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Abstract: Let 0 < k € Z. The anchored Dyck words of length n = 2k + 1 (obtained by prefixing a 0-bit to each
Dyck word of length 2k and used to reinterpret the Hamilton cycles in the odd graph Oy and the middle-levels
graph My found by Miitze et al.) represent in Oy (resp., My) the cycles of an n- (resp., 2n-) 2-factor and its
cyclic (resp., dihedral) vertex classes, and are equivalent to Dyck-nest signatures. A sequence is obtained
by updating these signatures according to the depth-first order of a tree of restricted growth strings (RGS’s),
reducing the RGS-generation of Dyck words by collapsing to a single update the time-consuming i-nested
castling used to reach each non-root Dyck word or Dyck nest. This update is universal, for it does not depend
on k.
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1. Introduction odd and middle-levels graphs

Let0 < k € Z, let n = 2k + 1 and let O be the k-odd graph [1], namely the graph whose vertices are the
k-subsets of the cyclic group Z, over the set [0,2k] = {0,1,...,2k} and having an edge uv for each two vertices
u,v if and only if u Nv = @. The characteristic vectors of such subsets u, v of [0, 2k] are the n-vectors i, ¥ over Z,
whose supports (i.e, the subsets of [0, 2k] composed by all nonzero entries of u, v), are exactly u, v, respectively.
We may write if,7 € V(Og), instead of u,v € V(Og). The set V(Oy) of vertices of Oy admits a partition into
cyclic classes mod n, where two vertices i/, 7 are in the same class if and only if they are related by a translation
mod n, e.g., if il = ug - - - Uy, then ¥ = ujujq - - - upuotty - - - u;_1, for some i € Z, = [0,2k]|. This is a translation
that we denote by i € Z,,. The said cyclic classes mod # are to be optionally used in our final result, Corollary 5.

We also consider the double covering graph My of Oy, where My, referred to as middle-levels graph, is the
subgraph of the Boolean lattice of subsets of [0, 2k] induced by the levels Ly (= V(Oy)) and Ly 1, formed by the
binary n-strings of weight k and k + 1, respectively [2—4]. Two vertices u € Ly and v € Ly, of My are adjacent
in My if and only if u C v, with u and v taken as subsets of [0, 2k]. The double-covering graph map © : My O
restricts to the identity map over L and to the reversed complement bijection X over L1, thatis: if v € Ly
has characteristic vector ¥ = vgvy - - - Upr_10k, then @(v) = N(v) has characteristic vector Gy Tor_1 - - - 017 in
V(Ox), where 0 = 1 and 1 = 0. To the partition of V(Oy) into cyclic classes mod 7, or Z,-classes, corresponds
a partition of V(M) = Ly U L1 into dihedral classes, or Dy,-classes, where D, D Z, is the dihedral group of
order 2n.

An n-string ¥ = 01y - - - P in the alphabet [0, n] in which each nonzero entry appears exactly twice is
seen as a concatenation W|X|Y|Z’ of substrings W', X, Y and Z!, where Wi and Z' have length i, for some
0 < i < k. In that case, the n-string W'|Y|X|Z' is said to be a i-nested castling of ¥ (time-consuming as it swaps
parts of ¥, with many position changes).

A k-factor of a graph G is a spanning k-regular subgraph. A k-factorization is a partition of E(G) into disjoint
k-factors. A 2-factor (or cycle factor [5]) in Oy formed by n-cycles, with a pullback 2-factor in My of 2n-cycles
via @1, and used in constructing Hamilton cycles [6] and optionally in Corollary 5 below, was analyzed in [4]
from the viewpoint of restricted growth strings (RGS’s [7, p. 325]), which form the RGS-tree T of Lemma 1,
below.
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In Section 2, a modification of the arguments of [4] shows that such RGS’s exert control over the Dyck
paths of length 7, that represent bijectively the cyclic (resp., dihedral) classes of vertices of Oy (resp., M).
These paths, viewed as Dyck nests, defined in Subsection 4.1, were related via the (time-consuming) i-nested
castling operation controlled by the RGS-tree 7 that yields each non-root Dyck nest from its parent nest ([2-4],
or Theorem 1) in the reinterpretation of the Hamilton cycle constructions in Oy, [6] and M [8,9].

Such RGS-control will be reduced below, first by viewing each Dyck nest as its signature, defined in
Subsection 5.2 and shown to be equivalent to that Dyck nest in Theorem 4, and second by collapsing each
i-nested castling to a universal single (one-step) update of the signature of each non-root Dyck nest from the
signature of its parent nest in the RGS-tree 7. The term universal, introduced in Theorem 5, is taken in the
sense that the integers representing such updates do not depend on the values of k, so that those integers are
valid and unique for all concerned Oy’s and Mj’s. The sequence formed by all such updates, controlled by
the RGS-tree T, is presented in Theorem 9, accompanied by the sequence of their corresponding locations in
Corollary 5, leading to its asymptotic analysis (Subsection 6.4).

2. Restricted growth strings and i-nested castling

The k-t Catalan number [10] A000108 is given by Cy = gri#24y;. Let S be the sequence of RGS's [10] A239903.

It was shown in [2,3] that the first C; terms of S represent both the Dyck words of length 2k and the extended
Dyck words of length 7, obtained by prefixing a 0-bit to each Dyck word, and yielding a sole corresponding
Dyck path (Subsection 4.1).

The sequence S = (B(i))o<jey starts as

S =(B(0),...,p(17),...)
:(0, 1,10,11,12,100,101,110,111,112,120,121,122,123,1000,1001,1010, 1011, .. .),

and has the lengths of any two contiguous terms S(m — 1) and p(m), (1 < m € Z), constant unless m = C, for
some k > 1, in which case (m — 1) = B(Cy — 1) = 12 - -k has length k, and B(m) = B(Cx) = 10 =10---0
has length k 4 1.

To work in middle-levels and odd graphs in relation to their Hamilton cycles [6,8,9], RGS’s were tailored
as germs in [2—4]. A k-germ (k > 1)is a (k — 1)-string & = ay_qa,_, - - - aa; such that:

(a) the leftmost position of &, namely position k — 1, contains the entry a;_; € {0,1};

(b) given 1 < i < k, the entry a;_; at position i — 1 satisfies 0 < a; 1 <a; + 1.

Each RGS B = B(m), where 0 < m € Z, is transformed, for every k € Z such that k > length(g), into a
k-germ o = a(B, k) = a(p(m), k) by prefixing k— length(p) zeros to B.

Every k-germ ay_1ay_; - - - apa; yields the (k4 1)-germ Oay_qa;_5 - - - axay. A non-null RGS is obtained by
stripping a k-germ & = ay_1ax_o - - - apa; # 00 - - 0 of all the zeros to the left of its leftmost position containing
a 1. We denote such an RGS still by «, say that the null RGS & = 0 represents all null k-germs a, (0 < k € Z), and
use &« = a(m), or f = B(m), both for a k-germ and for its corresponding RGS. In fact, « = a(m), or p = p(m),
will be considered to be the RGS representing all the k-germs a« = a(m), or p = B(m), respectively, (0 < k € Z)
leading to «, or B, as an RGS, by stripping their zeros as indicated.

Ifa,b € Z, then let

M abl={jeZa<j<b} @) [a,b[={j€Za<j<b};

B)labl={jeZa<j<b}; @) |a,b[={j € Z;a < j < b}.

Given two k-germs & = a_1---a; and B = by_q - - - by, where o # B, we say that a precedes 8, written
a < B, whenever either

AD0=a_1<by_1=1or

(ii) i € [1, k[ such that a; < b; with a; = b;, Vj €]i, k[.

The resulting order of k-germs yields a bijection from [0, Ci[ onto the set of k-germs that assigns each
m € [0,Ci[ to a corresponding k-germ & = a(m). In fact, there are exactly Cy k-germs a = a(m) < 10F,
Vk > 0. Moreover, we have the following trees T, correspondences F(-) and RGS-tree 7 (this one, partially
exemplified in display (1) via its section for k < 5).
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3. Ordered trees of k-germs and Dyck words

We recall from [2, Theorem 3.1] or [3, Theorem 1] that the k-germs are the nodes of an ordered tree 7Ty
rooted at 0¥~ and such that each k-germ o = ap_1---axm # 051 with rightmost nonzero entry a; (1 < i =
i(a) < k) has parent B(a) = by_1 - - - baby < win Ty with b; = a; — 1 and a; = bj, for every j # i in [1,k — 1].

Lemma 1. By considering k-germs as RGS’s, an infinite chain T C T3 C --- C Ty C - -- of finite trees converges to
their union, the RGS-tree T .

Proof. Iterative inclusion of the successive trees 7y tends to the RGS-tree, as k converges to infinity, where the
original k-germs are considered as RGS as indicated. O

Theorem 1. To each k-germ « = ay_1 - - - ay corresponds an n-string F(«) with initial entry 0 and having each j € [1, k]
as an entry exactly twice. Moreover,

F(OF1) =012+ -+ (k—2)(k— 1)kk(k — 1) - - 21, (e.g., F((0) = 011, F(00) = 01221).
Furthermore, if & # 0K1, let

1. W and Z' be the leftmost and rightmost, respectively, substrings of length i = i(«) in F(B), where B is the parent
of win Ty,

2. ¢ > 0 be the leftmost entry of F(B) \ (W' U Z'), and

3. F(B) \ (WU Z') be the concatenation X|Y, where Y starts at the entry c + 1 of F(B).

Then F(a) = W|Y|X|Z' is the i-nested castling of F(B) = W!|X|Y|Z!. In addition, W' is an ascending i-substring, Z'
is a descending i-substring, and kk is a substring of F(a).

Proof. The proof is a slight modification of that of [2, Theorem 3.2] or [3, Theorems 2], where the rightmost
appearances of each integer of [1,k] in every F(a) as in the statement were given as asterisks, *, or in [4,
Theorem 2] as equal signs, =. O

The disposition of RGS’s in an initial section of the RGS-tree of Lemma 1 (for k < 5) is shown in display
(1), where the children of an RGS & at any level are disposed from left to right in the subsequent level, starting
just below a:

0
1 10 100 1000
11 101 110 1001 1010 1100
12 111 120 1011 1101 1110 1200
112 121 1012 1111 1120 1201 1210
122 1112 1121 1211 1220 e8]
123 1122 1212 1221 1230
1123 1222 1231
1223 1232
1233
1234

4. Dyck words, k-germs and 1-factorizations

A binary k-string (or k-bitstring [6,8,9]) is a sequence of length k whose terms are the digits 0, called 0-bits,
and/or 1, called 1-bits, respectively. The weight of a binary k-string is its number of 1-bits.

In this work, a Dick word of length 2k is defined as a binary 2k-string of weight k such that in every prefix
the number of 0-bits is at least equal to the number of 1-bits (differing from the Dyck words of [6] in which the
number of 1-bits is at least the number of 0-bits).
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The concept of empty Dyck word, denoted €, whose weight is 0, also makes sense in this context. We will
present each Dyck word as its associated anchored Dyck word, obtained by prefixing a 0-bit to it. In particular, e
is represented by the anchored Dyck word 0.

For each k-germ «, where k > 1, we define the binary string form f(«) of F(a) by replacing each first
appearance of an integer j € [0, k| as an entry of F(«) by a 0-bit and the second appearance of j, in case j € [1,k],
by a 1-bit (where 0-bits and 1-bits correspond respectively to the 1-bits and 0-bits used in [6]). Such f(«) is a
binary n-string of weight k, namely an anchored Dyck word of length n whose support supp(f(«)) is a vertex
of Oy and an element of Ly, while ®(f(«)) is an element of Ly, 1. Note that the pair {f(a),X(f(x))} together
with the Zj,-class of f(«) in Ly (= V(Oy)) generate the D,-class of f(«) in V(My). Thus, f(a) represents
both a Z,-class of V(Oy) and a D,-class of V (M), which has Hamilton cycles lifted from those in Oy [4,6], or
independently, as in [2,3,8,9]

4.1. Dyck paths

Each anchored Dyck word f(«) yields a Dyck path [4] obtained as a curve p(«) that grows from (0,0) in
the Cartesian plane IT via the successive replacement of the 0-bits and 1-bits of f(«), from left to right, by
up-steps and down-steps, namely segments (x,y)(x + 1,y +1) and (x,y)(x + 1,y — 1), respectively. We assign
the integers of the interval [0, k] in decreasing order (from k to 0) to the up-steps of p(«), from the top unit layer
intersecting p(«) to the bottom one and from left to right at each concerning unit layer between contiguous
lines y,y +1 € Z, where 0 < y € Z. These assigned integers correspond to their leftmost appearances as
entries of F(«). Each leftmost appearance j' of an integer j € [1, k] in F(a) corresponds to the starting entry of a
Dyck subword Oulv in f(«), where u, v are Dyck subwords (possibly €). The Dyck subword 0ulv corresponds
in F(«) to a substring j'Uj"V, where U and V correspond to u and v, respectively, and j” = j' € [1,k].

o  _Fo) B A@i@) owA@ o F(o) B(a) A(®) i(e) o(e) Aw

o 01221 by 0 0000 01234554321 1234/ 0 |11100135532442101340114213121 1

1 oazrl 0 10 1 0 0001 02345543211 12341230 1140 10 | 1111024421355310114 0112 114222 k-3
o Fo) Bl Al ite) oAl 0010 01345543221 123412042130 20 |11120355324421101120110 1220230

00 ﬁgﬁ _(—)Tz(_)f/_l {._1_1_) 0011 02213455431 1204 1203 1143 3 k-2 | 1120 01443553221 0114 0104 2210240

0l 0233211 12 10 1120 1 0 0012 03455432211 1203 1200 1230 40 | 1121 02214435531 0104 0103 1143 25 k-2
10 0133221 12 02 2110 2 0 0100 01245543321 123410343120 50 | 1122035532214410103 0101 123126 1

oom e ol 2 o7 | 01010245543321110341030 1140 60 | 1123 04435532211 0101 0100 1310270

= e e s e s 0110 01332455421 1034 1024 2132 7 k-3 | 1200 01255443321 0134 0034 321028 0

—a Fla) Bla) Almi(e) oA |0111024554213311024 1021 1141 81 | 1201 02554433211 0034 0030 1140 29 0

000 012344321 123 ) 0 0112 03324554211 1021 1020 1210 90 | 1210 01332554421 0034 0024 2132 30 k-3
001 023443211 123 120 1130 L 0 1 (012001455433221 1024 1004222010 0 | 1211 02554421331 0024 0021 114131 1

8:? gljﬁm{ :(’]3 :32 ;32 2 ‘k?_? 0121 02214554331 1004 1003 114311 k-2 | 1212 03325544211 0021 0020 121032 0

012 03443211 102 100 1220 4 0 | 012203322145541 1003 1002 123212 k-3 | 1220 01443325521 0024 0014 2221 33 k-4
100 012443321 123 023 3100 5 0  |0123045543322111002 1000132013 0 | 1221 025521443310014 0012 1142342

101 024433211 023 020 1130 6 O 1000 01235544321 1234 02344110140 | 122203325521441 0012 0011 1221 35 1

110 013324421 023 013 2121 7 k-3 | 1001 02355443211 0234 0230 1140150 | 1223 04433255211 0011 00101310360

D 024ZL1 013 011 11315 11010 01355443221 0234 0204 213016 0 | 1230 015544332210014 0004 231037 0

12 0aiaait O 010 1210 % 8 11011 02213554431 0204 0203 114317 k-2 | 1231 02215544331 0004 0003 1143 38 k-2
121 022144331 003 002 1132 11 k-2 |1012035544322110203 02001230180 | 1232 03322155441 0003 0002 1232 39 k-3
122033221441 002 001 1221 12 k-3 | 1100012443553210234 0134 312119 k-4 | 1233 04433221551 0002 0001 1321 40 k-4
123 044332211 001 000 131013 0 1101 02443553211 0134 0130 114020 0 11234 05544332211 0001 0000 1410 41 0

Figure 1. List of k-germs , n-nests F(«), signatures and update entries, for k = 2,3, 4,5.

Each edge uv of Oy is taken as the union of a pair of arcs 1v and vii, that is a pair of oriented edges with
sources u and v and targets v and u, respectively. Let us see that each first appearance of an integer i € [0, k] in
F(a) (that we refer to as color i) determines uniquely an arc of Oy and two edges of M. The n-strings F(«) of
Theorem 1 will be said to be Dyck nests of length 1, or n-nests. Say u € V(Oy) belongs to a Dyck nest F(«), seen
as a Zy-class of O, and that i’ € [0, k] is the first appearance of an integer i in F(«a). Then, there is a unique
vertex v in a Zy-class of O corresponding to a Dyck nest F(a’) such that uv is an edge of Oy and u has its
i-colored entry i’ in the same position as the entry with color k — 7 in v, so we say that the color of the arc v is i.
In that case, the arc vit has color k — i, allowing to recover u from v as the unique vertex of Oy such that to the
entry of v with color k — i corresponds the entry in the same position in u with color k — (k — i) = i. Thus, we
say 1 has color i and it has color k — i, this being the supplementary color of i in [0, k]. The inverse images @ !
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of 1w and vii are formed by an arc from Ly to Ly, 1 and another arc from Ly, onto Ly (see Example 1); they end
up yielding a pair of edges in Mj.

Example 1. The translations j € Z, act on any anchored Dyck word f(«), yielding binary n-strings f(«).j, so
f(a).0 = f(a) itself. This notation is also used for n-nests F(«). Given u = £(000).0 = 000001111 € Oy, the arc
color i = 3 € [0,4] determines an arc 10 with source u and target v = f(001).5 = 111010000. This information
can be arranged as follows:

Lo [j] F@j | f@j | O | BN [ R] BN\, |
000 | 0 | 012344321 | 000001111 | u = 5678 | 000001111 | < | 000011111 (2)
001 | 5| 432110234 | 111010000 | v = 0124 | 000101111 | « | 000010111

Display (2) shows from left to right: the 4-germs « for the source u and target v (columnwise) of the arc 1v;
the corresponding translations j € Zy; the Zo-translated Dyck nests F(«).j, where the i-th entries are shown in
bold trace; the Zg-translated anchored Dyck words f(«).j, where the i-th entries are again shown in bold trace;
and the two edges in the double covering My of O4 projecting onto v, which are related via .

4.2. Arc coloring and 1-factorizations

Note that there is a coloring (or partition) of the set of arcs of Oy resulting from Subsection 4.1 and
exemplified in Example 1. It induces a 1-factorization of My into (k + 1) 1-factors, each formed by the edges
whose arcs from Ly to Ly 1 are colored with a corresponding integer of [0,k|. This factorization is known as
the modular 1-factorization of My, [4]. In contrast, a different 1-factorization known as the lexical 1-factorization
of My [8] exists. This is presented and exemplified in Example 2.

Example 2. Continuing as in Example 1 but with M rather than Oy, we modify and, instead of coloring with
k —i € [0,k] the arc 1v determined by the first appearance of i € [0, k] in the Dyck nest F(«) of each vertex u
of My in Ly, we now color v with i € [0,k]|, so that a 1-factorization of M, is determined, namely the lexical
one [8] mentioned above, with @it also colored with i. This is exemplified as follows, where k = 4, color
i =3¢ 0,4],and « = 000, so that u = f(x).0 = f(a) = 000001111 (with the i-th entry in bold trace) is sent by
N onto N(u) = 000011111 € Ls:

(VM) | & |j| Fa)j | fl@j | R[] R(f(a))) |
Ly | 000 |0 | 012344321 | 000001111 | «» | 000011111 € Ls

®)
Ls | 100 | 8 | 123344210 | 000101111 | > | 000010111 € L4

In display (3), the corresponding edges from u and X(u) end up onto v = N(w) = 000101111 € Ls and
w = R~1(v) = £(100).8 = 000010111 € L4. These are the edges uv = uR(w) and R (u)v with both oppositely
oriented arcs in each case having the same (lexical) color i, which differs with the modular-color situation
in Subsection 4.1 and Example 1 (that is: with the colors i and k — i of the arcs of each edge differing as
supplementary colors in [0, k]).

5. Dyck nests and signatures

Theorem 2. Each anchored Dyck word w of length n is the binary string f(«) associated to an n-nest F () obtained via
the procedure of Theorem 1 from a specific k-germ o = a(w).

Proof. The Lexical Procedure [2, Section 7], [3, Section 7] restores the positive integer entries of F(«)
corresponding to the k non-initial 0-bits of w = f(«). These are the first appearances j’ of each integer j € [1, k]
in F(x). By forming the Dyck word Oulv of f(«), the second appearance j” of j is found by replacing its
corresponding 1-bit in f(a) by j = j” in F(a). O



Open J. Discret. Appl. Math. 2025, 8(1), 01-17 6

00000 0123456654321 12345 0 11120 0146643553221 01125 01105 2220 66 0
00001 0234566543211 12345 12340 1150 _ 1 0 11121 0221466435531 01105 01104 1154 67 k-2
00010 0134566543221 12345 12305 2140 20 11122 0355322146641 01104 01102 1242 68 k4
00011 0221345665431 12305 12304 1154 3 k-2 11123 0466435532211 01102 01100 1320 69 O
00012 0345665432211 12304 12300 1240 _ 4 0 11200 0125546643321 01145 01045 3210 70 0O
00100 0124566543321 12345 12045 3130 50 11201 0255466433211 01045 01040 1150 71 0O
00101 0245665433211 12045 12040 1150 _ 6 0 11210 0133255466421 01045 01035 2150 72 k-3
00110 0133245665421 12045 12035 2143 7 k-3 11211 0255466421331 01035 01031 1151 73 1
00111 0245665421331 12035 12031 1151 8 1 11212 0332554664211 01031 01030 1210 _74 0
00112 0332456654211 12031 12030 1210 9 0 11220 0146643325521 01035 01015 2231 75 1
00120 0145665433221 12035 12005 2230 10 0 11221 0255214664331 01015 01013 1153 76 k-3
00121 0221456654331 12005 12004 1154 11 k-2 11222 0332552146641 01013 01012 1232 77 k-4
00122 0332214566541 12004 12003 1243 12 k-3 11223 0466433255211 01012 01010 1320 _78 O
00123 0456654332211 12003 12000 1330 _13 0 11230 0155466433221 01015 01005 2310 79 0
01000 0123566544321 12345 10345 4120 14 0 11231 0221554664331 01005 01004 1154 80 k-2
01001 0235665443211 10345 10340 1150 15 0 11232 0332215546641 01004 01003 1243 81 k-3
01010 0135665443221 10345 10305 2150 16 0 11233 0466433221551 01003 01001 1331 82 1
01011 0221356654431 10305 10304 1154 17 k-2 11234 0554664332211 01001 01000 1410 83 0
01012 0356654432211 10304 10300 1240 _18 0 12000 0123665544321 01345 00345 4210 84 0
01100 0124435665321 10345 10245 3132 19 k-4 12001 0236655443211 00345 00340 1150 85 0
01101 0244356653211 10245 10240 1150 20 0 12010 0136655443221 00345 00305 2140 86 0O
01110 0135665324421 10245 10215 2141 21 1 12011 0221366554431 00305 00304 1154 87 k-2
OL11l 0244213566531 10215 10213 1153 22 k-3 12012 0366554432211 00304 00300 1240 88 0
01112 0356653244211 10213 10210 1230 23 0 12100 0124436655321 00345 00245 3132 89 k-4
01120 0144356653221 10215 10205 2210 24 0 12101 0244366553211 00245 00240 1150 _90 0O
01121 0221443566531 10205 10204 1154 25 k-2 12110 0136655324421 00245 00215 2141 91 1
01122 0356653221441 10204 10201 1241 26 | 12111 0244213665531 00215 00213 1153 92 k-3
01123 0443566532211 10201 10200 1310 27 0 12112 0366553244211 00213 00210 1230 93 0
01200 0125665443321 10245 10045 3220 28 0 12120 0144366553221 00215 00205 2210 94 0
01201 0256654433211 10045 10040 1150 29 0 12121 0221443665531 00205 00204 1154 95 k-2
01210 0133256654421 10045 10035 2143 30 k-3 12122 0366553221441 00204 00201 1241 96 1
01211 0256654421331 10035 10031 1151 31 1 12123 0443665532211 00201 00200 1310 97 0O
01212 0332566544211 10031 10030 1210 32 0 12200 0125544366321 00245 00145 3221 98 k-5
01220 0144332566521 10035 10025 2232 33 k-4 12201 0255443663211 00145 00140 1150 99 0
01221 0256652144331 10025 10022 1152 34 2 12210 0136632554421 00145 00125 2142 100 2
01222 0332566521441 10022 10021 1221 35 | 12211 0255442136631 00125 00122 1152 101 k-4
01223 0443325665211 10021 10020 1310 36 0 12212 0366325544211 00122 00120 1220 102 0
01230 0156654433221 10025 10005 2320 37 0 12220 0144366325521 00125 00115 2221 103 1
01231 0221566544331 10005 10004 1154 38 k-2 12221 0255214436631 00115 00113 1153 104 k-3
01232 0332215665441 10004 10003 1243 39 k-3 12222 0366325521441 00113 00111 1231 105 1
01233 0443322156651 10003 10002 1332 40 k-4 12223 0443663255211 00111 00110 1310 106 O
01234 0566544332211 10001 10000 1410 _41 O 12230 0155443663221 00115 00105 2310 107 O
10000 0123466554321 12345 02345 5110 42 0 12231 0221554436631 00105 00104 1154 108 k-2
10001 0234665543211 02345 02340 1150 43 0 12232 0366322155441 00104 00102 1242 109 2
10010 0134665543221 02345 02305 2140 44 0 12233 0443663221551 00102 00101 1321 110 1
10011 0221346655431 02305 02304 1154 45 k-2 12234 0554436632211 00101 00100 1410 111 O
10012 0346655432211 02304 02300 1240 _46 0 12300 0126655443321 00145 00045 3310 112 0O
10100 0124665543321 02345 02045 3130 47 0 12301 0266554433211 00045 00040 1150 113 O
10101 0246655433211 02045 02040 1150 _48 0 12310 0133266554421 00045 00035 2143 114 k-3
10110 0133246655421 02045 02035 2143 49 k-3 12311 0266554421331 00035 00031 1151 115 1
10111 0246655421331 02035 02031 1151 50 | 12312 0332665544211 00031 00030 1210 116 O
10112 0332466554211 02031 02030 1210 _51 0 12320 0144332665521 00035 00025 2232 117 k-4
10120 0146655433221 02035 02005 2230 52 0 12321 0266552144331 00025 00022 1152 118 2
10121 0221466554331 02005 02004 1154 53 k-2 12322 0332665521441 00022 00021 1221 119 1
10122 0332214665541 02004 02003 1243 54 k-3 12323 0443320655211 00021 00020 1310 120 O
10123 0466554332211 02003 02000 1330 55 0 12330 0155443326621 00025 00015 2321 121 k-5
11000 0123554664321 02345 01345 4150 56 k-5 12331 0266215544331 00015 00013 1153 122 3
11001 0235546643211 01345 01340 1150 _57 0 12332 0332662155441 00013 00012 1232 123 2
11010 0135546643221 01345 01305 2140 58 0 12333 0443326621551 00012 00011 1321 124 1
11011 0221355466431 01305 01304 1154 59 k-2 12334 0554433266211 00011 00010 1410 125 0
11012 0355406432211 01304 01300 1240 60 0 12340 0166554433221 00015 00005 2410 126 0O
11100 0124664355321 01345 01145 3131 o6l 1 12341 0221665544331 00005 00004 1154 127 k-2
11101 0246643553211 01145 01140 1150 _62 0 12342 0332216655441 00004 00003 1243 128 k-3
11110 0135532466421 01145 01125 2142 63 k-4 12343 0443322166551 00003 00002 1332 129 k-4
11111 0246642135531 01125 01122 1152 64 2 12344 0554433221661 00002 00001 1421 130 k-5
11112 0355324664211 01122 01120 1220 65 0 12345 0665544332211 00001 00000 1510 131 0O

Figure 2. List of k-germs &, n-nests F(a), signatures and update entries, for k = 6.

5.1. Dyck nests

Our calling the strings F(«) by the name of Dyck nests, or n-nests, was suggested by the sets of nested
intervals formed by the projections on the x-axis of the two appearances j’ and j” of each integer j € [1,k] as
numbers assigned to the respective up- and down-steps of each Dyck path p(«).
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We take the tree 7, whose nodes were originally denoted via the k-germs &, and denote them, further, via
the n-nests F(«), in representation of the corresponding anchored Dyck words f(«). With this nest notation,
T will be now said to be a tree of Dyck nests.

Corollary 1. The set of n-nests F(«) is in one-to-one correspondence with the set of anchored Dyck words f () of length
n.

5.2. Signatures

Each n-nest F () is encoded by its signature A(a) = (Ax_1(«),..., Az(«),ay)alpha), defined as the vector
of halfway-distance floors A;(«) between the first (') and second (j”) appearances of each integer j assigned
to the respective up- and down-steps of the path p(«), where k > j > 0. We write For example, if j'k'k"j"”
(resp., j'(k — 1)'K'k" (k — 1)"j") is a substring of F(a1) (resp., F(a2)), then the halfway-distance floor of j is

1d(j’,j")] = [3/2] =1 (resp. |d(j’,j")| = |5/2] = 2), engaged as the j-th entry of A(a7) (resp., A(x2)).

Claim 1. Using the equivalence of n-nests F(x) and signatures A(w) provided by Theorem 4, below,
construction of the tree 7 of Dyck nests F(a) is simplified by updating just one entry of A(B) to get A(«),
instead of using the procedure in Theorem 1 to get F(«) from F(p).

Example 3. Claim 1 is exemplified in Figures 1-2 for k = 2,3,4,5,6. In these figures, the first column for
each such k shows the k-germs & = a;_1 - - - 47 in depth-first order of the node set of 7, in black except for
(), which is in red; the second column shows the corresponding n-nests F(a) initialized in the top row as
F(0k1) =

012--- (k—2)(k—Dkk(k—1)(k—2)---21 = 01’2 -+ (k—2)"(k = 1)K'k" (k — 1) (k — 2)"" - - . 2"1"),

(with the “prime” notation after the equal sign in accordance to Subsection 4.1) and continued from the second
row onas F(a) = wi Y| X |Z!, (as in Theorem 1), where W and Z! are in black, Y is in red and X is in green, and
the parent f of « in 7 having F(B) = Wi|X|Y|Z}; this second column has the red-green numbers underlined;
the third and fourth columns have their rows as the signatures B(«) = By_1By_5 - - - BoB; of B (starting at the
second row) and A(a) = Ay 1Ax_2 - A2A; of a, specified by having B; = B;j(a) and A; = Aj(a), for each
j € [1,k[, as the numbers of pairs formed by the two appearances of each integer between the two appearances
of j in F(B) and F(w), respectively; these third and fourth columns are determined by the black-red-green
second column at each row; the fifth column, starting at the second row, is formed by four single-digit columns:

(1) the value i = i(«) in the current application of Theorem 1; (i in red if and only i > 1);
(2) the corresponding value of a; = (o) IN 0 = A0 - - - A2071;

(3) the corresponding value of B;(a) = Bj(,)(«) in the third column;

(4) the value of A;(a) = Aj(y)(«) in the fourth column, with A; in red if and if A; > 0;

the sixth column is the depth-first order o(a) of w in Ty; all rows of the second column, below the first row, have
the substring kk (that is, K'k”, in terms of the appearances k' and k” of k) either in Y (red) or in X (green); after
the initial black row F(a) = F(0k~1), the substring kk is red in the two subsequent rows and becomes green
in the fourth row; this corresponds to the red value k — ¢ = k — 2 of the seventh column. For all columns but
for the second one in Figures 1 and 2, each row which in the first column has k-germ & = a;_1 - - -a; witha; a
local maximum (so that the following k-germ, say v = cx_1 - - - ¢1, in the same first column, if any, has c¢; = 0)
appears underlined.

5.3. Role of substrings kk in Dyck nests

Each value in the seventh column of Figures 1 and 2 equals the corresponding value of item (4) in the fifth
column, expressed in terms of the number ¢ of Theorem 1, item 2, as:

(@) ¢, if kk is red, where ¢ is the number of green pairs (', j") with j > ¢;
(b) k — ¢, if kk is green, where / is the sum of ¢ + 1 and the number d of red pairs (j/, ;") with j > ¢+ 1.
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For example, all cases with 4 > 0 (item (b)) in Figure 2 happen precisely for
(v, c,d) = (01111,2,1), (11110,3,1), (11122,3,1), (11221,2,1), (12111,2,1), (12211,2,2), (12221,2,1).

Let g be the correspondence that assigns the values A;(,)(«), (in the seventh column of Figures 1 and 2),
to the orders o(«), (in the sixth column), where « refers to k-germs.

Theorem 3. For each k-germ a # 051, the signatures B(w) and A(a) of the parent B (of a in Ty.), and , respectively,
differ solely at the i(x)-th entry, that is:

Bi(a) = Bj(y) (&) # Aj(q) (x) = Aj(a), while Bj(a) = Aj(a), Vj # i = i(a).

Proof. There is a sole difference between the parent § = by_1---b; of &« = a;_1--- a7 and « itself, occurring
at the i(«)-th position, whose entry is increased in one unit from B to «, that is: Ai(q) = bi(a) +‘1. The effect
of this on F(a), namely the i-nested castling of the inner strings Y and Z of F(B) = X'|Y|Z|W' into F(«) =
X'|Z|Y|W!, modifies just one of the halfway-distance floors A; = |d(j',j")/2] between the first appearance
j' of the corresponding j € [0,k in F(«) and its second appearance, j”, namely A; = |d(/,i")/2], where
i=i(a). O

Theorem 4. The correspondence that assigns each n-nest to its signature is a bijection.

Proof. Let« = ay_1...aa; be a k-germ. The n-nest F(a) = cocy . . . cox has rightmost entry ¢y = 17, s0 Aj(a)
determines the position of 1". For example, if A1(a) = 0, then cyx_1 = 1/, s0 a1 is a local maximum (indicated in
Figures 1 and 2 by having a, B(a), A(), - - -, 0(), Aj(4)(a) underlined). To obtain F(«) from A(«), we initialize
F(a) as the n-string F® = 00 - - - 0. Setting the positions of 1”,1/,2",2/,..., (k—1)", (k — 1)’ successively in place
of the zeros of F¥ in their places from right to left according to the indications Aj(«), Ay(«), ..., Ar_1(«), is
done in stages: first setting the pairs (/,i”) as outermost pairs from right to left; when reaching the initial 0,
we restart if necessary on the right again with the replacement of the remaining zeros by the remaining pairs

(i',1") in ascending order from right to left. Thus, given A(a), we recover F(x). O
Example 4. With k = 6, A(11111) = 01122, (resp., A(12122) = 00201), we go from F° to

0200002100001 to | (resp.,) | 0300003221001 to
0240042130031 to 0366553221441 ,
0236642135531

the last row yielding four (resp., two) entries separating the two appearances 1’ and 1” of 1 € [0, k], namely
3/,5,5" and 3", (resp., 4’ and 4”).

Theorem 4 provides a fashion of counting Catalan numbers via RGS’s [2,3] different from that of [11, item
(u), p. 224]. Both fashions, which are compared in [2], accompany the counting list of RGS’s in reversed order.
In both cases (namely Theorem 4 and item (u)), the null root RGS, 0, corresponds to the signatures 12 - - - k, for
all 0 < k € Z; and the last RGS for every such k corresponds to the signatures 0F. Thus, these initial (resp.,
terminal) terms coincide. However, these two counting lists with same initial (resp., terminal) terms differ in
general.

Theorem 5. (1) The correspondence g, whose definition precedes Theorem 3, is extended uniquely for each k > 1 and
k-germ a, so that in terms of a seen as an RGS, the value of g(o(w)) = Aj)(w) is expressible either as { or as
k — ¢, as in Subsection 5.3.
(2) Registration of the value { (resp., —{) at each stage in S \ B(0) for which g(o(a)) is expressible as ¢ (resp., k — {)
as in item (1), is performed independently of k, so it constitutes a universal single update of Dyck-nest signatures,
just controlled by the RGS tree. This yields an integer sequence accompanying the natural order of RGS’s in S.
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The updates mentioned in Theorem 5, item (2), will be expressed in terms of the function in display (4),
to be employed in Theorems 7 and 8, respectively.

Proof. The options in item (1) depend on whether the substring kK’k” lies in Y (red) or in X (green). In the first
case, g(o(a)) is of the form ¢. Otherwise, it is of the form k — /, for if k is increased to k + 1, then the substring
(k+1)'(k+1)" separates k' and k", thus adding one unit to g(o(«)), so that k — ¢ becomes (k + 1) — ¢. This

happens independently of the values of k, yielding item (2). O
Example 5. The nonzero values g(k) are initially as follows: ¢(3) = k—2,¢(7) =k—3,k(8) =1,¢(11) = k-2,
(12) =k—-3,9(17) =k—2,2(19) =k —4,¢(21) =1, g(22) =k — ,g( 5)=k— Zg( 6) = 1g( 0) =k-3,
g(31) =1,8(33) =k—4,9(34) =2,9(35) =1,8(38) =k—2,8(39) =k—3,4(40) =k —4,e

Corollary 2. The following items hold:

(A) The leftmost entry in the substring W' of F(a) = X'|Z|Y|W' is i".

(B) If the substring kK'k" of F(«) appears to the left of i’ in F(a), then g(o(a)) equals the number of pairs (j',j")
in the interval |i',i"|, for all pertaining integers j € [1,k|[. In particular, F(«) ends at the substring 1’1" if and only if
g(o(a)) = 0.

(C) IfFK'K" lies in |i’,i"| then k'k" is contained in X (green substring in F(a), Figures 1-2) and g(o(a)) =k —j,
where j = j(a) is determined as follows: since i(f) = 1+ i(a), where p = B(a) is the parent of «, then j is the sum of
g(0(B)) (which is as in item (B)) plus the leftmost red number of F(«).

Proof. The statement follows from Subsection 5.3 and Theorems 4 and 5. In particular, items (B) and (C) are
equivalent to items 1 and 2 of Subsection 5.3, respectively. O

Example 6. Let k = 5. Then, g(21) = g(0(1110)) = 1, as |i’,i"”[=]2/,2"[ contains just the pair (4',4"),
accounting for one pair by Corollary 2(B). For « = 1111, k'k” is green and g(22) = ¢(0(1111)) = g(o(a)) =

—j=k—3,wherej = 3isthesumof g(0(B)) = g(0(1110)) = g(21) = 1 and the leftmost red number of F(«),
namely 2. In addition, g(28) = g(0(1200)) = 0 has child « = 1210 with g(o(«)) = g(30) = k — 3, because the
leftmost red entry of F(«) is 3. The child &’ = 1220 of « has g(o(a’)) = ¢(33) = k — (3+ 1) = k — 4. However,
the child a” = 1230 of & has g(o(a”)) = ¢(37) = 0. Now, the child 1211 of « has g(0(1211)) = 1, because 1’ is
the leftmost number of W' and there is only one pair of appearances of a member of [1,k — 1] = [1,4], namely
3/3" between 1’ and 1”.

6. Universal single updates

Now, we introduce strings A;, for all pairs (i,j) € Z* with 1 < i < j. The entries of each Aﬁ are integer
pairs (1, ¢), denoted 1z, starting with 1, initial case of the more general notation 1 jr for j > 1. The strings Aé are
conceived as shown in Table 1. The components : in the entries /; represent the indices i = i(«) of Theorem 1 in
their order of appearance in §, and { is an indicator to distinguish different entries 1 while : is locally constant.

Recalling items (B) and (C) of Corollary 2, we define the updating integers («) by:

o(a)), if g(o(a)) is as in (B);
) (80D, 50w isas w
g(o(a)) —k, if g(o(a))is asin (C).
Next, consider the infinite string A of integer pairs i; formed as the concatenation
A= ANAG A= 1| AR A (5)

with A] = %|1; = %1 standing for the first two lines in tables as in Figures 1-2, where *, standing for the root
of T, represents the first such line, and Al represents the second one.

Example 7. Illustrating (5), Table 2 has its double-line heading formed by the subsequent terms of a suffix of
A. The third heading line is formed first by the root * of all trees 7; and then by the successive parameters
i = i(a) > 1 initiating the substrings in the second line. The fourth line contains the values h(a) for the
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Table 1. Introduction of strings A{, for all pairs (i,j) € Z* such that1 < i < j.

A5 = 21[11]1y;

A5 = 25[14[15[15;

A7 = 23|14 |15]13]14;
A3 = 24|14[1p[13]14[15;

A3 = 31|14|A3|AS = 31]11[211115]2:14 1515;
A% = 35|11 A5]A5| A3 = 35]11(211115(25111515]2311 1o1514;
A3 = 33|14 [AJ[ A3 AS] A3 = 351112111 12]25111513]2314151314[24 14151314 15;

Af = 41|11 [AJASA] = 41[11]211115[31 112111152511 1515(3,1421 1415 ]2, 11 1515]2311 151514,
A i A A A

A§:51|11\A§\A§\A§\A§; i
A% = 5,|14|A5| A3| A7 A7 AS;

A =i 4| A JATLAL |- AL, W0 <i €20 < j €L

parameters i(a) > 1 of the third line. In every column, the values below that line are the values /1(«) for RGS’s
« of the successive k-germs a with i = i(a) = 1. Thus, below the third heading line, the values of each column
represent the updates h(a) corresponding to all the maximal paths of trees Ty that, after its first node «, has all
other nodes « with i = i(x) = 1. Note that Al is represented as [1,]- In the same way, we use notations [1311] and

[141]}, that could be generalized to [{ﬂ,

Each prefix of A corresponds to all k-germs representing a specific RGS « for increasing values of k > 1,
and is assigned the value () to be its updating integer, in accordance to Corollary 2 but for the initial position,
that is assigned an asterisk * to represent all the roots of the trees 7y, for all k > 1. More specifically, all prefixes
of A with Catalan-number lengths Cj are the strings formed by locations i = i(«) in the natural order of the
corresponding trees 7Ty, while the values h(«) of the participating RGS’s & occupy the subsequent positions
down below the heading lines.

Table 2. Exemplification of A = A}|A3]- - |A§\ o= x1|Af] - |A;| e
AT s

]| A3 A3 A3 A3 A A3

* 2 3 2 2 4 2 3 2 2 3 2 2 2

* 0 0 -3 0 0 0 —4 1 0 0 -3 —4 0

0] -2 0o 1 -2 0 -2 0 -3 -2 0 1 2 =2

0 0 -3 0 0 1 0 1 -3

0 0 0 —4

0

In Figure 3, the heading line of the top layer extends and continues the third heading line of Table 2, its
entries leading corresponding columns of values hi(«), for k < 7. This setting can be also seen as a left-to-right
list representation of 74 in Table 3, whose nodes are pairs (i(«), h(«)) for the successive RGS’s « in S, where if
some h(«a) equals a negative integer —y < 0, then is shown as 77, with the minus sign preceding # shown as a
bar over 7. With such notation, the leftmost column of Table 3 shows the children of the root (%, *) of T¢. The
adequately indented subsequent columns show the remaining descendant nodes at increasing distances from
(*,%). Also in Table 3, horizontal lines separate the node sets of 73 — (*, %), T4 — T3, 75 — Ta and Tg — Ts.

By reading the entries of the successive columns of Table 2, and more extensively in Figure 3, etc., and
then writing them from left to right, we obtain the integer sequence i(S) formed by the values h(«) associated
to the RGS’s a of S. For example, starting with Table 2, we have that
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2322 32242322 322242322322232222
0[-4[1]0 00/ 0-30/-5 0 1-400-310[00-4/10[5 2
2| o[3] 2 2] 0[1]-2 0]-2] o]2]-2[ 0] 1]-3]-2] 0[-2[ 0]-3]-2] o[ 4
0 01 o] [o/-3] [ o |[ol4] [o]4/-3] [0 |o[1] [0
0 0 o ol 0
0
6 2322423223222 2242322 32224232232 2
0]0]0-3 0004 1]0 /0 3-40]6]0 0301 0[-5200]-3-5000-4T10]1-4-0/0]3-41]0
0-2/01-20-20[-3-201/2-210-201-=20-20-4-2013-20-20-3-2023-201232
o] [o[3] [o] [o]1] [o[1]3] [o] [o]-3] [o] [of2] [of2]-3] [o] [o]1] [o]1[4] [o]1f4]3
0 0 0 -4 0 0 0]-5 [o] 0 -5 |0 ks |-
0 0 0 0|1
0
5232242322 322242322322232222
0 330501 -400-31[0-602-50/1-4100-3[21]0
5 g 200 - ! 3200 - L 3200143
Catalan's reversed triangle| [012/0/1]-2/0/-2/0 /2|20 1]-3]-2/0]2/0]3/-2/0]2]3/-2/0 1|43}
0 0-3 (0 0-4 043 0 0-5 0-5-4 0543
0 0 01 0 01 0/1]2
1 0 0 0|1
1 1 0
2 21 =
5 5 31 32 222 2 4 2322322232222
4 14 9 4 1 -
24922814 5 1 0/-3-4-5-60 0 0 -41/0-52/1[0/-6321]0
132132 90 48 20 6 1 012342 0-2/0/-3-20-4/-3-2/0-5-4/-3-2
429429297165 75 27 71 1 01 233 0 01 0/1/2] [0/1]2]3
ceeeer ees e FTTYY 0 1 2 4 0 ‘0‘1 0 112
lo 15 0 01
0 -6 0
0
Figure 3. Extension of Table 2 and partial view of A/, for k = 2,3,4,5,6,7
23 2 2 4 3 2 2 3222 5 4 3 2 2 322 2 43 2 2 2 322 2
10100 110 1000 1100 1110 1220 10000 11000 11100 11110 11220 12200 12210 12220 12330
1 1 1 1221 1111 11221 12211 12221 12331
122 1122 1222 11122 11222 12232 12332
1233 11233 12233 12333
12344
6 H 4 3 2 2 32 2 433 2 2 2 322 2
100000 110000 111000 11100 111110 111220 112200 112210 112220 112330
1 111221 112211 112221 112331
111122 111222 112232 112332
111233 112233 111333
112344
544 3 2 2 3 2 2 322 2 2 4333 2 2 2 2 32222 2
122000 122100 122110 122200 122210 122320 122330 123300 123310 123320 123330 123440
122111 122211 122321 122331 123311 123321 123331 123441
122122 122222 122322 122332 123342 123442
122343 123343 123443
122344 123344 123444
123455

Figure 4. Members of &1, fork = 2,3,4,5,6,7

W(S) = (h(0),...,h(41),...)
(*/ 0/ 0/ _21 Or Or O/ _3/ 1/ 0/ 0/ _2/ _3r O/ O/ 0/ Or _2/ 0/ _4/ 0/ 1/
-3,0,0,-2,1,0,0,0,-3,1,0,—4,2,1,0,0,—2,-3,-4,0, ...).
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Table 3. Left-to-right list representation of T¢ whose nodes are pairs (i(«), h(«)) for the subsequent RGS's « in
S, and if some h(«) equals a negative integer —1 < 0, then it is shown as 7j. The leftmost column shows the
children of the root (x, ) of Tg.

6.1. Sequence of updates of Dyck-nest signatures

The numbers in Italics in Table 2 initiate the subsequence /(P ) of h-values of a subsequence ®; of S, that
will allow the continuation of the sequence of updates of the Dyck-nest signatures. These numbers reappear
and are extended, in yellow squares in Figure 3. Expressing h(®;) with its initial terms as in Table 2, we
may write h(®1) = (h(j);j=1,2,3,5,7,8,12, 14, 19, 21, 22, 27, 34, 35, 36,41, ...) = (0,0,—2,0,-3, 1, -3,
0,—4,1,-3,1,-4,2,1,—4,...).

In order to use ®;, we recur to Catalan’s reversed triangle A', whose initial lines, fork = 0,1,...,7, are shown
on the lower left enclosure of Figure 3 and is obtained in general from Catalan’s triangle A [2] by reversing its
lines, so that with notation from [2], the portion of A’ shown in Figure 3 may be written as in Table 4.

6.2. Formations

Both in Table 2 and at the top layer of Figure 3, we have the representations (to be called formations) of:
@) (A%), namely the leftmost column, (just C; = T11 = 1 columns), with C, = 2 entries;
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Table 4. An initial detailed portion of Catalan’s reversed triangle A’.

=1

. Tl;_l Toi_l

; 7%22 T%: 703:1

=5 |1=5|17=3|15p=1

=14 | =14| =9 |t=4|17=1

T§:42 =4 |5=28|5=4|17=5|15=1

=132 |0 =132| 179 =90 |8 =48 |10 =200 =6|10=1

T =429 |1 =429 | £ =297 | 1] =165 | ¥} =75 |1 =27 |t =7 | 1§ =1

(i) (Al|A%), namely the C; = 75 = 17 = 2 leftmost columns, with a total of C3 = 5 entries;

(iii) (A}|A%|A3), namely the C3 = 7§ = 73 = 5 leftmost columns, with C; = 14 entries;

(iv) (A1|A3|A3|A}), namely the Cy = 7§ = 7§ = 14 columns in Table 2 or the Cy = 14 leftmost columns
in Figure 3, with a total of C5 = 42 entries;

and

(v) (Al|A3]|A3|Af|A2), namely the top Cs = 72 = 17 = 42 columns in Figure 3, with a total of Cq = 132
entries.

These five formations correspond respectively to the trees 75, T3, 71, T5 and Tg. We subdivide the sets of
respective columns according to the corresponding lines of A" considered as integer partitions A} _,, namely:
Ay =(1),M = (1,1), A, = (2,2,1), A = (5,5,3,1), Ay = (14,14,9,4,1), and A} = (42,42,28,14,5,1) to be
discussed subsequently.

Figure 3 contains the continuation for k = 7 of the commented formations, extending the mentioned
top layer of 72 = 42 columns with a second and third layers (having 7; = 42 and 7 = 28 columns,
respectively) and then with two additional parts in the fourth layer (having 7; = 14 on the right, and
T, + 15 = 5+ 1 columns on the left, respectively), and representing all of 7;. These numbers of columns,
namely (42,42,28,14,5,1), correspond to the sixth line A5 of A, namely A5 (1'5, Tf, T35, T25, T15, Tg)

Still in Figure 3 for 77, the first 2 = 42 columns (top layer) have lengths correspondingly equal to the
lengths of the subsequent 7; = 42 columns (second layer, delimited on the right by a thick gray vertical
segment). Of these, the final 28 columns have lengths correspondingly equal to the lengths of the subsequent

= 28 columns (third layer) Of these, the final 14 columns have lengths correspondingly equal to the
lengths of the subsequent 73 = 14 columns (fourth right layer). Of these, the final 5 columns have lengths
correspondingly equal to the lengths of the subsequent 7 = 5 columns (in the fourth left layer). It remains
just 77 = 1 column, formed by k = 7 values of /i(a). The said numbers of columns account for the partition
AL = (42,42,28,14,5,1), representing all the columns associated with the maximal paths of 77 formed by
nodes associated with RGS’s a with i(«) = 1. Similar cases are easy to obtain in relation to 7, for k < 7, where
thick gray vertical segments delimit on the right the 14 (resp., 5) columns next to the first 14 (resp., 5) columns;
(the same could have been done for the two columns next to the first two columns). A similar observation
holds for every other row of A'.
Some of the heading numbers in Figure 3 appear underlined, corresponding to the final k — 1 = T 2+
k 2 = (k —2) + 1 columns for each exemplified 7. The resulting column sets appear encased with a thlcker

border.

6.3. Main results

The subsequence ®; of S, a member of a family of subsequences {®;;1 < j € Z} satisfying for j > 1
the rules 1-3 below, is such that i(®q) is the subsequence of i(S) formed by all indices i(«) larger than 1,
exemplified in the heading line of Figure 3. The mentioned rules 1-3 are as follows:

1. the first term of <I>]- is

_ [theRGS 1, ifj=1;
the smallest RGS with suffix (j —1)(j —1), ifj>1;
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Figure 5. Information for ®,, 3, ®,, $5

Table 5. Example for Theorem 9, where the lists corresponding to 75, 73 and 7y are represented according to
the respective pairs (a, h(«)) indicating column pairs («, h(«)) and («;, h(a;)), for j = 1,2,3,4,5, as shown in the
heading line of the table.

| alh(e)| g [h(w) [ ao[h(aa) | as[h(as) | ag|h(as) | as]has) |
0 * 00 * 10 0
1 0 01 0 11 -2 12 0
0 * | 000 0| 100 0
1 0| 001 0] 101 0
10 0| 010 0| 110 -3 | 120 0
11 -2 | 011 -2 | 111 1] 121 -2
12 0| 012 0] 112 0] 122 1] 123 0
0 * | 0000 * | 1000 0
1 0 | 0001 0 | 1001 0
10 0 | 0010 0 | 1010 0
11 —2 | 0011 —2 11011 -2
12 0| 0012 0] 1012 0
100 0 | 0100 0| 1100 —4 | 1200 0
101 0| 0101 0] 1101 0] 1201 0
110 | -3 | 0110 -3 | 1110 111210 -3
111 10111 1| 1111 -3 | 1211 1
112 0| 0112 0] 1112 0] 1212 0
120 0| 0120 0] 1120 0] 1220 —4 | 1230 0
121 -2 10121 -2 | 1121 -2 ] 1221 2 | 1231 -2
122 | -3 | 0122 -3 | 1122 111222 1] 1232 -3
123 0| 0123 0] 1123 0] 1223 0| 1233 —4 | 1234 0
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2. ifa =ap 1---ap € & and either sy = 0 or ag_q-- ~a2a’1 ¢ ®; for every a’1 < ay, then alj € P; for
j € [0,a1];in that case, if ay € ®; withay = ar_q---az(a; +j'), for1 <j' € Z, thenay|j € @j;

3. for each maximal subsequence S = (1,2,...,2) of i(S) (¢t > 2), if there are z penultimate terms i = 2 of
S (z > 0) heading maximal vertical prefixes of a fixed length y in #(®;) (y > 0) and ending at h(a;) =
h(ag_1---a3(y +)y) ( € [0,2), then ay = a_y - --a3(y +z)j € ®;, for j/ €]y, y + z], yielding a vertical
suffix {h(a;);j" €ly,y +z]}.

Example 8. The three rectangular enclosures of Figure 4 contain in left-to-right columnwise form (only
showing those columns with yellow squares in Figure 3) the subsequence ®; of S in Subsection 6.1, (of RGS’s
« in yellow squares). Such enclosures contain in red the RGS’s for the prefixes in item 3 above, and in blue the
RGS'’s for the suffixes.

The columns in the formations of Subsection 6.2, as in Figure 3, end up with null values /(x) = 0, which
correspond to the terminal nodes a of maximal paths that after their initial nodes f with i(f) > 1, have the
remaining nodes p’ with i = i(8’) = 1. Clearly, the associated nodes « have degree 1 in the pertaining trees 7.

Theorem 6. Let « be a node of Ti. Then,

1. if a is a terminal node of a maximal path of Ty whose initial node B has i(B) > 1 and whose remaining nodes -y
have i(y) = 1, then g(a) = 0;
2. ifa=ay_y--aqwithay_y =landa; =0, forj=1,...,k—2, then g(a) = 0.

Proof. Item 1 in the statement arises because of the presence of the substring 1’1" in F(a). Item 2 arises because
of the presence of all substrings j'j” in F(«), forj=1,...,k—1. O

Theorem 7. Let aq be a node of Ty. Then, oy = 1|ay is a node of Ty and

k—h(ﬂél),’
2. ifh(ay) ¢ @1, then h(ay) ¢ 1 and h(a)) = h(ay).

Proof. Item 1 in the statement occurs exactly when the substring k’k” in F(«x) changes position from one side
of 1’ to the opposite side in the procedure of Theorem 1 starting at the parent B of a and ending at a. Item 2
occurs exactly when that is not the case. O

Example 9. Since a1 = 1 is a node of 7; as in Theorem 6 item 1, then «f = 1|a; = 11 is a node of 73 with
h(ay) = h(11) = h(1) —k = 0—2 = —2 € @y, by Theorem 7 item 1. This is indicated by /(1) = 0 in the upper
leftmost yellow square in Figure 3 and its accompanying h(11) = —2 as the upper leftmost red integer in the
figure. Note that this pattern is continued by associating each yellow square in Figure 3 to a corresponding
red integer for all k < 7. We can annotate this via the successive pairs (a1, (1)) taken by reading the data in
Figure 3 from left to right and from top downward:

(1(0),11(=2)),(10(0),110(—3)),11(—2),111(1)),(100(0),1100(—4)),(110(—3),1110(1)),(111(1),1111(~3)),(122(~3),1122(1)).

The last pair here arises from h(122) = —3, which follows from Corollary 3, below.

Theorem 8. Let1 < j <k € Z Letaj=1---(j—1)(j—1)ax_j_1 - - a1 be a node of Ty. Then,zx; =1---(j—
1)jax_j_1 - - - a1 is a node of Ty and

1. ifh(aj) € D}, then h(zx}) =k —h(a;);
2. ifh(a;) & D;, then h(lX}) = h(j).

Proof. Similar to the proof of Theorem 7. O

Corollary 3. Let 1 < k € Z. Let ap = 11ay_3 - - - aq be a node in Ty. Then, oy = 12a,_3 - - - ay is a node of Ty, and

1. ifh(ap) € Py, then h(ahy) =k — h(ay);
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2. if h(ap) ¢ Dy, then h(ah) = h(az).

Example 10. Applying Corollary 3 to a; = 11,110,111,112, with respective h(ay) = —2,—3,1,0 € P, yields
wfy, = 12,120,121, 122 with respective h(a}) = 0,0, —2, —3. In Figure 5, the RGS’s &, are shown in light-blue
squares while the corresponding RGS’s &} are shown in yellow squares. Figure 5 extends this coloring for
k<7.

Corollary 4. Let 1 < k € Z. Let a3 = 122ay_4 - - - a1 be a node of Ty. Then, oy = 123ay_y - - - a; is a node of Ty and

1. ifh(ag) € P, then h(afy) =k — h(az);
2. if h(az) ¢ @3, then h(a}) = h(az).

Example 11. Applying Corollary 4 to a3 = 122,1220,1221, 1222, 1223 with respective h(az) = —3,—4,2,1,0 €
@3 yields océ = 123,1230,1231, 1232, 1233 with respective h(zxg) = 0,0,—2, -3, —4. In Figure 5, the RGS’s a3
are shown in thick black while the corresponding RGS'’s a} are shown in thick red. Moreover, Figure 5 extends
this font treatment for k < 7. For k = 7, numbers in Italics in Figure 5 corresponds to members of ®;.

Both the integer-valued functions i = i(«) of Theorem 1 and h = h(«) of display (4) have the same domain,
S\B(0). A partition of a string A is a sequence of substrings Aj, Ay, ..., A, whose concatenation Aq|Ay| - - |Ay
is equal to A.

Theorem 9. The following items hold.

(A) The node set of 77<+1‘ is given by the string AF = Al|A3|---|AKTL) AK | with partition
{A} A5, .. A,’z %, Ak 1}, each Aﬁ as a column set as in Table 2 and Figures 3-5, refined by splitting the last column
Ai_z ofA r_1 into the set B’,ﬁ_2 of its first k — 1 entries and the set C}E_z of its last entry, ay_qay_o---a; = 12--- (k—1).
The sizes | A, |A2], ..., \Aij ,|BE |, |CK | form the line A}, of A'.

(B) The sequence h(S\B(0)) is generated by stepwise consideration of the trees Ti 1, (1 < k € Z). In the k-th
step, the determinations in Theorems 7 and 8 are to be performed in the natural order of the (k + 1)-germs a;. More
specifically, the k-step completes those determinations, namely (aj, h(a;)) (a ],h( ])), for the lines of A’ correspondzng

to the sets A§ (j=1,...,k—1), and ends up with the determinations (ay, h(ax)) (ay,h(ay)) in the line corresponding
to Bf_, and (a1, h(axy1)) (0 q, (@} ,)) in the final line, corresponding to Cf_,.

Proof. Item (A) represents the set of nodes of 7Ty, via A,’: and A_,. This is used in item (B) to express the
stepwise nature of the generation of the sequence (S\(0)). The methodology in the statement is obtained
by integrating steps applying Theorems 7 and 8 in the way prescribed, that yields the correspondence with the
lines of A'. 0O

Example 12. Theorem 9 is exemplified via Table 5, where the lists corresponding to 7, 73 and 74 are
represented according to the respective pairs (a,h(a)) indicating column pairs («,(«)) and («j, h(«;)), for
j=1,2,3,4,5, as shown in the heading line of the table.

The first pair, (a,h(a)) shows RGS’s a in each case and their corresponding /(). The following pair,
(aq1,h(a1)), shows the k-germs a1 corresponding to the RGS’s a of the first column and h(ax;) = h(«) but
in bold trace if corresponding to a yellow square as in Figure 3; in that case, the subsequent determinations
(a1,h(a1)) (af, h(a})) have the corresponding h(a}) in Italics. This is the case of 1(01) = 0 in bold trace and
h(11) = —2 in Italics, that we may indicate “/(01) = 01 (11) = —2”. If a determination (ap, h(ay)) (a), h(a}))
happens, then the numbers in Italics are assigned on their right to numbers in bold trace, again. The cases with
bold trace and Italics in Table 5 can then be summarized as follows:

h(01) =04 h(11) = —2 5 h(12) =0, h
h(010) = 01 h(110) = —3 5 h(120) = 0, h
h

( 011) = —2 4 h(111) =1, h(121) = -2,
(010) =
h(0110) = —3 1 h(1110) = 1, h(1210) = —3,
(
(

(011) =

(1000) = 01 7(1100) = —4 , h(1200) = 0,

(1121) = —2, h(1221) =2 5 h(1231) = —2,

h(0122) = —3 1 h(1122) =1, h1222) = 153 h(1232) = —3,

=

0111) = 14 A(1111) = =3, h(1211) =1,
h(1223) = 03 h(1233) = —4 4 h(1234) = 0.
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Corollary 5. The sequence of pairs (a(S\B(0)), h(S\B(0))) allows to retrieve any vertex v in Oy (resp., My) by locating
its oriented n- (resp., 2n-) cycle in the cycle-factor of [4,5] or in the Zy- (resp., Dy-) classes as in Section 1, and then
locating v departing from the anchored Dyck word in such cycle or class; the sequence also allows to enlist all such
vertices v by ordering their cycles (vesp., classes), including all vertices in each such cycle (resp., class), starting with the
corresponding anchored Dyck word.

Proof. The function a(S\b(0)), arising from Theorem 1, yields the required update locations, while the
function h(S\B(0)) yields the specific updates, as determined in Theorem 9. This produces the corresponding
signatures. Then, Theorem 3 allows to recover the original Dyck words from those signatures, and thus the
vertices of Oy (resp., M) by local translation in their containing cycles in the mentioned cycle-factors, or cyclic
(resp., dihedral) classes. O

6.4. Asymptotic behavior

It is known that asymptotically the Catalan numbers C; grow as 34:}, which is the limit of the
k2.
single-update process that takes to the determination of all Dyck words of length n = 2k + 1, as k tends to
infinity. By Corollary 5, an orderly determination of all the vertices of Oy, resp., My, is then asymptotically
34k (2k + 1), resp., 34k (4k +2).
k2 k27

NL3 2\m
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