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Abstract: Let V(G) = {v1, v2, . . . , vn} be the vertex set and E(G) = {e1, e2, . . . , em} be the edge set of a graph
G. The Seidel adjacency matrix of a graph G is defined as S(G) = [sij] of order n × n, in which sij = −1 if vi is
adjacent to vj, sij = 1 if vi is not adjacent to vj and sii = 0. We introduce here the (−1, 1)-incidence matrix of
G as BS(G) = [cij] of order n ×m, in which cij = −1 if vi is incident to ej and cij = 1 if vi is not incident to ej.
Further we explore properties of BS(G) and of its transpose.
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1. Introduction

G raph theory is utilized to describe a variety of real world phenomena such as to study the properties
of molecules [1–3], social networks [4], nano-networks [5,6], ladder networks [7] etc. The matrices of

graphs are used to study the spectral and structural properties of graphs [8,9]. There are several matrices of
graphs exists, such as adjacency matrix, incidence matrix, Seidel matrix, Laplacian matrix, distance matrix
etc. The Seidel adjacency matrix of a graph has been studied in the literature [10]. The elements of the
Seidel adjacency matrix are either −1 or 1 or zero. In this paper we introduce a new matrix, which we call
(−1, 1)-incidence matrix of a graph, whose elements are either −1 or 1 and explore some of its properties.

Let G be a finite, simple graph with n ≥ 2 vertices and m ≥ 1 edges. Let V(G) = {v1, v2, . . . , vn} be the
vertex set of G and E(G) = {e1, e2, . . . , em} be the edge set of G. The degree of a vertex vi is the number
of edges incident to it and is denoted by d(vi). The degree of an edge ei whose end points are u and v is
d(ei) = d(u) + d(v) − 2. The line graph of G is a graph L(G), whose vertex set has one-to-one correspondence
with the edge set of G and two vertices in L(G) are adjacent if and only if the corresponding edges are adjacent
in G [11]. Let In denotes the identity matrix of order n, Jp×q be the matrix of order p× q, whose all elements are
equal to 1 and MT be the transpose of the matrix M.

The adjacency matrix [12] of a graph G is a matrix A(G) = [aij] of order n × n, where

aij = {
1 if vi is adjacent to vj,
0 otherwise.

The incidence matrix [12] of a graph G is a matrix B(G) = [bij] of order n ×m, where

bij = {
1 if vertex vi is incident to an edge ej,
0 otherwise.

The degree matrix of a graph G is a diagonal matrix D(G) = diag[d(v1), d(v2), . . . , d(vn)].

Lemma 1. [12] For any graph G with n vertices and m edges,
(i) B(G)B(G)T = A(G) +D(G) and
(ii) B(G)T B(G) = A(L(G)) + 2Im.
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The Seidel adjacency matrix of a graph G, introduced by van Lint and Seidel [13], is a matrix S(G) = [sij]
of order n × n, where

sij =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1 if vi is adjacent to vj,
1 if vi is not adjacent to vj,
0 if i = j.

Properties of Seidel adjacency matrix and its eigenvalues can be found in [14–17].
Recent studies on graph, including the fault-tolerant mixed metric dimension [18], Cycle-super magic

labeling of polyomino linear and zig-zag chains [19], and mixed partition dimension [20], provide valuable
insights into the structural properties of the structures.

2. (−1, 1)-incidence matrix

Analogous to the Seidel adjacency matrix of a graph, we define here the (−1, 1)-incidence matrix of G as
n ×m matrix BS(G) = [cij], where

cij = {
−1 if the vertex vi is incident to the edge ej,

1 if the vertex vi is not incident to the edge ej.
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Figure 1. Graph G

The (−1, 1)-incidence matrix of a graph given in Figure 1 is

BS(G) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 1 1 1
1 −1 −1 1 −1
1 1 −1 −1 1
−1 1 1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let graph G has two components G1 and G2. If Gi has ni vertices and mi ≥ 1 edges, i = 1, 2. Then the
vertices and edges of G can be labeled in such a way that its (−1, 1)-incidence matrix is of the form

[ BS(G1) Jn1×m2

Jn2×m1 BS(G2)
] .

Proposition 2. If G is a graph with n vertices v1, v2, . . . , vn and m edges, then
(i) −1 appeares d(vi) times and 1 appeares m − d(vi) times in the i-th row of BS(G).
(ii) −1 appeares 2 times and 1 appeares n − 2 times in each column of BS(G).

Proof. (i) Vertex vi is incident to d(vi) edges. Hence −1 appeares d(vi) times and 1 appeares m− d(vi) times in
the i-th row of BS(G).

(ii) Each edge is incident to its two end points. Hence −1 appeares 2 times and 1 appeares n − 2 times in
each column of BS(G).

Proposition 3. If G is a graph with n vertices v1, v2, . . . , vn and m edges, then
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(i) BS(G) = Jn×m − 2B(G).
(ii) BS(G)T = Jm×n − 2B(G)T .
(iii) sum of the elements of i-th row in BS(G) is m − 2d(vi).
(iv) sum of the elements of each column in BS(G) is n − 4.

Proof. (i) By the definition of (−1, 1)-incidence matrix, we have BS(G) = −B(G) + Jn×m − B(G) = Jn×m − 2B(G).
(ii) By above (i), BS(G)T = (Jn×m − 2B(G))T = Jm×n − 2B(G)T .
(iii) By the first result of Proposition 2, the sum of the elements of the i-th row in BS(G) is −d(vi) +m −

d(vi) = m − 2d(vi).
(iv) By the second result of Proposition 2, the sum of the elements of each column in BS(G) is −2+ n − 2 =

n − 4.

Corollary 4. If G is a graph with n vertices v1, v2, . . . , vn and m edges, then
(i) sum of the elements of i-th row in BS(G) is zero if d(vi) = m/2.
(ii) sum of the elements of i-th row in BS(G) is positive if d(vi) < m/2.
(iii) sum of the elements of i-th row in BS(G) is negative if d(vi) > m/2.

Corollary 5. For a graph G with n vertices and m edges,
(i) the sum of the elements of any column in BS(G) is zero if n = 4.
(ii) the sum of the elements of any column in BS(G) is positive if n > 4.
(iii) the sum of the elements of any column in BS(G) is negative if n < 4.

Since d(vi) is a non-negative integer, by Corollary 4(i), we note that there is no graph with odd number of
edges so that the sum of the elements of at least one row in BS(G) is zero. Also by Corollary 5(i), there is no
graph with n vertices (n ≠ 4) so that the sum of the elements of any column in BS(G) is zero.

Analogous to Lemma 1, we give Proposition 6.
For this we define the matrix DS(G) = [dij] of order n × n, where

dij = {
d(vi) + d(vj) if i ≠ j,

0 if i = j.

Proposition 6. For a graph G with n vertices and m edges,
(i) BS(G)BS(G)T = mJn×n + 4A(G) − 2DS(G).
(ii) BS(G)T BS(G) = (n − 8)Jm×m + 4A(L(G)) + 8Im.

Proof. Let v1, v2, . . . , vn be the vertices of G. By Proposition 3 we have,

BS(G) = Jn×m − 2B(G) and BS(G)T = Jm×n − 2B(G)T .

(i) BS(G)BS(G)T = (Jn×m − 2B(G))(Jm×n − 2B(G)T)
= Jn×m Jm×n − 2B(G)Jm×n − 2Jn×mB(G)T + 4B(G)B(G)T

= mJn×n − 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

d(v1) d(v1) ⋯ d(v1)
d(v2) d(v2) ⋯ d(v2)
⋮ ⋮

d(vn) d(vn) ⋯ d(vn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

−2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

d(v1) d(v2) ⋯ d(vn)
d(v1) d(v2) ⋯ d(vn)
⋮ ⋮

d(v1) d(v2) ⋯ d(vn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 4(A(G) +D(G))
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= mJn×n + 4A(G) − 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 d(v1) + d(v2) ⋯ d(v1) + d(vn)
d(v2) + d(v1) 0 ⋯ d(v2) + d(vn)

⋮ ⋮
d(vn) + d(v1) d(vn) + d(v2) ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= mJn×n + 4A(G) − 2DS(G).

(ii) BS(G)T BS(G) = (Jm×n − 2B(G)T)(Jn×m − 2B(G))
= Jm×n Jn×m − 2B(G)T Jn×m − 2Jm×nB(G) + 4B(G)T B(G)
= nJm×m − 4Jm×m − 4Jm×m + 4(A(L(G)) + 2Im)
= (n − 8)Jm×m + 4A(L(G)) + 8Im.

Proposition 7. If G is a graph with n vertices v1, v2, . . . , vn and m edges, then
(i) (ij)-th element of BS(G)BS(G)T is m + 4− 2(d(vi) + d(vj)) if vi is adjacent to vj.
(ii) (ij)-th element of BS(G)BS(G)T is m − 2(d(vi) + d(vj)) if vi is not adjacent to vj.
(iii) (ii)-th element of BS(G)BS(G)T is m.

Proof. (i) Let vi be adjacent to vj. Then the (ij)-th element of A(G) is 1 and (ij)-th element of DS(G) is
d(vi) + d(vj). Therefore by the first result of Proposition 6, the (ij)-th element of BS(G)BS(G)T is m + 4 −
2(d(vi) + d(vj)).

(ii) Let vi be not adjacent to vj. Then the (ij)-th element of A(G) is 0 and (ij)-th element of DS(G) is
d(vi) + d(vj). Therefore by the first result of Proposition 6, the (ij)-th element of BS(G)BS(G)T is m + 0 −
2(d(vi) + d(vj)) = m − 2(d(vi) + d(vj)).

(iii) Diagonal elements of A(G) and DS(G) are zeros. Therefore by the first result of Proposition 6, the
(ii)-th element of BS(G)BS(G)T is m.

Proposition 8. If G is a graph with n vertices and m edges e1, e2, . . . , em, then
(i) (ij)-th element of BS(G)T BS(G) is n − 4 if ei is adjacent to ej.
(ii) (ij)-th element of BS(G)T BS(G) is n − 8 if ei is not adjacent to ej.
(iii) (ii)-th element of BS(G)T BS(G) is n.

Proof. (i) Let ei be adjacent to ej. Then the (ij)-th element of A(L(G)) is 1 and (ij)-th element of Im is zero
(i ≠ j). Therefore by the second result of Proposition 6, the (ij)-th element of BS(G)T BS(G) is n−8+4+0 = n−4.

(ii) Let ei be not adjacent to ej. Then the (ij)-th element of A(L(G)) and of Im is zero (i ≠ j). Therefore by
the second result of Proposition 6, the (ij)-th element of BS(G)T BS(G) is n − 8+ 0+ 0 = n − 8.

(iii) Diagonal elements of A(L(G)) are zeros. Therefore by the second result of Proposition 6, the (ii)-th
element of BS(G)T BS(G) is n − 8+ 0+ 8 = n.

Proposition 9. For any graph G, the matrices BS(G)BS(G)T and BS(G)T BS(G) are symmetric.

Proof. Let v1, v2, . . . , vn be the vertices of G and e1, e2, . . . , em be the edges of G.
By Proposition 7, if vi is adjacent to vj, then the (ij)-th element and (ji)-th element of BS(G)BS(G)T is m+

4− 2(d(vi) + d(vj)). Also if vi is not adjacent to vj, then the (ij)-th element and (ji)-th element of BS(G)BS(G)T
is m − 2(d(vi) + d(vj)). Further (ii)-th element of BS(G)BS(G)T is m. Hence BS(G)BS(G)T is a symmetric
matrix.

Similarly by Proposition 8 we can show that BS(G)T BS(G) is also symmetric matrix.

Proposition 10. If G is a graph with n vertices v1, v2, . . . , vn and m edges e1, e2, . . . , em, then
(i) the sum of the elements of i-th row (or i-th column) in BS(G)BS(G)T is (n − 4)(m − 2d(vi)).
(ii) the sum of the elements of i-th row (or i-th column) in BS(G)T BS(G) is (n − 8)m + 4d(ei) + 8.
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Proof. (i) By Proposition 6, BS(G)BS(G)T = mJn×n + 4A(G) − 2DS(G) and it is symmetric by the Proposition 9.
Therefore sum of the elements of i-th row (or i-th column) in BS(G)BS(G)T is

mn + 4d(vi) − 2
n
∑

j=1; i≠j
[d(vi) + d(vj)] = mn + 4d(vi) − 2[(n − 1)d(vi) + 2m − d(vi)] since

n
∑
j=1

d(vj) = 2m

= (n − 4)(m − 2d(vi)).

(ii) By Proposition 6, BS(G)T BS(G) = (n− 8)Jm×m + 4A(L(G)) + 8Im and it is symmetric by the Proposition
9. Therefore sum of the elements of i-th row (or i-th column) in BS(G)T BS(G) is (n − 8)m + 4d(ei) + 8.

Corollary 11. If G is a graph with n vertices v1, v2, . . . , vn and m edges, then
(i) the sum of the elements of i-th row (or i-th column) in BS(G)BS(G)T is zero if n = 4 or d(vi) = m/2.
(ii) the sum of the elements of i-th row (or i-th column) in BS(G)BS(G)T is positive if n > 4 and d(vi) < m/2.
(iii) the sum of the elements of i-th row (or i-th column) in BS(G)BS(G)T is negative if n < 4 and d(vi) > m/2.

Corollary 12. If G is a graph with n vertices and m edges e1, e2, . . . , em, then
(i) the sum of the elements of i-th row (or i-th column) in BS(G)T BS(G) is zero if d(ei) = (8m −mn − 8)/4.
(ii) the sum of the elements of i-th row (or i-th column) in BS(G)T BS(G) is positive if d(ei) > (8m −mn − 8)/4.
(iii) the sum of the elements of i-th row (or i-th column) in BS(G)T BS(G) is negative if d(ei) < (8m −mn − 8)/4.

Example 1. For a graph given in Figure 1,

BS(G)BS(G)T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 1 1 1
1 −1 −1 1 −1
1 1 −1 −1 1
−1 1 1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 1 −1
−1 −1 1 1

1 −1 −1 1
1 1 −1 −1
1 −1 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 −1 −3 −1
−1 5 −1 −3
−3 −1 5 −1
−1 −3 −1 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

5J + 4A(G) − 2DS(G) = 5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 5 4 5
5 0 5 6
4 5 0 5
5 6 5 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 −1 −3 −1
−1 5 −1 −3
−3 −1 5 −1
−1 −3 −1 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Therefore BS(G)BS(G)T = 5J + 4A(G) − 2DS(G).
Also

BS(G)T BS(G) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 1 −1
−1 −1 1 1

1 −1 −1 1
1 1 −1 −1
1 −1 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 1 1 1
1 −1 −1 1 −1
1 1 −1 −1 1
−1 1 1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 −4 0 0
0 4 0 −4 0
−4 0 4 0 0

0 −4 0 4 0
0 0 0 0 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

(4− 8)J + 4A(L(G)) + 8I = −4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 1
1 0 1 0 1
0 1 0 1 1
1 0 1 0 1
1 1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 −4 0 0
0 4 0 −4 0
−4 0 4 0 0

0 −4 0 4 0
0 0 0 0 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Therefore BS(G)T BS(G) = −4J + 4A(G) + 8I.

Corollary 13. For all graphs G with n ≥ 8 vertices, the sum of the elements of any row (or column) in BS(G)T BS(G) is
positive.

3. Conclusion

In this article we have introduced the (−1, 1)-incidence matrix BS(G) of a graph G and explored some
properties of it and its transpose. This matrix further may be studied to explore the spectral and structural
properties of a graph. Particularly, the study of singular values of BS(G).
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