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Abstract: A finite, connected simple graph G is a geodetic graph if and only if for each pair of vertices v;, v;
there exists a unique distance path (or unique shortest v;v;-path). The insertion of vertices in an edge or
edges of a non-geodetic graph G to, if possible, obtain a resultant geodetic graph is called geodetication
of the graph G. The paper introduces two new graph parameters generally called the Ruvé numbers of a
graph. The Ruvé numbers of G are denoted by p;(G) and py(G) respectively, and p1(G) = p2(G) = 0 if
and only if G is geodetic. Furthermore, for some graphs the parameter, p;(G) — oo. The latter graphs G
do not permit geodetication in respect of p1(G). It is evident that geodetication presents various challenging
minimization problems. The core field of application will be, restricting graphs to distance path uniqueness.
Intuitive applications are foreseen in military science, IT anti-hacking coding and predictive flow through
networks.
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1. Introduction

t is assumed that the reader has good knowledge of the basic notions and notation in graph theory. For
m reference reading see [1,2]. For this introductory study a graph G will be a finite, connected simple
graph. Reference to vertices v;,v; (or u,v) in a particular graph G will mean that v; and v; (or u and v) are
distinct vertices in G. If a vertex (or more) is added to an edge (or edges) of a graph the operation is called
vertex insertion or insert a vertex (or insert vertices). Recall that a graph G is a geodetic graph if and only if for
each pair of vertices v;, v; there exists a unique distance path (or unique shortest v;v;-path). The length of such
shortest path is denoted by dg(v;, v;).

Definition 1. (Ruvé; number): Consider a non-geodetic graph G = (V,E) and let X = {w; : j € N}(j
sufficiently large) be a separate set of vertices. The Ruvé; number of G denoted by p;(G) is the minimum
number of vertices p1(G) = |Y|, w; € Y C X, to be inserted in an edge or edges of G to, if possible, obtain a
geodetic graph G’ with V(G') = V(G) Y. If obtaining a finite p;(G) is impossible then, p1(G) — oo or for
purposes of bounds, p1(G) > ¢ where, { — oo. The latter graphs G do not permit geodetication in respect of
p1(G).

Definition 2. (Ruvé; number): Consider a non-geodetic graph G = (V,E) and let X = {w; : j € N}(j
sufficiently large) be a separate set of vertices. The Ruvé, number of G denoted by pz(G) is the minimum
number of vertices p2(G) = |Y|, w; € Y C X, to be inserted in an edge or edges of G to obtain a graph G” such
that, V v;,v; € V(G) the shortest (v;, vj)-path in G” is unique.

Note that both the Ruvé numbers are well-defined because,
(i) A graph G is well-defined,

(ii) It is permissible that | X| — oo,

(iii)) 0 < p1(G) <k, k € Ny or £/ — o0 is permissible,
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(iv) Non-permissibility in respect of p1 (G) is unambiguous,

(v) 0 < p2(G) <k k €Ny,

(vi) Both G’ and G" are well-defined.

Three classical families of graphs i.e. complete graphs K;;, n > 1, odd cycles C;;, n > 3 and trees T will
be of importance in this study. Note that a graph G from any of the three said families of graphs is geodetic
thus has, p1(G) = p2(G) = 0. Hereafter, unless mentioned otherwise, all graphs will be undirected, simple
and connected non-geodetic graphs of order n > 4. The operation to yield the graph G’ or G” from G as per
Definition 1 or Definition 2 respectively, is called geodetication of G in respective of p1(G), p2(G) respectively.
If the context is clear we simply refer to geodetication. Note that geodetication in respect of p1(G) or p2(G) is
an iterative graph operation. Hence in both cases, following the insertion of say, w; in an edge of G a graph G;
is obtained to be considered and so on. The number of iterations required is exactly, p;(G) or p2(G) meaning,
Gpi(c) = G'and Gpy(g) = G

Various real world applications may require geodetication of a graph or a network. Whereas in G, generic
flow between v; and v; could be along different shortest paths such flow, following geodetication, is restricted
to a unique distance path. For the Ruvé; number the vertices w; € Y are functional vertices whilst those for
the Ruvé, number are blockage vertices. Conceptually similar studies have been published with regards to the
notion of forbidden transitions in graphs. See [3-5]. The latter observation motivates this introductory study.
The core field of application will be, restricting graphs to distance path uniqueness. Intuitive applications are
foreseen in military science, IT anti-hacking coding and predictive flow through networks.

Sections 2 and 3 will provide preliminary results and concepts related to the Ruvé; number. Thereafter, a
discussion of the Ruvé, number will follow.

2. Introductory results on the Ruvé; number

Clearly, if G is geodetic then p1(G) = 0. It is well known that a cycle graph (or cycle) C,, n > 4 and n is
even, is non-geodetic. By inserting one w; € X to any edge of C; the cycle C;,,;, n 4+ 11s odd is obtained. Since
C1/1+1 is geodetic it follows that for C,, n > 4 and n is even, p1(C,) = 1.

The J9-graphs were first defined in [6]. These graphs were independently conceptualized by Scott and
Seymour in [7]. In [7] these graphs are called bananas. A revised though equivalent definition is provided
below.

Definition 3. Take k > 1 copies of a path P,, n > 3. Letj = 1,2,3,..., k. Merge the respective, k origin vertices
and the k terminus vertices of the paths and label the vertices consecutively as follows:

U1,01,j, 02, -, Up—2,j, U2, N >3 for j=1,2,3,...,k k>1.

The family of graphs is called the J9-graphs. A member of the [9-graphs is denoted by, P,gk), and is called
a Joost graph.

For this study we consider Joost graphs for k > 3. Note that each such Joost graph has (5) > 3 distinct C,,

cycles each of even order. Hence, any Joost graph P,5k>, k > 3 is non-geodetic.

Proposition 1. A Joost graph G = P,Sk), k > 3 does not permit geodetication in respect of p1(G).

Proof. Consider any Joost graph P,Sk), k > 3. Without loss of generality let step 1 of geodetication be inserting
the first vertex w; € X in any edge of the path labeled u1,v11,v21,...,04—21, 2. Exactly k — 1 distinct C,; 1
cycles are of odd order are obtained. The remaining (5) — (k—1) distinct C,, cycles are of even order. At step
2 of geodetication that is, inserting vertex wp € X either in an edge of u1,v11,v21,...,04—21, Uz or otherwise
then, either (k — 1) distinct C,,4» cycles and (kgl) distinct C;; cycles are of even order or, exactly one C,1»
cycle is of even order. Note that other distinct C,; cycles of even order may exist as well. Clearly this dilemma
perpetuates infinitely. Therefore, if k > 3 then p(P,Sk)) — oo. Hence, a Joost graph P,Ek), k > 3 does not permit
geodetication. O
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Lemma 1. Consider two cycle Cp, n > 3 and C,,, m > 3. Obtain G by merging a vertex of Cy, with a vertex of Cp,.
This is called the Type I simple cycle link.

(i) If both n, m are odd then p1(G) = 0.

(ii) If say, n is odd and m is even then p1(G) = 1.

(iii) If both n, m are even then p1(G) = 2.

Proof. Result (i) follows from the fact the all odd cycles are geodetic.

Result (ii) follows from the fact that an even cycle is non-geodetic and requires the insertion of one vertex
in any one edge of cycle Cy,.

Result (iii) follow from the fact that all even cycles are non-geodetic and require the insertion of one vertex
in any one edge of each cycle. O

By immediate induction it follows cycles Cy, Gy, ..., C; can pairwise be merged by a common vertex in
"treelike" fashion to construct multiple (clustered or chained) Type I simple cycle links. If a graph G has an
induced cycle Cy such cycle is called a simple cycle (or unchorded cycle) in G. A graph G is called a cactus
graph if any two simple cycles in G, if such exist, share at most one common vertex (Type I simple cycle link).
Note that any tree and any cycle may be considered to be cactus graphs.

Proposition 2. Let G be a cactus graph which has t; > 0 even simple cycles and t; > 0 odd simple cycles. Then
p1(G) = t.

Proof. If t; = 0 then G is geodetic hence, p1(G) = 0. If t; > 0 then G is non-geodetic. Then the result follows
through the application of Lemma 1. O

3. Characterization of graphs G which do not permit geodetication in respect of p; (G)

Consider two cycle Cy, n > 3 and Cy, m > 3. Obtain G by merging a path section of C, with a path
section of Cy;. This is called the Type II simple cycle link. By immediate induction it follows cycles Cy;, Cyy, ...,
C,; can be merged in "treelike" fashion to construct multiple (clustered or chained) Type II simple cycle links.
This family of graphs is called the anti-Ruvé; graphs (for brevity, (a-R)-graphs).

Lemma 2. An anti-Ruvé; graph G does not permit geodetication in respect of p1(G).

Proof. Clearly, G is non-geodetic. The proof follows by similar reasoning found in the proof of Proposition
1. O

Recall from [1] that a closed trail in a graph G is called a cycle in G. The latter cycle in G may or may not
be a simple cycle in G. A graph without any cycle is a tree. It is axiomatically true that if a vertex (or more
vertices) is inserted in an edge (or more edges) of a tree T only the distance between some pairs of vertices will
increase. No cycle can be constructed in tree T. In cyclic graphs, vertex insertion can only change the order of
a cycle in G to switch between even and odd. It is axiomatically true that the insertion of a single vertex on an
edge e of a particular cycle can switch the order of another cycle if and only if both cycles share e as a common
edge. Hence, the latter two cycles induce a (a-R)-graphs). Let,

G = {G : G has some (a-R)-subgraph(s) and for each pair u,v of vertices of a (a-R)-subgraph say, H there exist a
shortest (u,v)-path of length dg(u,v) in H}.

Theorem 1. A graph G permits geodetication in respect of p1(G) if and only if G is (G € G)-free.

Proof. It is obvious that if G has an induced (G € G)-subgraph then G does not permit geodetication. If G is
(G € G)-free then it is trivially possible to insert a sufficiently large number say, ¢ vertices into some edges of G
to yield a graph H which besides minimization (or minimum minimality), satisfies Definition 1. The aforesaid
is possible because vertex insertion cannot construct a (G € G)-subgraph. Thus p;(G) < ¢ and / is finite. The
aforesaid implies that graph G permits geodetication. O
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Proposition 3. A complete bipartite graph of the form Ky, ,,, n > m > 2 does not permit geodetication in respect of
01(G).

Proof. Let Kj,, have the independent vertex sets X = {v; : 1 <i <n}andY = {u; : 1 <i < m}. The
Kin,m induced subgraph of Ky, can be presented diagrammatically as a chorded cycle C;,,. However, each
vertex Uy41,Um+2, ..., 0n» when added with corresponding edges constructs a (Geg )—graph. By Theorem 1

the complete bipartite graph Kj; ;;, 1 > m > 2 does not permit geodetication. O

4. On the Ruvé, number

Clearly, if G is geodetic then p;(G) = 0. By inserting one w; € X to any edge of C,, n > 4 and n is even
the cycle C;l 41, 1+ 1is odd is obtained. Since C;l 41 is geodetic it follows that for C,, n > 4 and n is even,

02 (Cn) =1
Lemma 3. A graph G always permit geodetication in respect of p2(G).

Proof. It is known that if G is geodetic then p,(G) = 0. Hence, although geodetication is not required it is
permitted. The aforesaid is equivalent to inserting the empty set ® C X to some edges of G. Assume G is
non-geodectic. Then it is axiomatically valid that a sufficient number of vertices from the set X can be inserted
in some edges (at most f@}) such that all induced subgraphs in G” restricted to vertices in V(G) will be
trees. Since w; € Y is of no concern the vertex insertions can be done such that, V v;,v; € V(G) the shortest
(vi,v;)-path in G” is unique. This settles the result. O

Theorem 2. For a graph G it follows that, p1(G) > p2(G).

Proof. If G is geodetic then p1(G) = p2(G) = 0. Assume G is non-geodectic and does not permit geodetication
in respect of p1(G). From Lemma 3 G permits geodetication in respect of p»(G). Hence, p2(G) is finite say,
02(G) = k. Surely, p1(G) > £ >k, { — oo.

Finally assume G is non-geodectic and permits geodetication in respect of p1(G). Let p1(G) = t. If
distance paths are tested which exclude w; € Y then, since G” is geodetic it implies that, p1(G) < p2(G). The
latter is true because if p1 (G) > p2(G) then, p1 (G) was not a minimum. It thus implies that p1(G) = p2(G). O

The next corollary is a direct consequence of the proof of Theorem 2.
Corollary 1. Ifa graph G permits geodetication in respect of p1(G) then, p1(G) = p1(G).

Lemma 4. Consider two cycle Cy,, n > 3 and C,;, m > 3. Obtain G by merging a section of length | of C,, with a path
section of length I of Cy,.

(i) If both n, m are odd then p>(G) = 2.

(ii) If say, n is odd and m is even then p1(G) = 1.

(iii) If both n, m are even then p1(G) = 2.

Proof. (i) Insert a vertex w; € X in any edge of the common path section to obtain G”. Clearly, the induced
graph (V(G)) in G” is a cactus with one even cycle. Hence, from Proposition 2 it follows that p(G) = 2.

(ii) Insert a vertex w; € X in any edge of the common path section to obtain G”. Clearly, the induced
graph (V(G)) in G” is a cactus with one odd cycle. Hence, from Proposition 2 it follows that p»(G) = 1.

(iii) Follow similar to result (i). O

5. On graphs from graph

Itis assumed that the reader is familiar with the definitions of the line graph L(G), the middle graph M(G)
and the total graph T(G) respectively, of a graph G. Various results from [8] have relevance with regards to
the study of the Ruvé number. We recall four useful results from [8].

Lemma 5. (Lemma 2 in [8]). If a graph G is non-geodetic, then its line graph L(G) is non-geodetic.
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Theorem 3. (Theorem 3 in [8]). Let G be a connected graph with at least one edge. Then the line graph L(G) is geodetic
if and only if G is a tree or an odd cycle.

Corollary 2. (Corollary 2 in [8]). The middle graph M(G) of a connected graph G is geodetic if and only if G is a tree.

Theorem 4. (Theorem 4 in [8]). The total graph T(G) of a graph G is geodetic if and only if every connected component
of G has at most one edge.

Without further proof we can deduce the following useful results with regards to the study of the Ruvé
number.

Theorem 5. (i) For a graph G the line graph L(G) is non-geodetic if G is non-geodetic or, not a tree nor an odd cycle.
(ii) Let G be, not a tree then the middle graph M(G) is non-geodetic.
(iii) If G has more than one edge then the total graph T (G) is non-geodetic.

Theorem 5 read together with Theorem 1 distinguishes which of the line, middle and total graphs of a
graph, permit (or not permit) geodetication.

Recall that the corona of the two graphs G of order n with H of order m and denoted by G o H is the
operation whereby we take n copies of H labeled H;, i = 1,2,3,...,n and attach the vertex v; € V(G) to each
vertex u;; € V(H;),1 =1,2,3,...,m. Recall that K; + H is obtained by attaching the vertex Kj to each vertex
in V(H).

Theorem 6. For G o H where both G and H permits geodetication in respect of p1(G), p2(H) respectively, let
diam(H) = t. Then,

p1(G o H) < p1(G) + min{2ne(H), n((m — 1)( — 1) + p1 (H))},

and,
p2(G o H) < p(G) + min{2ne(H), n((m — 1)(t — 1) + pa(H))}.

Proof. Part 1: Requiring the term p;(G) is obvious. For each of the n subgraphs which are isomorphic to
K; + H at least two options are considered. Option 1 is to insert two vertices from X in each edge of each H;.
The latter option will for each pair u;j, u;; € V(H;) result in a unique distance path of length two. For each
vj € V(G) the second option is to insert (t — 1) vertices from X in all but one of the edges vju;, u;x € V(H;)
and to geodeticate each H; in respect of p1(H;). Any of the two options will yield a unique distance path for
any pair v;, u;; and any pair u; j, u;x. Clearly, the minimum of the two options i.e. min{2ne(H),n((m —1)(t —
1) 4+ p2(H))} > 0yields an upper bound.

Part 2: The result follows by similar reasoning to that in Part 1. O

the next corollary requires no further proof.

Corollary 3. For graphs G and H in Theorem 6 both, p1(G) > 0 and p1(H) > 0 and both be finite. Furthermore,
Theorem 6 settles all the possible cases i.e.:

(i) p1(G) > 0and p1(H) > 0,

(ii) p1(G) = 0and p1(H) =0,

(iii) p1(G) > 0 and p1(H) =0,

(iv) p1(G) = 0and p1(H) > 0.

Finally, the same applies to po(G) and p,(H).

6. Conclusion

Finding an efficient algorithm to obtain p;(G) and p(G) is of importance. The complexity of an
exhaustive method lies in the fact that geodetication is an iterative graph operation. It requires the evaluation
of,
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p1(G) or p2(G) )
I1 (n+i—1)

i=0

possibe vertex insertions. On completion we have that,

(i) e(G') = €(G) +p1(G),
(ii) e(G") = €(G) + 02(G).

In any graph the distance path between any pair of adjacent vertices is unique. It can be said that
any graph is partially 1-geodetic. A cycle C;, n > 4 and n is even is partially (5 — 1)-geodetic in that all
distance paths of length 1 < I < % — 1 are unique. Therefore, any graph G is partially [-geodetic for some
1 <1 < diam(G) — 1. Note that if | = diam(G) that G is geodetic. Author proposes that the notion of partially
I-geodetic graphs is worthy of further research. More specifically in the context of research related to the Ruvé

numbers of graphs.

For a graph G define the total distance weight as,

Y(G)= X dg(vjvp).

VU,’,U,’EV(G)
In respect of G’ (geodetication in respect of p1(G)) the total distance weight is restricted to,

P(G)= ¥ de(v,v).
VU,’,U]'GV(G/)
Clearly, after geodetication of G we have that, ¢(G) < ¢(G’). Let the edge ¢; = wv;v; and let the
string s, = [eq : wy,wy, ..., wt| denote the vertices inserted in eg- Let a geodetication set of G be
Y ={s;:1<q<¢G)}.

Problem 1: Find a geodetication set Y of G such that (G’) — ¥(G) is a minimum.

If a graph G has say, one induced M = (G € G)-subgraph then a minimum number of edges can be
added to complete M, to obtain a graph G* which will permit geodetication in respect of p1(G*). Clearly, G
may have more than one (G € G)-subgraph. The minimum number of edges to be added to G to obtain G* is
called the edge-Ruvé number of a G. The edge-Ruvé number is denoted by p°(G). Further research on p¢(G)
remains open.

Another interesting observation is that the Cartesian product P, x P, n > 2 yields a ladder graph L,.
Note that although both P, and P, are geodetic hence, p12(P;) = p12(L2) = 0, the ladder is a (a-R)-graph.
The transition between geodeticability was from one extreme to the other extreme. In other words, whereas
neither P, nor P, requires geodetication in respect of p1, the ladder does not permit geodetication in respect of
01(Ly). This observation leads to a trivial theorem.

Theorem 7. For any graph G of order n > 3 let H = G x Py. The graph G does not permit geodetication in respect of
p1(H).

Proof. Because G x P, is a prism or prism-like it has either an induced ladder subgraph or an induced circular
ladder subgraph. Thus it contains a (G € G)-subgraph. Hence, by Theorem 1 the graph H does not permit
geodetication in respect of p1 (H). O

Researching the Cartesian product to gain an understanding in respect of geodeticability in respect of
p1(H) is deemed a worthy avenue. Numerous other graph products can be studied.

Geodetication in respect of p1(G) or p2(G) may change certain graph parameters. One example, is that
the chromatic number of an even cycle is given by x(C,) = 2. After inserting one vertex into any edge an odd
cycle is obtained and x(C;, ;) = 3. Let t be even then a cycle C3; has domination number y(C;) = (4] =t
The cycle Czt4+1 has ¢(Cy,) = t + 1. Some parameters for some graphs will remain unchanged. For example, let
n be even then the independence number of Cy, is «(C,) = 4 = t. However, a(C,41) = [ 51| = t. In the case
of p2(G) it is suggested to insert the p,(G) vertices as multiples into the minimum number of edges of E(G)

to be optimal. In more advanced graphs the notion of geodetication sets come into play. Since various graph
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parameters are possibly changed for some graphs through geodetication, numerous minimization problems
similar to Problem 1 come to the fore.

Finding an efficient algorithm to test whether or not a graph G is (a-R)-free is of importance. Adaption

of Brent’s algorithm [9] or other can be considered. Complexity studies with regards to finding p1(G) will be
insightfull.
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