

Article **Research note: Ruv***e*´ **numbers of a graph**

J. Kok

Independent Mathematics Researcher, City of Tshwane, South Africa Visiting Faculty at CHRIST (Deemed to be a University), Bangalore, India.

***** Correspondence: jacotype@gmail.com

Received: 25 June 2024; Accepted: 29 November 2024; Published: date: 15 January 2025 Communicated by: Muhammad Kamran Jamil

Abstract: A finite, connected simple graph *G* is a geodetic graph if and only if for each pair of vertices *vⁱ* , *v^j* there exists a unique distance path (or unique shortest *viv^j* -path). The insertion of vertices in an edge or edges of a non-geodetic graph *G* to, if possible, obtain a resultant geodetic graph is called geodetication of the graph *G*. The paper introduces two new graph parameters generally called the Ruv*e*´ numbers of a graph. The Ruvé numbers of *G* are denoted by $\rho_1(G)$ and $\rho_2(G)$ respectively, and $\rho_1(G) = \rho_2(G) = 0$ if and only if *G* is geodetic. Furthermore, for some graphs the parameter, $\rho_1(G) \to \infty$. The latter graphs *G* do *not permit* geodetication in respect of $ρ_1(G)$. It is evident that geodetication presents various challenging minimization problems. The core field of application will be, restricting graphs to *distance path uniqueness*. Intuitive applications are foreseen in military science, IT anti-hacking coding and predictive flow through networks.

Keywords: Ruvé number; geodetication; geodetication set; anti-Ruv*e*´ graph.

MSC: Primary 05C12; Secondary 05C38, 05C69

1. Introduction

I $|t|$ is assumed that the reader has good knowledge of the basic notions and notation in graph theory. For reference reading see [\[1](#page-6-0)[,2\]](#page-6-1). For this introductory study a graph *G* will be a finite, connected simple graph. Reference to vertices v_i , v_j (or u , v) in a particular graph G will mean that v_i and v_j (or u and v) are distinct vertices in *G*. If a vertex (or more) is added to an edge (or edges) of a graph the operation is called *vertex insertion* or *insert a vertex* (or insert vertices). Recall that a graph *G* is a geodetic graph if and only if for each pair of vertices v_i , v_j there exists a unique distance path (or unique shortest v_iv_j -path). The length of such shortest path is denoted by $d_G(v_i, v_j)$.

Definition 1. (Ruv \acute{e}_1 number): Consider a non-geodetic graph $G = (V, E)$ and let $X = \{w_j : j \in \mathbb{N}\}$ *(j* sufficiently large) be a separate set of vertices. The Ruv ℓ_1 number of *G* denoted by $\rho_1(G)$ is the minimum number of vertices $\rho_1(G) = |Y|$, $w_i \in Y \subseteq X$, to be inserted in an edge or edges of *G* to, if possible, obtain a geodetic graph *G'* with $V(G') = V(G) \cup Y$. If obtaining a finite $\rho_1(G)$ is impossible then, $\rho_1(G) \to \infty$ or for purposes of bounds, $\rho_1(G) \geq \ell$ where, $\ell \to \infty$. The latter graphs *G* do *not permit* geodetication in respect of $\rho_1(G)$.

Definition 2. (Ruvé₂ number): Consider a non-geodetic graph $G = (V, E)$ and let $X = \{w_j : j \in \mathbb{N}\}$ sufficiently large) be a separate set of vertices. The Ruv ℓ_2 number of *G* denoted by $\rho_2(G)$ is the minimum number of vertices $\rho_2(G) = |Y|$, $w_i \in Y \subseteq X$, to be inserted in an edge or edges of *G* to obtain a graph G'' such that, $\forall v_i, v_j \in V(G)$ the shortest (v_i, v_j) -path in G'' is unique.

Note that both the Ruvé numbers are well-defined because,

(i) A graph *G* is well-defined,

(ii) It is permissible that $|X| \to \infty$,

(iii) $0 \le \rho_1(G) \le k, k \in \mathbb{N}_0$ or $\ell \to \infty$ is permissible,

 (v) 0 < $\rho_2(G)$ < k, $k \in \mathbb{N}_0$,

(vi) Both *G* ′ and *G* ′′ are well-defined.

Three classical families of graphs i.e. complete graphs K_n , $n \geq 1$, odd cycles C_n , $n \geq 3$ and trees *T* will be of importance in this study. Note that a graph *G* from any of the three said families of graphs is geodetic thus has, $\rho_1(G) = \rho_2(G) = 0$. Hereafter, unless mentioned otherwise, all graphs will be undirected, simple and connected *non-geodetic* graphs of order $n \geq 4$. The operation to yield the graph G' or G'' from G as per Definition [1](#page-0-0) or Definition [2](#page-0-1) respectively, is called *geodetication* of *G* in respective of *ρ*1(*G*), *ρ*2(*G*) respectively. If the context is clear we simply refer to geodetication. Note that geodetication in respect of $ρ_1(G)$ or $ρ_2(G)$ is an iterative graph operation. Hence in both cases, following the insertion of say, w_1 in an edge of *G* a graph G_1 is obtained to be considered and so on. The number of iterations required is exactly, $\rho_1(G)$ or $\rho_2(G)$ meaning, $G_{\rho_1(G)} = G'$ and $G_{\rho_2(G)} = G''$.

Various real world applications may require geodetication of a graph or a network. Whereas in *G*, generic flow between *vⁱ* and *v^j* could be along different shortest paths such flow, following geodetication, is restricted to a unique distance path. For the Ruv ℓ_1 number the vertices $w_i \in Y$ are *functional* vertices whilst those for the Ruvé₂ number are *blockage* vertices. Conceptually similar studies have been published with regards to the notion of *forbidden transitions* in graphs. See [\[3–](#page-6-2)[5\]](#page-6-3). The latter observation motivates this introductory study. The core field of application will be, restricting graphs to *distance path uniqueness*. Intuitive applications are foreseen in military science, IT anti-hacking coding and predictive flow through networks.

Sections 2 and 3 will provide preliminary results and concepts related to the Ruv ℓ_1 number. Thereafter, a discussion of the Ruvé₂ number will follow.

2. Introductory results on the Ruv \acute{e}_1 **number**

Clearly, if *G* is geodetic then $\rho_1(G) = 0$. It is well known that a cycle graph (or cycle) C_n , $n \geq 4$ and *n* is even, is non-geodetic. By inserting one $w_i \in X$ to any edge of C_n the cycle C'_{n+1} , $n+1$ is odd is obtained. Since C'_{n+1} is geodetic it follows that for C_n , $n \geq 4$ and *n* is even, $\rho_1(C_n) = 1$.

The *J*9-graphs were first defined in [\[6\]](#page-6-4). These graphs were independently conceptualized by Scott and Seymour in [\[7\]](#page-6-5). In [\[7\]](#page-6-5) these graphs are called *bananas*. A revised though equivalent definition is provided below.

Definition 3. Take $k \geq 1$ copies of a path P_n , $n \geq 3$. Let $j = 1, 2, 3, \ldots$, *k*. Merge the respective, *k* origin vertices and the *k* terminus vertices of the paths and label the vertices consecutively as follows:

$$
u_1, v_{1,j}, v_{2,j}, \ldots, v_{n-2,j}, u_2, n \ge 3
$$
 for $j = 1, 2, 3, \ldots, k, k \ge 1$.

The family of graphs is called the *J*9-graphs. A member of the *J9-graphs* is denoted by, $P_n^{(k)}$, and is called a Joost graph.

For this study we consider Joost graphs for $k \geq 3$. Note that each such Joost graph has $\binom{k}{2} \geq 3$ distinct C_n cycles each of even order. Hence, any Joost graph $P_n^{(k)}$, $k\geq 3$ is non-geodetic.

Proposition 1. A Joost graph $G = P_n^{(k)}$, $k \geq 3$ does not permit geodetication in respect of $\rho_1(G)$.

Proof. Consider any Joost graph $P_n^{(k)}$, $k\geq 3$. Without loss of generality let step 1 of geodetication be inserting the first vertex w_1 ∈ *X* in any edge of the path labeled $u_1, v_{1,1}, v_{2,1}, \ldots, v_{n-2,1}, u_2$. Exactly $k - 1$ distinct C_{n+1} cycles are of odd order are obtained. The remaining $\binom{k}{2} - (k-1)$ distinct C_n cycles are of even order. At step 2 of geodetication that is, inserting vertex *w*² ∈ *X* either in an edge of *u*1, *v*1,1, *v*2,1, . . . , *vn*−2,1, *u*² or otherwise then, either $(k-1)$ distinct C_{n+2} cycles and $\binom{k-1}{2}$ distinct C_n cycles are of even order or, exactly one C_{n+2} cycle is of even order. Note that other distinct C_n cycles of even order may exist as well. Clearly this dilemma perpetuates infinitely. Therefore, if $k\geq 3$ then $\rho(P_n^{(k)})\to\infty$. Hence, a Joost graph $P_n^{(k)}$, $k\geq 3$ does not permit geodetication. \Box **Lemma 1.** *Consider two cycle* C_n *,* $n \geq 3$ *and* C_m *,* $m \geq 3$ *. Obtain* G *by merging a vertex of* C_n *with a vertex of* C_m *. This is called the Type I simple cycle link.*

(i) If both *n*, *m* are odd then $\rho_1(G) = 0$. *(ii)* If say, *n* is odd and *m* is even then $\rho_1(G) = 1$. *(iii)* If both *n*, *m* are even then $\rho_1(G) = 2$.

Proof. Result (i) follows from the fact the all odd cycles are geodetic.

Result (ii) follows from the fact that an even cycle is non-geodetic and requires the insertion of one vertex in any one edge of cycle *Cm*.

Result (iii) follow from the fact that all even cycles are non-geodetic and require the insertion of one vertex in any one edge of each cycle. \Box

By immediate induction it follows cycles C_n , C_m , ..., C_q can pairwise be merged by a common vertex in "treelike" fashion to construct multiple (clustered or chained) Type I simple cycle links. If a graph *G* has an induced cycle *C^k* such cycle is called a simple cycle (or unchorded cycle) in *G*. A graph *G* is called a cactus graph if any two simple cycles in *G*, if such exist, share at most one common vertex (Type I simple cycle link). Note that any tree and any cycle may be considered to be cactus graphs.

Proposition 2. Let G be a cactus graph which has $t_1 \geq 0$ even simple cycles and $t_2 \geq 0$ odd simple cycles. Then $\rho_1(G) = t_1.$

Proof. If $t_1 = 0$ then *G* is geodetic hence, $\rho_1(G) = 0$. If $t_1 > 0$ then *G* is non-geodetic. Then the result follows through the application of Lemma [1.](#page-2-0) \Box

3. Characterization of graphs *G* which do not permit geodetication in respect of $\rho_1(G)$

Consider two cycle C_n , $n \geq 3$ and C_m , $m \geq 3$. Obtain *G* by merging a path section of C_n with a path section of C_m . This is called the *Type II simple cycle link*. By immediate induction it follows cycles C_n , C_m , ..., *C^q* can be merged in "treelike" fashion to construct multiple (clustered or chained) Type II simple cycle links. This family of graphs is called the anti-Ruv ℓ_1 graphs (for brevity, $(a-R)$ -graphs).

Lemma 2. An anti-Ruvé₁ graph G does not permit geodetication in respect of $\rho_1(G)$.

Proof. Clearly, *G* is non-geodetic. The proof follows by similar reasoning found in the proof of Proposition [1.](#page-1-0) \Box

Recall from [\[1\]](#page-6-0) that a closed trail in a graph *G* is called a *cycle in G*. The latter cycle in *G* may or may not be a simple cycle in *G*. A graph without any cycle is a *tree*. It is axiomatically true that if a vertex (or more vertices) is inserted in an edge (or more edges) of a tree *T* only the distance between some pairs of vertices will increase. No cycle can be constructed in tree *T*. In cyclic graphs, vertex insertion can only change the order of a cycle in *G* to switch between even and odd. It is axiomatically true that the insertion of a single vertex on an edge *e* of a particular cycle can switch the order of another cycle if and only if both cycles share *e* as a common edge. Hence, the latter two cycles induce a (*a*-*R*)-graphs). Let,

G = {*G* : *G has some* (*a*-*R*)-*subgraph(s) and for each pair u*,*v of vertices of a* (*a*-*R*)-*subgraph say, H there exist a shortest* (u, v) -*path of length* $d_G(u, v)$ *in* H }.

Theorem 1. *A graph G permits geodetication in respect of* $\rho_1(G)$ *if and only if G is* $(G \in \mathcal{G})$ *-free.*

Proof. It is obvious that if *G* has an induced $(G \in \mathcal{G})$ -subgraph then *G* does not permit geodetication. If *G* is $(G \in \mathcal{G})$ -free then it is trivially possible to insert a sufficiently large number say, ℓ vertices into some edges of *G* to yield a graph *H* which besides minimization (or minimum minimality), satisfies Definition [1.](#page-0-0) The aforesaid is possible because vertex insertion cannot construct a $(G \in \mathcal{G})$ -subgraph. Thus $\rho_1(G) \leq \ell$ and ℓ is finite. The aforesaid implies that graph *G* permits geodetication. \Box

Proposition 3. *A complete bipartite graph of the form* $K_{n,m}$ *, n* $\geq m \geq 2$ *does not permit geodetication in respect of* $\rho_1(G)$.

Proof. Let $K_{n,m}$ have the independent vertex sets $X = \{v_i : 1 \le i \le n\}$ and $Y = \{u_i : 1 \le i \le m\}$. The $K_{m,m}$ induced subgraph of $K_{n,m}$ can be presented diagrammatically as a chorded cycle C_{2m}^{\oplus} . However, each vertex $v_{m+1}, v_{m+2}, \ldots, v_n$ $v_{m+1}, v_{m+2}, \ldots, v_n$ $v_{m+1}, v_{m+2}, \ldots, v_n$ when added with corresponding edges constructs a $(G \in \mathcal{G})$ -graph. By Theorem 1 the complete bipartite graph $K_{n,m}$, $n \ge m \ge 2$ does not permit geodetication. \Box

4. On the Ruv \acute{e} ₂ number

Clearly, if *G* is geodetic then $\rho_2(G) = 0$. By inserting one $w_i \in X$ to any edge of C_n , $n \ge 4$ and *n* is even the cycle C'_{n+1} , $n+1$ is odd is obtained. Since C'_{n+1} is geodetic it follows that for C_n , $n \geq 4$ and n is even, $\rho_2(C_n) = 1.$

Lemma 3. *A graph G always permit geodetication in respect of* $\rho_2(G)$ *.*

Proof. It is known that if *G* is geodetic then $\rho_2(G) = 0$. Hence, although geodetication is not required it is permitted. The aforesaid is equivalent to inserting the empty set $\emptyset \subseteq X$ to some edges of *G*. Assume *G* is non-geodectic. Then it is axiomatically valid that a sufficient number of vertices from the set *X* can be inserted in some edges (at most $\lceil \frac{e(G)}{2} \rceil$) such that all induced subgraphs in *G*^{*''*} restricted to vertices in *V*(*G*) will be trees. Since $w_i \in Y$ is of no concern the vertex insertions can be done such that, $\forall v_i, v_j \in V(G)$ the shortest (v_i, v_j) -path in G'' is unique. This settles the result. \Box

Theorem 2. *For a graph G it follows that,* $\rho_1(G) \geq \rho_2(G)$ *.*

Proof. If *G* is geodetic then $\rho_1(G) = \rho_2(G) = 0$. Assume *G* is non-geodectic and does not permit geodetication in respect of $\rho_1(G)$. From Lemma [3](#page-3-0) *G* permits geodetication in respect of $\rho_2(G)$. Hence, $\rho_2(G)$ is finite say, $\rho_2(G) = k$. Surely, $\rho_1(G) \geq \ell > k$, $\ell \to \infty$.

Finally assume *G* is non-geodectic and permits geodetication in respect of $\rho_1(G)$. Let $\rho_1(G) = t$. If distance paths are tested which exclude $w_i \in Y$ then, since G'' is geodetic it implies that, $\rho_1(G) \leq \rho_2(G)$. The latter is true because if $\rho_1(G) > \rho_2(G)$ then, $\rho_1(G)$ was not a minimum. It thus implies that $\rho_1(G) = \rho_2(G)$. \Box

The next corollary is a direct consequence of the proof of Theorem [2.](#page-3-1)

Corollary 1. *If a graph G permits geodetication in respect of* $\rho_1(G)$ *then,* $\rho_1(G) = \rho_1(G)$ *.*

Lemma 4. *Consider two cycle* C_n *,* $n \geq 3$ *and* C_m *,* $m \geq 3$ *. Obtain* G *by merging a section of length l of* C_n *with a path section of length l of Cm.*

(i) If both *n*, *m* are odd then $\rho_2(G) = 2$. *(ii)* If say, *n* is odd and *m* is even then $\rho_1(G) = 1$.

(iii) If both n, m are even then $\rho_1(G) = 2$ *.*

Proof. (i) Insert a vertex $w_i \in X$ in any edge of the common path section to obtain G'' . Clearly, the induced graph $\langle V(G) \rangle$ in G'' is a cactus with one even cycle. Hence, from Proposition [2](#page-2-2) it follows that $\rho_2(G) = 2$.

(ii) Insert a vertex $w_i \in X$ in any edge of the common path section to obtain G'' . Clearly, the induced graph $\langle V(G) \rangle$ in G'' is a cactus with one odd cycle. Hence, from Proposition [2](#page-2-2) it follows that $\rho_2(G) = 1$.

(iii) Follow similar to result (i).

5. On graphs from graph

It is assumed that the reader is familiar with the definitions of the line graph $L(G)$, the middle graph $M(G)$ and the total graph *T*(*G*) respectively, of a graph *G*. Various results from [\[8\]](#page-6-6) have relevance with regards to the study of the Ruvé number. We recall four useful results from [\[8\]](#page-6-6).

Lemma 5. *(Lemma 2 in* [\[8\]](#page-6-6)*). If a graph G is non-geodetic, then its line graph L*(*G*) *is non-geodetic.*

 \Box

Theorem 3. *(Theorem 3 in* [\[8\]](#page-6-6)*). Let G be a connected graph with at least one edge. Then the line graph L*(*G*) *is geodetic if and only if G is a tree or an odd cycle.*

Corollary 2. *(Corollary 2 in* [\[8\]](#page-6-6)*). The middle graph M*(*G*) *of a connected graph G is geodetic if and only if G is a tree.*

Theorem 4. *(Theorem 4 in* [\[8\]](#page-6-6)*). The total graph T*(*G*) *of a graph G is geodetic if and only if every connected component of G has at most one edge.*

Without further proof we can deduce the following useful results with regards to the study of the Ruv*e*´ number.

Theorem 5. *(i) For a graph G the line graph L*(*G*) *is non-geodetic if G is non-geodetic or, not a tree nor an odd cycle. (ii) Let G be, not a tree then the middle graph M*(*G*) *is non-geodetic. (iii) If G has more than one edge then the total graph T*(*G*) *is non-geodetic.*

Theorem [5](#page-4-0) read together with Theorem [1](#page-2-1) distinguishes which of the line, middle and total graphs of a graph, permit (or not permit) geodetication.

Recall that the corona of the two graphs *G* of order *n* with *H* of order *m* and denoted by $G \circ H$ is the operation whereby we take *n* copies of *H* labeled H_i , $i = 1, 2, 3, ..., n$ and attach the vertex $v_i \in V(G)$ to each vertex $u_{i,l} \in V(H_i)$, $l = 1, 2, 3, \ldots, m$. Recall that $K_1 + H$ is obtained by attaching the vertex K_1 to each vertex in $V(H)$.

Theorem 6. For $G \circ H$ where both G and H permits geodetication in respect of $\rho_1(G)$, $\rho_2(H)$ respectively, let $diam(H) = t$. Then,

$$
\rho_1(G \circ H) \leq \rho_1(G) + \min\{2n\varepsilon(H), n((m-1)(t-1) + \rho_1(H))\},\
$$

and,

$$
\rho_2(G \circ H) \leq \rho_2(G) + \min\{2n\varepsilon(H), n((m-1)(t-1) + \rho_2(H))\}.
$$

Proof. Part 1: Requiring the term $\rho_1(G)$ is obvious. For each of the *n* subgraphs which are isomorphic to $K_1 + H$ at least two options are considered. Option 1 is to insert two vertices from *X* in each edge of each H_i . The latter option will for each pair $u_{i,j}$, $u_{i,k} \in V(H_i)$ result in a unique distance path of length two. For each $v_j \in V(G)$ the second option is to insert $(t-1)$ vertices from X in all but one of the edges $v_ju_{i,k}$, $u_{i,k} \in V(H_i)$ and to geodeticate each H_i in respect of $\rho_1(H_i)$. Any of the two options will yield a unique distance path for any pair v_i , $u_{j,l}$ and any pair $u_{i,j}$, $u_{i,k}$. Clearly, the minimum of the two options i.e. $min\{2n\varepsilon(H)$, $n((m-1)(t-1))$ $1) + \rho_2(H)$ } ≥ 0 yields an upper bound.

Part 2: The result follows by similar reasoning to that in Part 1.

 \Box

the next corollary requires no further proof.

Corollary 3. For graphs G and H in Theorem [6](#page-4-1) both, $\rho_1(G) \geq 0$ and $\rho_1(H) \geq 0$ and both be finite. Furthermore, *Theorem [6](#page-4-1) settles all the possible cases i.e.:*

(i) $\rho_1(G) > 0$ and $\rho_1(H) > 0$, (iii) $\rho_1(G) = 0$ and $\rho_1(H) = 0$, (iii) $\rho_1(G) > 0$ and $\rho_1(H) = 0$, (iv) $\rho_1(G) = 0$ and $\rho_1(H) > 0$. *Finally, the same applies to* $\rho_2(G)$ *and* $\rho_2(H)$ *.*

6. Conclusion

Finding an efficient algorithm to obtain $\rho_1(G)$ and $\rho_2(G)$ is of importance. The complexity of an exhaustive method lies in the fact that geodetication is an iterative graph operation. It requires the evaluation of,

$$
\prod_{i=0}^{\rho_1(G) \text{ or } \rho_2(G)} (n+i-1)
$$

possibe vertex insertions. On completion we have that,

(i)
$$
\varepsilon(G') = \varepsilon(G) + \rho_1(G)
$$
,
(ii) $\varepsilon(G'') = \varepsilon(G) + \rho_2(G)$.

In any graph the distance path between any pair of adjacent vertices is unique. It can be said that any graph is *partially 1-geodetic*. A cycle C_n , $n \geq 4$ and n is even is partially $(\frac{n}{2} - 1)$ -geodetic in that all distance paths of length $1 \leq l \leq \frac{n}{2} - 1$ are unique. Therefore, any graph *G* is partially *l*-geodetic for some 1 ≤ *l* ≤ *diam*(*G*) − 1. Note that if *l* = *diam*(*G*) that *G* is geodetic. Author proposes that the notion of partially *l*-geodetic graphs is worthy of further research. More specifically in the context of research related to the Ruv*e*´ numbers of graphs.

For a graph *G* define the total distance weight as,

$$
\psi(G) = \sum_{\forall v_i, v_j \in V(G)} d_G(v_i, v_j).
$$

In respect of G' (geodetication in respect of $\rho_1(G)$) the total distance weight is restricted to,

$$
\psi(G') = \sum_{\forall v_i, v_j \in V(G')} d_{G'}(v_i, v_j).
$$

Clearly, after geodetication of *G* we have that, $\psi(G) \leq \psi(G')$. Let the edge $e_q = v_i v_j$ and let the string $s_q = [e_q : w_k, w_l, \ldots, w_t]$ denote the vertices inserted in e_q . Let a geodetication set of *G* be $Y = \{s_q : 1 \leq q \leq \varepsilon(G)\}.$

Problem 1: Find a geodetication set Y of G such that $\psi(G') - \psi(G)$ is a minimum.

If a graph *G* has say, one induced $M = (G \in \mathcal{G})$ -subgraph then a minimum number of edges can be added to complete M, to obtain a graph G^{\star} which will permit geodetication in respect of $\rho_1(G^{\star})$. Clearly, G may have more than one $(G \in \mathcal{G})$ -subgraph. The minimum number of edges to be added to G to obtain G^{\star} is called the edge-Ruv e' number of a *G*. The edge-Ruv e' number is denoted by $\rho^e(G)$. Further research on $\rho^e(G)$ remains open.

Another interesting observation is that the Cartesian product $P_n \times P_2$, $n \geq 2$ yields a ladder graph L_n . Note that although both P_n and P_2 are geodetic hence, $\rho_{1,2}(P_n) = \rho_{1,2}(L_2) = 0$, the ladder is a $(a-R)$ -graph. The transition between geodeticability was from one extreme to the other extreme. In other words, whereas neither *Pⁿ* nor *P*² requires geodetication in respect of *ρ*1, the ladder does not permit geodetication in respect of $\rho_1(L_n)$. This observation leads to a trivial theorem.

Theorem 7. For any graph G of order $n \geq 3$ let $H = G \times P_2$. The graph G does not permit geodetication in respect of $\rho_1(H)$.

Proof. Because *G* × *P*² is a prism or prism-like it has either an induced ladder subgraph or an induced circular ladder subgraph. Thus it contains a $(G \in \mathcal{G})$ -subgraph. Hence, by Theorem [1](#page-2-1) the graph *H* does not permit geodetication in respect of $\rho_1(H)$. \Box

Researching the Cartesian product to gain an understanding in respect of geodeticability in respect of $\rho_1(H)$ is deemed a worthy avenue. Numerous other graph products can be studied.

Geodetication in respect of $\rho_1(G)$ or $\rho_2(G)$ may change certain graph parameters. One example, is that the chromatic number of an even cycle is given by $\chi(C_n) = 2$. After inserting one vertex into any edge an odd cycle is obtained and $\chi(C'_{n+1}) = 3$. Let *t* be even then a cycle C_{3t} has domination number $\gamma(C_n) = \lceil \frac{3t}{3} \rceil = t$. The cycle C_{3t+1} has $\gamma(C_n) = t+1$. Some parameters for some graphs will remain unchanged. For example, let *n* be even then the independence number of C_n is $\alpha(C_n) = \frac{n}{2} = t$. However, $\alpha(C_{n+1}) = \lfloor \frac{n+1}{2} \rfloor = t$. In the case of $\rho_2(G)$ it is suggested to insert the $\rho_2(G)$ vertices as multiples into the minimum number of edges of $E(G)$ to be optimal. In more advanced graphs the notion of geodetication sets come into play. Since various graph

parameters are possibly changed for some graphs through geodetication, numerous minimization problems similar to Problem 1 come to the fore.

Finding an efficient algorithm to test whether or not a graph *G* is (*a*-*R*)-free is of importance. Adaption of Brent's algorithm [\[9\]](#page-6-7) or other can be considered. Complexity studies with regards to finding $\rho_1(G)$ will be insightfull.

Dedication

This paper is dedicated to Ruvé de Beer. Ruvé is a very special family member of the author.

Acknowledgment

The author would like to thank the anonymous referees for their constructive comments, which helped to improve the elegance of this paper.

Conflict of interest:

The author declares there is no conflict of interest in respect of this research.

References

- [1] Bondy, J. A., & Murty, U. S. R. (1976). *Graph Theory with Applications* (Vol. 290). London: Macmillan.
- [2] Harary, F. (1969) *Graph Theory*, Addison-Wesley, Reading MA.
- [3] Bellitto, T., Li, S., Okrasa, K., Pilipczuk, M., & Sorge, M. (2023). The complexity of routing problems in forbidden-transition graphs and edge-colored graphs. *Algorithmica, 85*(5), 1202-1250.
- [4] Kanté, M. M., Laforest, C., & Momege, B. (2013). An exact algorithm to check the existence of (elementary) paths and a generalisation of the cut problem in graphs with forbidden transitions. In *SOFSEM 2013: Theory and Practice of Computer Science: 39th International Conference on Current Trends in Theory and Practice of Computer Science, Špindler˚uv Mlýn, Czech Republic, January 26-31, 2013. Proceedings 39* (pp. 257-267). Springer Berlin Heidelberg.
- [5] Kanté, M. M., Laforest, C., & Momège, B. (2013, May). Trees in graphs with conflict edges or forbidden transitions. In *International Conference on Theory and Applications of Models of Computation* (pp. 343-354). Berlin, Heidelberg: Springer Berlin Heidelberg.
- [6] Kok, J., & Naduvath, S. (2020). Tattooing and the tattoo number of graphs. *Journal of Interconnection Networks, 20*(02), 2050006.
- [7] Scott, A., & Seymour, P. (2020). Induced subgraphs of graphs with large chromatic number. VI. Banana trees. *Journal of Combinatorial Theory, Series B, 145,* 487-510.
- [8] Topp, J. (1990). Geodetic line, middle and total graphs. *Mathematica Slovaca, 40*(1), 3-9.
- [9] Brent, R. P. (1980). An improved Monte Carlo factorization algorithm. *BIT Numerical Mathematics, 20*(2), 176-184.

© 2025 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license [\(http://creativecommons.org/licenses/by/4.0/\)](http://creativecommons.org/licenses/by/4.0/).