all adjacent vertices of the graph are present in Table 6.
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Table 6. Representation of adjacent vertices w.r.t Rl of Figure 5

Rlp = {Rp1, Rp2, Rp3, Rp4}

vertex a1 a2 a3 a4 a5
r(. ∣ Rlp) (0,2,2,1) (1,2,2,0) (2,2,0) (2,2,0,1) (1,1,1,0)

vertex a6 a7 a8 a9 a10
r(. ∣ Rlp) (1,2,2,0) (2,1,2,0) (2,1,2,0) (2,2,1,0) (2,0,2,1)

Table 6 shows that the representation of adjacent vertices is unique so Rp is the local partition resolving set
of cardinality 4 and Rp is the set of minimum cardinality that show unique coding for each adjacent vertices.
Hence the partition metric dimension of the Petersen graph is 4.

Theorem 14. The local edge partition dimension of the Petersen graph is 5.

Proof. Rp1 = a1, Rp2 = a4, Rp3 = a9, Rp4 = a10, Rp5 = {a2, a3, a5, a6, a7, a8} and Rlep = {Rp1, Rp2, Rp3, Rp4, Rp5}. Rp

is the set of the subset of the vertices of the Petersen graph and we want to show that it is a local partition edge
resolving set. The representations of all edges of the graph are present in Table 7.

Table 7. Representation of adjacent edges w.r.t Rle of Figure 6

Rlep = {Rp1, Rp2, Rp3, Rp4, Rp5}

Edges e1 e2 e3 e4 e5
r(. ∣ Rlep) (0,2,1,2,0) (1,1,2,2,0) (2,0,2,2,0) (1,0,2,1,0) (0,1,1,1,0)

Edges e6 e7 e8 e9 e10
r(. ∣ Rlep) (0,2,0,2,1) (1,2,2,1,0) (2,1,1,1,0) (2,0,1,2,0) (1,1,2,0)

Edes e11 e12 e13 e14 e15
r(. ∣ Rlep) (1,2,0,1,0) (1,2,0,1,0) (2,2,1,0,0) (1,1,0,2,0) (2,2,2,0,0)

From 7 it is clear that the representation of adjacent edges is unique so Rlep is the local edge resolving set
of cardinality 5 and Rlep is the set of minimum cardinality that show unique coding for adjacent edges. Hence
the local edge metric dimension of the Petersen graph is 5.

Theorem 15. The partition dimension of the Petersen graph is 5.

Proof. Rp1 = a1, Rp2 = a4, Rp3 = a8, Rp4 = a10, Rp5 = {a2, a3, a5, a7, a8, a9} and Rp = {Rp1, Rp2, Rp3, Rp4, Rp5}. Rp is
the set of a subset of the vertices of the Petersen graph and we want to show that it is a partition-resolving set.
The representations of all vertices of the graph are present in Table 8.

Table 8. Representation of vertices w.r.t R of Figure 7

Rp = {Rp1, Rp2, Rp3, Rp4, Rp5}.
vertex a1 a2 a3 a4 a5
r(. ∣ R) (0,2,2,2,1) (1,2,2,2,0) (2,1,1,2,0) (2,0,2,2,1) (1,1,2,2,0)
vertex a6 a7 a8 a9 a10
r(. ∣ R) (1,2,1,2,1) (2,2,2,1,0) (2,2,1,0,0) (2,1,2,2,9) (2,2,0,1,1)

From Table 8 it is clear that the representation is unique so Rp is the partition resolving set of cardinality
5 and Rp is the set of minimum cardinality that show unique coding for each vertex. Hence the partition
dimension of the Petersen graph is 5.

Theorem 16. The edge partition dimension of the Petersen graph is 6.

Proof. suppose Rp1 = a1, Rp2 = a4, Rp3 = a8, Rp4 = a9, Rp5 = a10, Rp6 = {a2, a3, a5, a7, a8} and Rpe =

{Rp1, Rp2, Rp3, Rp4, Rp5, Rp6}. Rpe be the set of subset of the vertices of Petersen graph and we want to show
that it is a partition edge resolving set. The representations of all edges of the graph are present in Table 9.
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Table 9. Representation of edges w.r.t Rpe of Figure 8

Rpe = {Rp1, Rp2, Rp3, Rp4, Rp5, Rp6}

Edges e1 e2 e3 e4 e5
r(. ∣ Rpe) (0,2,2,1,2,0) (1,1,1,2,2,0) (2,0,1,1,2) (1,0,2,1,1,0) (0,1,2,2,1)

Edges e6 e7 e8 e9 e10
r(. ∣ Rpe) (0,2,1,1,2,0) (1,2,2,2,1) (2,1,0,2,1,0) (2,0,2,1,2,0) (1,1,1,2,0)

Edes e11 e12 e13 e14 e15
r(. ∣ Rpe) (1,2,0,1,1,0) (2,1,2,0,1) (2,2,0,2,0,0) (1,1,1,0,2,0) (2,2,1,2,0)

Table 9 shows that the representation of edges is unique so Rpe is edge resolving set of cardinality 5 and
Rpe is the set of minimum cardinality that show unique coding for each edge. Hence the edge metric dimension
of the Petersen graph is 5.
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3. Conclusion

This article presents a comprehensive analysis of the Petersen graph through the lens of various
resolvability parameters, including the novel local edge partition dimension. By calculating and comparing
dimensions such as local metric, local edge metric, metric, edge metric, local partition, local edge partition,
partition, and edge partition dimensions, we identified distinct structural characteristics that highlight the
versatility of the Petersen graph as a model for complex networks. The inclusion of the local edge partition
dimension offers a refined perspective on graph resolvability, contributing to a more nuanced understanding of
connectivity and distance-based measures within graph theory. These insights not only enhance the theoretical
foundation of resolvability parameters.

Table 10. Representation of adjacent edges w.r.t Rle of Figure 6

Resolvability parameters Graphs Values
Local metric dimension Petersen 3

Local edge metric dimension Petersen 4
Metric dimension Petersen 4

Edge metric dimension Petersen 5
Local partition dimension Petersen 4

Local edge partition dimension Petersen 5
Partition dimension Petersen 5

Edge partition dimension Petersen 6
Local partition dimension Petersen 4

Local metric dimension cycle (even order) 1
Local metric dimension cycle (odd order) 2
Local metric dimension complete bipartite 1

Local edge partition dimension cycle 3

3.1. Open problem

Is it feasible to define the mixed local partition dimension for a simple, undirected, connected graph?
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