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1. Introduction

T he intersection of graph theory and linear algebra revolves primarily around the adjacency matrix , a
fundamental representation that encapsulates the structural essence of a graph in mathematical terms.

In the 1950s, mathematicians confronted the challenge of melding the robust frameworks of matrices with the
intricate structures of graphs, giving rise to a novel approach in mathematical inquiry. A pivotal concept that
emerged was the exploration of eigenvalues within this context. For graphs, the eigenvalues of the adjacency
matrix hold profound significance, as they directly mirror the eigenvalues of the graph itself. This collective
set of eigenvalues constitutes the spectrum of the graph, a crucial descriptor that transcends the graph’s visual
depiction and encapsulates its intrinsic properties in a numerical form. Over the years, the study of graph
spectra has flourished, finding wide-ranging applications across disciplines such as theoretical chemistry,
quantum mechanics, statistical physics, and computer science. In each domain, the spectrum of a graph
provides essential insights and tools for understanding complex networks, predicting behavior in physical
systems, optimizing algorithms, and much more. Thus, from its theoretical origins to its practical applications,
the interplay between graph theory and linear algebra through the lens of adjacency matrices and eigenvalues
continues to enrich both mathematical theory and real-world problem-solving [2].

In the exploration of network theory, N. Alon introduced a significant concept known as the extended
double cover (EDC) of a graph, aimed at leveraging magnifiers to generate expanders. Building on this
foundation, Z. Chen’s work in [1] concentrated on the spectral characteristics of the EDC, sparking further
interest and investigation. Inspired by this research, our focus shifted towards defining the extended H-cover
of a graph, denoted as G∗

H , where this construction aligns with the EDC when H corresponds to the complete
graph K2.

Graph theory has gained significant attention due to its applications in network analysis and complex
systems. The study of novel resolvability parameters continues to grow [3], alongside the exploration of
mixed metric dimensions in specialized networks [4]. Researchers have also investigated fuzzy graph models
for practical challenges like human trafficking [5], and nanotube structures [6]. New parameters have been
applied in biochemical modeling as well [7]. Recently, the concept of mixed partition dimension has added
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to the depth of graph resolvability studies [8]. Labeling techniques such as cycle-super magic labeling have
introduced innovative ways to represent complex chains [9]. Moreover, the need for robust systems has led to
studies on fault-tolerant identification in graphs [10]. Earlier work on eccentric connectivity indices also laid
the foundation for chemical graph modeling [11].

In our study, we focus on simple, connected, and undirected graphs, fundamental structures in graph
theory. Basic terminologies from graph theory are essential for our discussions, as outlined in references [12,
13]. The degree of a vertex v, denoted as deg(v), represents the number of vertices adjacent to v. The maximum
degree of a graph G is denoted as ∆, while its minimum degree is denoted as δ. A vertex with degree one is
termed a pendant vertex, and a vertex that is adjacent to every other vertex in G is known as a universal vertex.
The neighbors of a vertex v, denoted as N(v), comprise the set of all vertices adjacent to v. The complement of
a graph G, denoted G, shares the same vertex set as G, with edges between vertices that are not adjacent in G.
The chromatic number of a graph G, denoted χ(G), signifies the minimum number of colors required to color
all vertices such that no two adjacent vertices share the same color.

The shortest path between any two vertices u and v in a graph G is termed the u− v geodesic, representing
the minimal sequence of edges connecting them. The eccentricity of a vertex u is defined as the maximum
distance from u to any other vertex in the graph, capturing its ’reach’ within the network. The maximum
eccentricity among all vertices defines the diameter of the graph, while the minimum eccentricity determines
its radius, representing the extent of the graph’s spread from its most distant to its closest vertex. For any pair
of vertices u and v, the set I[u, v] encompasses all vertices that lie on any u − v geodesic, including u and v
themselves. Extending this concept to a subset S of vertices in G, the set I[S] encompasses all vertices that lie
on the geodesics between every possible pair of vertices in S, encompassing both the vertices within S and
those connecting them through shortest paths.

The discussion in the subsequent sections are based on the following definitions.

Definition 1. [12] The join of graphs G and H is denoted as G ∨ H. It consists of the vertex set V(G) ∪ V(H),
where each vertex of G is adjacent to all vertices of H and vice-versa.

Definition 2. [14] The Indu-Bala product of graphs G and H is denoted as G▼H. It consists of two copies of
G ∨ H, where there is an adjacency between the corresponding vertices of H.

The Figure 1 represents the Indu-Bala product of paths C4 and P3.

Figure 1. C4▼P3

For any graphs G and H, γI(G▼H) = 8.

Definition 3. [15,16] A vertex subset D of a graph G = (V, E) is said to be a dominating set if all vertices in G
are either in D or adjacent to at least one vertex in D. The minimum cardinality of such a set is the domination
number, denoted by γ(G).

Definition 4. [17] A dominating set D of a graph G is said to be a global dominating set if D is also a
dominating set of G. The minimum cardinality of such a set is the global domination number denoted by
γg(G).
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Definition 5. [18] A dominating set D of a graph G = (V, E) is said to be a restrained dominating set if
< V − D > has no isolated vertex. The minimum cardinality of such a set is the restrained domination
number, denoted as γr(G).

Definition 6. [19] A dominating set D of a graph G = (V, E) is said to be a total dominating set if < D > has
no isolated vertex. The minimum cardinality of such a set is the total domination number, denoted as γt(G).

Definition 7. [20] For a graph G = (V, E), a function f : V {0, 1, 2} is said to be a Roman dominating function
if every vertex v ∈ V with f (v) = 2 must be adjacent to at least one vertex say w such that f (w) = 0. The
weight of a Roman dominating function is ∑v∈V f (v) and the minimum among such weights is the Roman
domination number, denoted as γR(G).

Definition 8. [21] The Italian dominating function on a graph G = (V, E) is a function f : V(G) {0, 1, 2}
which satisfies the condition that for all vertices v ∈ V(G) with f (v) = 0, ∑u∈N(v) f (u) ≥ 2. The Italian
domination number is the minimum weight of the Italian dominating function, denoted as γI(G).

Definition 9. [22,23] A vertex subset S of a graph G = (V, E) is said to be a geodetic set if I[S] = V(G). The
minimum cardinality of such a set is the geodetic number, denoted by g(G).

Definition 10. [24] A geodetic set S of a graph G = (V, E) is said to be a restrained geodetic set if < V − S >

has no isolated vertex. The minimum cardinality of such a set is the restrained geodetic number, denoted as
gr(G).

Definition 11. [25] A geodetic set S of a graph G = (V, E) is said to be a total geodetic set if < S > has no
isolated vertex. The minimum cardinality of such a set is the total geodetic number, denoted as gt(G).

Definition 12. A geodetic set S of a graph G = (V, E) is said to be an independent geodetic set if S is an
independent set. The minimum cardinality of such a set is the independent geodetic number, denoted as
gi(G).

Definition 13. [26] Let G be a (p, q) graph. Corresponding to every edge e of G introduce a vertex and make it
adjacent with all the vertices not incident with e in G. Delete the edges of G only. The resulting graph is called
the partial complement of the subdivision graph(PCSD) of G denoted by S(G).

The Figure 2 illustrates the PCSD of C5

Figure 2. S(C5).
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Theorem 1. [15,22,23] Let G be a graph of order n and having diameter d. Then,

1. ⌈ d+1
3 ⌉ ≤ γ(G),

2. 2 ≤ min{g(G), γ(G)} ≤ n,
3. g(G) ≤ n − d + 1.

Theorem 2. [27] Let G and H be graphs of order m and n respectively. Then,

γ(G▼H) =


2;
2;
4;

∆(G) = m − 1 and ∆(H) = n − 1,
∆(G) = m − 1 or ∆(H) = n − 1,
∆(G) ̸= m − 1 and ∆(H) ̸= n − 1.

Theorem 3. For any graph G, γ(G) ≤ γR(G) ≤ 2γ(G).

Theorem 4. [28] For any graphs G and H, χ(G□H) = max{χ(G), χ(H)}. where G□H denotes the cartesian product
of G and H.

Lemma 1. [29] Let G be a graph with an adjacency matrix A and spec(G) = {λ1, λ2, ..., λp}, Then, detA =
p

∏
i=1

λi.

Also for any polynomial P(x), P(λ) is an eigenvalue of P(A) and hence detP(A) =
p

∏
i=1

P(λi).

Lemma 2. [29] Let A and B be two matrices and F = A ⊗ B be their tensor product.Then, spec(F) = {λiµj|λi ∈
spec(A), µj ∈ spec(B)}.In particular let G and H be two graphs of order p and p′ respectively with spec(G) =

{λi}, i = 1 to p and spec(H) = {µj}, j = 1 to p′. Let F = G ⊗ H, the tensor product of G and H. Then, spec(F) =
{λiµj}, i = 1 to p and j = 1 to p′

Lemma 3. [29] Let G be a connected regular graph of degree r− with spec(G) = {r = λ1, λ2, ..., λp}. Let τ(G) denote
the number of spanning trees of G. Then

τ(G) =
1
p

p

∏
i=2

(r − λi) =
1
p

P′(G, r),

where P′ denote the derivative of the characteristic polynomial of G.

Lemma 4. [30]

E(Cp) =


4 cot π

p ; p ≡ 0(mod 4),

2 cot π
2p cos π

2p ; p ≡ 1(mod 4),

4 csc π
p ; p ≡ 2(mod 4),

2 cot π
2p sec π

2p ; p ≡ 3(mod 4).

2. The extended H− cover of a graph

In this section, we introduce the extended H− cover of G, denoted as G∗
H and study its spectrum and

energy. Also, the number of spanning trees in G∗
H is determined.

Definition 14. Let G = (V, E) be a simple undirected graph with p vertices {v1, v2, ..., vp} and an adjacency
matrix A. Let H be a graph on n vertices {u1, u2, ..., un}. The extended H− cover of G, G∗

H is defined as a graph
with vertex set {U1, U2, ..., Un} where Ui = {vi

1, vi
2, ..., vi

p} in which adjacency is with vertices of Ui and Uj only
whenever ui adjacent to uj in H. The adjacency is defined as follows.

Let vi
a ∈ Ui and vj

b ∈ Uj . Then vi
a is adjacent to vj

b if and only if a = b or va adjacent to vb in G. For
example the complete r− partite graph Kp,p,...,p on pn vertices is the extended Kr cover of Kp. It is easy to
observe that G∗

H is connected if and only if both G and H are connected. Also G∗
H is regular if and only if G

and H are regular. If G is r− regular and H is t− regular then G∗
H is t(r + 1)− regular. Figure 3 illustrates this

with G = C3 and H = P2.
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Figure 3. ((C3)P2
)∗

Theorem 5. Let G and H be two graphs with spec(G) = {λ1, λ2, ..., λp} and spec(H) = {µ1, µ2..., µn}respectively.
Then spec(G∗

H) = {µj(λi + 1)}, i = 1 to p and j = 1 to n.

Proof. Let A and B respectively denote the adjacency matrices of G and H. Then by the definition of G∗
H , its

adjacency matrix can be written as B ⊗ (A + I) and hence the theorem follows from Lemma 1 and 2.
For instance, consider the complete n-partite graph Kp,p,...,p, which can be denoted as (Kp)∗Kn

. Given that
the spectrum of Kp is (

p − 1 −1
1 p − 1

)
,

by Theorem 5, the spectrum of Kp,p,...,p is(
p(n − 1) −p 0

1 n − 1 n(p − 1)

)
.

Corollary 1.
E(Kp)

∗
H = p E(H).

Proof. We have spectrum of Kp =

(
p − 1 −1

1 p − 1

)
. Therefore by Theorem 5, spec(Kp)∗H = {µj p, 0}, j = 1

to n and 0 with multiplicity n(p − 1).
Therefore E(Kp)∗H = p ∑n

1 | µj |= p E(H)

Corollary 2. If H1 and H2 are equienergetic, then (Kp)∗H1
and (Kp)∗H2

are equienergetic.

Proof. By Corollary 1, E(Kp)∗H = p E(H). Since H1 and H2 are equienergetic, E(H1) =

E(H2). There f ore E(Kp)∗H1
= p E(H1) = p E(H2) = E(Kp)∗H2

Corollary 3. If H1 and H2 are equienergetic, then (Kp,p)∗H1
and (Kp,p)∗H2

are equienergetic.

Proof. We have spectrum of Kp,p =

(
p −p 0
1 1 2p − 2

)
. If spec(H) = {µ1, µ2..., µn}, then by Theorem 5,

spec(Kp,p)∗H = {µj(p + 1), µj(−p + 1), µj(0 + 1)} and j = 1 to n.



Open J. Discret. Appl. Math. 2025, 8(2), 32-44 37

E(Kp,p)
∗
H = {(p + 1)E(H) + (p − 1)E(H) + E(H)} = (2p + 1)E(H).

Since H1 and H2 are equienergetic, E(H1) = E(H2).
Therefore

E(Kp,p)
∗
H1

= (2p + 1) E(H1) = (2p + 1) E(H2) = E(Kp,p)
∗
H2

.

Corollary 4. If G1 and G2 are cospectral then (G1)
∗
H and (G2)

∗
H are cospectral.

Corollary 5. If H1 and H2 are cospectral then G∗
H1

and G∗
H2

are cospectral.

Remark 1. By setting any two of the above graphs as G1 and G2, we can generate 4 cospectral graphs.
Repeating this procedure will give arise to an infinite family of cospectral graphs.

Theorem 6. Let G and H be two connected regular graphs with regularity r− and t− respectively. Let spec(G) =

{r = λ1, λ2, ..., λp} and spec(H) = {t = µ1, µ2, ..., µn}. Then

τ(G∗
H) = tp−1(r + 1)n−1τ(G)τ(H)

n

∏
j=2

p

∏
i=2

(t(r + 1)− µj(λi + 1)).

Proof. From the given conditions we can see that (G∗
H) is t(r + 1)− regular and is connected. By Theorem 5

we get the spectrum of G∗
H . Then by Lemma 3 we have

τ(G∗
H) =

1
np

p,n

∏
i=1,j=1 &i,j ̸=1

[t(r + 1)− µj(λi + 1)]

=
1

np

p

∏
i=2

(t(r − λi))
n

∏
j=2

((r + 1)(t − µj))
n

∏
j=2

p

∏
i=2

(t(r + 1)− µj(λi + 1))

=tp−1(r + 1)n−1τ(G)τ(H)
n

∏
j=2

p

∏
i=2

(t(r + 1)− µj(λi + 1)).

Using the above theorem, we can determine the number of spanning trees of G∗
H from the spectra of G

and H. However, sometimes computing the actual spectra of these graphs is not straightforward, even if we
have determined their characteristic polynomials. The following corollary assists in finding the number of
spanning trees of G∗

H using the characteristic polynomial of G and the spectrum of H.

Corollary 6. Let G and H be two connected regular graphs with regularity r− and t− respectively. Let spec(H) =

{t = µ1, µ2, ..., µn}. Then

τ(G∗
H) =

1
npt

P′(G, r)
n

∏
j=2

P(G,
t(r + 1)− µj

µj
),

where P is the characteristic polynomial and P′ its derivative.

Proof. By Lemma 3, we have τ(G∗
H) =

1
np

P′(G∗
H , t(r + 1)). Then the corollary follows from the fact that the

characteristic polynomial of (G∗
H) is

n
∏
j=1

P(G,
x − µj

µj
) where P(G, x) is that of G.

Theorem 7. Let G be an r− regular graph and H be any graph. Then,

E(G∗
H) = E(H)(E (̄G) + p − 2r).
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Proof. Let G be an r− regular graph with spec(G) = {r = λ1, λ2, ..., λp}. Since G is regular, the spectrum
of its complement G is spec(G) = {p − r − 1,−1 − λ2, ...,−1 − λp}. Let H be any graph with spec(H) =

{µ1, µ2, ..., µn}. Then by Theorem 5, we have

spec (G∗
H) = {µj(−λi)}

⋃
{µj(p − r)}, i = 2 to p and j = 1 − n

= {−µj. spec(G),−µj. (p − r)} − {−µj.r}.

Thus

E(G∗
H) = ∑

i=1 to p, j=1 to n
| λiµj | +(p − r)

n

∑
1
| µj | −r

n

∑
1
| µj |

= ∑
i=1 to p, j=1 to n

| λiµj | +(p − r)
n

∑
1
| µj | −r E(H)

=E(G)E(H) + (p − 2r)E(H)

=E(H)[E(G) + p − 2r].

Corollary 7.
E((Cp)

∗
H) = E(H)(E(Cp) + p − 4).

Corollary 8. If G1 and G2 are two r−regular equienergetic graphs then (G1
∗
)H and (G2

∗
)H are equienergetic.

Corollary 9. If H1 and H2 are equienergetic then (G∗
)H1 and (G∗

)H2 are equienergetic where G is any r− regular
graph.

Theorem 8. Let G = Cp × K2. Then
E(G∗

H) = E(H)(2p + E(Cp)).

Proof. Let the spec(Cp) = {λ1, λ2, ..., λp}. Then from [29], spec(Cp × K2) = {λi ± 1},i = 1 to p. Hence from
Theorem 5 it follows that spec(G∗

H) = {µj(λi + 2), µjλi},i = 1 to p and j = 1 to n where λi ∈ spec(Cp) and
µj ∈ spec(H). Thus

E(G∗
H) =(

n

∑
j=1

| µj |)(
p

∑
i=1

| λi + 2 |) +
n

∑
j=1

| µj |
p

∑
i=1

| λi |

=2pE(H) + E(Cp)E(H).

The expression for E(G∗
H), then follows from Lemma 4.

3. Indu-Bala product and different graph parameters

Different graph parameters of the Indu-Bala product of graphs were discussed in [27,31,32]. In this
section, we are discussing the chromatic number and some domination variants of Indu-Bala product of
graphs. From the definition of Indu-Bala product of two graphs G and H, we can consider G▼H as first
taking H□K2 and then taking the join of each copy of H in H□K2 with G.

Theorem 9. Let G and H be any two connected graphs. Then,

χ(G▼H) = χ(G) + χ(H).

Proof. By definition, G▼H consists of two copies of G + H. According to Theorem 4, the two copies of H in
G▼H can be colored using χ(H) colors. However, none of these colors can be assigned to any vertices in the
two copies of G within G▼H. Additionally, there is no adjacency between the corresponding vertices of the
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two copies of G. Therefore, in G▼H, the two copies of G can be colored using χ(G) colors. Consequently
χ(G▼H) = χ(G) + χ(H).

Corollary 10. Let G and H be the graphs of order m and n (m, n > 1) respectively. Then, χ(G▼H) = m + n if and
only if G ∼= Km and H ∼= Kn.

Proof. Let χ(G▼H) = m+ n, and assume that either G or H is not a complete graph. Without loss of generality,
let’s assume G is not complete. Then, χ(G) < m, and in G▼H, the two copies of G require only χ(G) colors.
According to Theorem 4, the two copies of H require only n colors. Therefore, χ(G▼H) ≤ χ(G) + n < m + n,
which is a contradiction. Hence, both G and H must be complete graphs. Conversely, if G ∼= Km and H ∼= Kn,
then the result is obvious.

Theorem 10. Let G and H be the graphs of order m and n respectively. Then,
χ(G▼H) = 2 if and only if G ∼= Km and H ∼= Kn, where m, n > 1.

Proof. Let G ∼= Km and H ∼= Kn. When considering one copy of G + H, we can assign the color c1 to the
vertices of G and the color c2 to the vertices of H. In G▼H, we can assign the color c1 to the vertices of another
copy of H and the color c2 to the vertices of another copy of G. Therefore, the chromatic number of G▼H is
χ(G▼H) = 2.

Conversely, suppose χ(G▼H) = 2. We need to show that G ∼= Km and H ∼= Kn. If either G or H contains
an edge, then G▼H would contain a complete subgraph K3. This would imply that χ(G▼H) ≥ 3, which
contradicts our assumption. Therefore, G ∼= Km and H ∼= Kn.

Corollary 11. The Indu-Bala product of graphs G and H is bipartite if and only if G ∼= Km and H ∼= Kn.

Proof. If G▼H is bipartite, then χ(G▼H) = 2. Hence the result follows from the previous theorem.

Theorem 11. Let G and H be the graphs of order m and n (m, n > 1)respectively. Then,
1. χ(G▼H) = 1 + χ(H) if and only if G ∼= Km.
2. χ(G▼H) = 1 + χ(G) if and only if H ∼= Kn.

Proof. Let G ∼= Km. In G▼H, by Theorem 4, the vertices of the two copies of H can be colored with χ(H)

colors. Additionally, the vertices of the two copies of G can be colored with a single color, say c1, which cannot
be used to color the vertices of H. Hence, χ(G▼H) = 1 + χ(H).

Conversely, suppose χ(G▼H) = 1 + χ(H) and assume G ̸∼= Km. According to Theorem 4, the two
copies of H require χ(H) colors. Since G ̸∼= Km, there is an adjacency between at least two vertices of G, say
u and v. Then u and v, together with one vertex from H, form a clique K3 in each copy of G + H. Thus,
χ(G▼H) ≥ 2 + χ(H), which is a contradiction.

Let H ∼= Kn. By Theorem 4, the two copies of H require two colors for proper coloring in the graph G▼H.
Thus, χ(G) < χ(G▼H) ≤ χ(G) + 2.

Let the vertices in the first copy of H be assigned the color c1 and the vertices in the second copy be
assigned the color c2. The color c1 cannot be assigned to any vertices of the first copy of G but can be assigned
to any pair of non-adjacent vertices in the second copy of G. Similarly, c2 cannot be assigned to any vertices of
the second copy of G but can be assigned to any pair of non-adjacent vertices in the first copy of G. Therefore,
χ(G▼H) = 1 + χ(G).

Conversely, suppose χ(G▼H) = 1 + χ(G) and assume H ̸∼= Kn. Then there is at least one pair of adjacent
vertices in each copy of H. These vertices, together with some other vertex of G, form a clique K3. Therefore,
χ(G▼H) ≥ 2 + χ(G), which is a contradiction. Hence, H ∼= Kn.

In [27], the authors discussed domination, restrained domination, connected domination, and Roman
domination in G▼H. As an extension of this work, we explore G▼H for additional domination variants.
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Theorem 12. Let G and H be graphs of order m and n respectively. Then,

γI(G▼H) =


4;
4;
8;

∆(G) = m − 1 and ∆(H) = n − 1,
∆(G) = m − 1 or ∆(H) = n − 1,
∆(G) ̸= m − 1 and ∆(H) ̸= n − 1.

For any graphs G and H, γI(G▼H) = 8.

Proof. Since γ(G▼H) = 2, γI(G▼H) ≥ 2. Now consider the following cases.
Case 1. ∆(G) = m − 1 and ∆(H) = n − 1.
Let u and v be vertices in G and H, respectively, such that deg(u) = m − 1 and deg(v) = n − 1. In G▼H,

assigning f (u) = 2 or f (v) = 2, and setting all other vertices’ values to zero, satisfies the condition for Italian
domination. Thus, γI(G▼H) ≤ 4. Similarly, assigning f (u) = f (v) = 1 and setting all other vertices to zero
also results in γI(G▼H) ≤ 4.

Now, we aim to demonstrate that γI(G▼H) ̸= 2 and γI(G▼H) ̸= 3.
Assume γI(G▼H) = 2. If we assign the value 2 to a vertex, say u, which is a universal vertex in either G

or H, then all vertices in N(u) (the neighborhood of u) can have their values set to zero. However, considering
the values of the remaining vertices in G▼H, we find that γI(G▼H) > 2, leading to a contradiction.

If the value 1 is assigned to a vertex, then at least one of its neighbors must also have a value of 1.
Again, this leads to γI(G▼H) > 2 when considering the entire vertex set of the graph, which contradicts
γI(G▼H) = 2.

Therefore, γI(G▼H) ̸= 2. Similar reasoning applies to show that γI(G▼H) ̸= 3.
Suppose γI(G▼H) = 3. This implies there are three vertices with images of 1, or one vertex with an image

of 2 and another with an image of 1.
If there are three vertices with images of 1, then either all three must be adjacent to satisfy Italian

domination, or at least two of them must be adjacent. However, in both cases, the Italian domination condition
is not satisfied.

Similarly, if one vertex has an image of 2 and another has an image of 1, they can either be adjacent or not.
In either scenario, the condition for Italian domination is not met.

Therefore, γI(G▼H) ̸= 3. Therefore, γI(G▼H) = 4.
Case 2. ∆(G) = m − 1 or ∆(H) = n − 1.
This case can be proven similarly to the previous case.
Case 3. ∆(G) ̸= m − 1 and ∆(H) ̸= n − 1.
Since ∆(G) ̸= m − 1 and ∆(H) ̸= n − 1, it follows that γ(G▼H) = 4, and therefore γI(G▼H) ≥ 4.

However, from Case 1, we have γI(G▼H) > 4.
Now consider the following sub-cases for choosing the images of vertices in G▼H:
1. Choose the image of exactly one vertex from each copy of G and H as two, and the image of the rest of

the vertices as zero.
2. Choose the image of exactly two vertices from each copy of G and H as one.
3. Choose the image of exactly two vertices from each copy of G as one, and one vertex from each copy of

H as two, with the image of the rest of the vertices as zero.
4. Choose the image of exactly two vertices from each copy of H as one, and one vertex from each copy

of G as two, with the image of the rest of the vertices as zero.
These sub-cases describe different scenarios where the vertices’ images in G▼H are selected accordingly.

In all the above sub-cases, the Italian domination condition is satisfied and hence
γI(G▼H) ≤ 8.

Claim. γI(G▼H) ̸= 5, 6, 7.
Let’s assume γI(G▼H) = 5. We consider the possible partitions of the number 5: 5, 1 + 4, 1 + 1 + 3, 1 +

1 + 1 + 2, 1 + 1 + 1 + 1 + 1, 2 + 2 + 1, 2 + 3. Since there are no universal vertices in G and H, we must assign a
non-zero value to at least one vertex from each copy of G and H in G▼H. Therefore, we focus on the partitions
1 + 1 + 1 + 2 and 1 + 1 + 1 + 1 + 1.

Consider choosing vertices u, u′ from G and its copy, and v, v′ from H and its copy such that f (u) =

f (u′) = f (v) = 1, f (v′) = 2, and the images of all other vertices in G▼H are zero. According to this
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assignment, there must exist at least one vertex w with f (w) = 0, but ∑x∈N(w) f (x) ≱ 2. This situation
arises similarly when assigning the image as 1, 1, 1, 2 to any vertex in G▼H.

Therefore, the Italian domination condition does not hold for the partition 1 + 1 + 1 + 2. By similar
reasoning, we can conclude that the Italian domination condition is also violated for the partition 1 + 1 + 1 +
1 + 1. Hence, γI(G▼H) ̸= 5.

Similar arguments can be applied to partitions for 6 and 7, showing that the Italian domination condition
does not hold for these cases either. Therefore, γI(G▼H) ̸= 5, 6, 7.

Theorem 13. For any graphs G and H, γg(G▼H) = 2 or 4.

Proof. Let us consider the following cases:
Case 1. There is at least one universal vertex in G or H.
Suppose G has a universal vertex u. According to Theorem 2, γ(G▼H) = 2. The vertices u in the two

copies of G form a minimum dominating set of G▼H. Moreover, these two vertices also form a minimum
dominating set of G▼H. In G▼H, if u is adjacent to all vertices in one copy of G or H, then in G▼H, the same
vertex u is adjacent to all vertices of the other copy of G or H. Hence, γg(G▼H) = 2.

Case 2. There is no universal vertex in G and H.
According to Theorem 2, γ(G▼H) = 4. Let u and u′ be the corresponding vertices in the two copies of G,

and v and v′ in the two copies of H. The set S = {u, u′, v, v′} forms a minimum dominating set of G▼H.
In G▼H, u is adjacent to all vertices in one copy of G and H, and u′ is adjacent to all vertices in the other

copy of G and H. Similarly, v and v′ are adjacent to all vertices in their respective copies of G and H. Thus, the
sets S1 = {u, u′} and S2 = {v, v′} both form minimum dominating sets of G▼H.

Therefore, the set S = {u, u′, v, v′} is a dominating set of both G▼H and G▼H. Hence, γg(G▼H) = 4.

4. Some graph parameters of S(G)

In this section, we discuss the domination and geodetic variants in S(G). We focus on connected graphs
G such that S(G) is also connected, and we exclude graphs with any universal vertex. In S(G), the vertices are
from V(G) ∪ V(G′), where V(G′) consists of vertices newly added to G corresponding to each edge of G.

Let u ∈ V(G) and u′ ∈ V(G′). In S(G), the neighborhood N(u) ⊂ V(G′), and the neighborhood N(u′) ⊂
V(G).

Observation 1. For any graph G, γ(S(G)) ̸= 1.

Theorem 14. For a graph G of order n, 2 ≤ γ(S(G)) ≤ 4.

Proof. Let V(G) = {u1, u2, . . . , un} and let the vertex set of the subdivision part be V(G′). Therefore,
V(S(G)) = V(G) ∪ V(G′).

Choose distinct vertices ui and uj such that in G, uj ∈ V(G)− N(ui). Then, in S(G), these two vertices
dominate all vertices in the set V(G′).

Now, select the vertices u′
i and u′

j which are in the subdivision part corresponding to the edges incident

with ui and uj respectively. In S(G), these two vertices dominate all vertices in the set V(G).
Therefore, the set D = {ui, uj, u′

i, u′
j} forms a dominating set of S(G). Hence, γ(S(G)) ≤ 4.

Corollary 12. For a graph G of order n, 2 ≤ γr(S(G)) ≤ 4.

Proof. The dominating set mentioned in the previous theorem satisfies the restrained condition. Hence
γr(S(G)) ≤ 4.

Corollary 13. For a graph G of order n, 2 ≤ γt(S(G)) ≤ 4.

Proof. Consider the dominating set D = {ui, uj, u
′
i, u

′
j} mentioned in the previous theorem. Then < D >

consists two disconnected paths P2 such that uiu
′
j and uj, u

′
i are the edges of < D >. Hence γt(S(G)) ≤ 4.
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Corollary 14. For a graph G of order n, 2 ≤ γR(S(G)) ≤ 8.

Proof. The results follow from the previous theorem and Theorem 3

Theorem 15. For a graph G of order n, g(S(G)) ≤ 3.

Proof. Choose the vertices ui ∈ V(G) and u′
i, where u′

i is the vertex corresponding to the edge uiuj in G.
Clearly, in S(G), the neighborhood N(ui) is a subset of V(G′) and the neighborhood N(u′

i) is a subset of V(G).
Then, d(ui, u′

i) = d(uj, u′
i) = diam(S(G)) = 3 and d(ui, uj) = 2.

Now, consider the set S = {ui, uj, u′
i}. We observe that I[S] = V(S(G)), and hence g(S(G)) ≤ 3.

Corollary 15. For a graph G of order n, gr(S(G)) ≤ 3.

Proof. Consider the geodetic set S mentioned in Theorem 15. Let H = ⟨V(S(G))− S⟩. Then, V(H) consists
of n − 2 vertices from V(G) and at least n − 2 vertices from the newly added vertices to G. Additionally, in H,
each of the n − 2 vertices from G is adjacent to at least one of the remaining vertices in H and vice versa.

Therefore, S also satisfies the restrained condition, and hence gr(S(G)) ≤ 3.

Corollary 16. For a graph G of order n, gi(S(G)) ≤ 3.

Proof. The result follows since the geodetic set defined in the Theorem 15 is independent.

Theorem 16. For a graph G of order n, gt(S(G)) ≤ 5.

Proof. Consider the geodetic set S of S(G) mentioned in Theorem 15. Clearly, ⟨S⟩ is totally disconnected.
Choose a vertex ul such that in G, ul /∈ N(ui) and ul /∈ N(uj). Then, consider the set S1 = S ∪ {ul}. Clearly,
S1 is a geodetic set, but ⟨S1⟩ consists of a path P2 and two isolated vertices. Therefore, S1 is not a total geodetic
set.

Next, consider the vertex u′
l in S(G) which corresponds to the edge uluk in G, where uk ̸= {ui, uj}. Then,

consider the set S2 = S1 ∪ {u′
l}. In this case, ⟨S2⟩ has no isolated vertices, and therefore S2 is a total geodetic

set. Hence, gt(S(G)) ≤ 5.

5. Applications

Domination and geodetic domination in graphs have practical applications in network design, facility
location, and communication systems, where dominating sets represent optimal placements for monitoring
or control. Geodetic domination specifically finds use in route optimization and navigation problems, where
geodesics between dominating nodes ensure minimal path coverage. In the context of the ’Extended H-cover’
and the ’Indu-Bala product of graphs’, these concepts gain relevance in modeling large interconnected
networks, such as social or communication networks, where combining graph structures allows for efficient
analysis of coverage and connectivity. The ’computation of graph energy’, which measures the sum of absolute
eigenvalues of the adjacency matrix, is significant in chemistry and physics for predicting molecular stability
and resonance energy. By leveraging the extended H-cover and the Indu-Bala product, the computation
becomes feasible even for complex molecular graphs, enabling accurate predictions of spectral properties and
stability indices.

6. Conclusion

In this study, we introduced and explored the concept of the extended H-cover of a graph G. Our
investigation focused on analyzing the characteristic polynomials, spectrum, and energy associated with this
construction. Also we examined various graph parameters related to the Indu-Bala product of graphs and the
partial complement of the subdivision graph (PCSD). While this work has yielded substantial findings, it also
suggests avenues for future research, particularly in identifying and further investigating additional graph
parameters and characteristics specific to these types of product and derived graphs.
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