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1. Introduction

W e assume that the reader has some familiarity with matroids and oriented matroids as in [1,2]. Every
orientation of a graphic matroid M(G) is realized by an orientation τ of G. Thus, up to reorientation

M(G) has only one orientation (see, for example, [1, Propositions 7.9.3 and 7.9.4]).
Zaslavsky [3,4] characterized single-element coextensions of graphic matroids in graphical terms using

a struture called a biased graph. (Biased graphs will be reviewed in §2.) When (G,L) is a biased graph,
the associated single-element coextension of M(G) is denoted by L0(G,L). In this paper we will define an
orientation of a biased graph (G,L) in terms of graphical structures. The orientation will be a pair (o, τ) in
which: τ is an orientation of the graph G and a o is a function which we will call a pre-orientation that chooses
a direction along each cycle which is not in L. Our three main results are as follows. One, every orientation of
(G,L) produces an orientation of its matroid L0(G,L) (Theorem 4). Two, if (o1, τ1) and (o2, τ2) are orientations
of (G,L) and G is 2-connected and loopless (equivalently, if M(G) is connected with rank at least 2), then the
associated orientations of L0(G,L) are equal under reorientation if and only if o1 = ±o2 (Theorem 5). Three,
any orientation of L0(G,L) is given by some orientation (o, τ) of (G,L) (Theorem 7). These results are part of
the PhD thesis of the author [5].

The dual concept of single-element extensions of graphic matroids as well as their orientations were both
characterized in graphic terms by Slilaty and Zaslavsky [6] and Slilaty [7] respectively.

2. Preliminaries

2.1. Biased graphs

A theta graph consists of two degree-3 vertices connected by three internally disjoint paths. A theta graph
contains exactly three cycles. A collection of cycles in a graph G is called a linear class when each theta subgraph
contains zero, one, or three cycles from L; equivalently, no theta subgraph contains exactly two cycles from L.
We say that L is trivial when it contains all of the cycles of G. A biased graph is a pair (G,L) in which G is a
graph and L is a linear class of cycles of G. Cycles of G which are in L are called balanced. A subgraph H of G is
called balanced when every cycle in it is balanced. If B ⊂ E(G) and G/B is balanced, then B is called a balancing
set of (G,L). If B is a minimal balancing set, then G/B has the same number of connected components as G
because a forest is always balanced.
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2.2. Biased graphs from gain graphs

In a graph G, an oriented edge is an edge e along with a chosen direction along that edge. In this paper we
will always denote the reverse orientation of e by −e. The set of all possible oriented edges of G is denote by
E⃗(G).

Let C be a cycle with E(C) = {e1, . . . , en}. An orientation of C is o(C) = {e′1, . . . , e′n} in which e′i is an
orientation of ei such that e′1, . . . , e′n are all in the same direction around C. If o(C) is an orientation of C, then
the reverse orientation is denoted −o(C).

Oriented edges are depicted in the usual fashion as a segment with an arrow in the middle. An orientation
of a cycle C will be depicted as a circular arc near C with an arrow at one end, see Figure 1.

C1 C2C1 C2 C1 C2

Figure 1. An oriented edge and an orientation of a cycle

Now let Γ be an additive group. A Γ-gain function is a function φ∶ E⃗(G) → Γ satisfying φ(−e) = −φ(e).2 If
o(C) is an orientation of cycle C, then define φ(o(C)) = ∑e∈o(C) φ(e). Say that C is balanced when

0 = φ(o(C)) = −φ(o(C)) = φ(−o(C))

and denote the collection of balanced cycles in G by Lφ.

Proposition 1 (Zaslavsky [3]). If Γ is an additive group and φ a Γ-gain function of G, then (G,Lφ) is a biased graph.

We remark that for any graph G, there is an R-gain function φ such that Lφ = ∅. Consider some set of
∣E(G)∣ distinct prime numbers {pe ∶ e ∈ E(G)}. Now arbitrarily choose some orientation for each e ∈ E(G) and
set φ(e) = log(pe). Now for any oriented cycle o(C) in G we have that φ(o(C)) ≠ log(1) = 0.

2.3. The complete lift matroid

A pair of cycles C1, C2 in a graph G form a modular pair when C1 ∩C2 is either: empty, a single vertex, or a
path; that is, when C1 ∪C2 has two edges whose removal leaves a forest (see Figure 2).

C1 C2C1 C2 C1 C2

Figure 2. The three possible structures for a modular pair of cycles

The matroid of Theorem 1 is denoted by L0(G,L) and is called the complete lift matroid of (G,L). We will
only be using the circuits and cocircuits of this matroid. If L is trivial, then the single-element coextension
associated with L is just M(G) along with a new element that is either a loop or coloop.

Theorem 1 (Zaslavsky [4]). If L is a non-trivial linear class of cycles of G, then there is a matroid with element set
E(G)∪ e0 in which e0 is neither a loop nor a coloop and whose cocircuits consist of the edge sets of the following subgraphs:

2 In some contexts a Γ-gain function is called a Γ-voltage function and general groups are often used rather than just additive ones. The
use of general groups, however, requires some additional considerations which are not necessary in this work.
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(1) cycles in L,
(2) C ∪ e0 in which C is a cycle which is not L, and
(3) C1 ∪C2 in which C1, C2 is a modular pair of cycles such that no cycle C ⊂ C1 ∪C2 is in L.
Conversely, if N is a single-element coextension of the graphic matroid M(G) with new element e0 which is neither

a loop nor a coloop of N, then there is a unique and non-trivial linear class of cycles L of G such that the circuits of N
consist of the sets above.

Theorem 2 (Zaslavsky [4]). If L is a non-trivial linear class of cycles of G, then the cocircuits of L0(G,L) consist of
the following:

(1) bonds of G and
(2) sets of the form B ∪ e0 in which B is a minimal balancing set of (G,L).

2.4. Tutte’s path theorem

Let M be a matroid. A pair of circuits C1, C2 in M is a modular pair if and only if r(C1 ∪C2) = ∣C1 ∪C2∣ − 2.
Circuits C1 and C2 are adjacent when the pair is modular and M∣(C1 ∪C2) is a connected matroid. The reader
can verify that if C1, C2 is a modular pair of circuits, then M∣(C1 ∪C2) is connected if and only if C1 ∩C2 ≠ ∅.
More generally, if C1, C2 is any pair of circuits for which C1 ∩C2 ≠ ∅, then M∣(C1 ∪C2) will be connected. The
converse, however, need not be true when C1, C2 is not modular.

A subset L of the set of circuits of a matroid M is called a linear class when every modular pair of circuits
C1, C2 satisfies the property that if C1, C2 ∈ L then every circuit of M∣(C1 ∪C2) is in L. Equivalently, either zero,
one, or all circuits of M∣(C1 ∪C2) are in L for every modular pair of circuits C1, C2. A simple example of a linear
class is the following. Let e ∈ E(M) and let Le denote the set of circuits of M which do not contain e. Clearly Le

is a linear class.
It is important to note that a modular pair of cycles in a graph G as we have defined it is exactly a modular

pair of circuits in M(G). Now if C1, C2 are a modular pair of cycles in G, then M(G)∣(C1 ∪C2) is connected if
and only if E(C1) ∩ E(C2) ≠ ∅ if and only if C1 ∪C2 is a theta graph.

A circuit path in a matroid M is a sequence of circuits C1, . . . , Cn such that Ci and Ci+1 are adjacent. If L is
a linear class of circuits in M, then a circuit path is off L if each Ci ∉ L.

Theorem 3 (Tutte [8, (4.34)]). If M is a connected matroid and L a linear class of circuits in M, then for each pair of
circuits C, C′ ∉ L, there is a circuit path off L from C to C′.

3. Pre-orientations

Given a biased graph (G,L), consider a function o on the unbalanced cycles of C where o(C) is a choice
of orientation of C. We call o a pre-orientation of (G,L) when it satisfies the following properties for any theta
subgraph H of G.

(1) If H has exactly two unbalanced cycles C1 and C2, then o(C1) and o(C2) agree on the path C1 ∩C2.
(2) If H has three unbalanced cycles, then the cycles may be labeled C1, C2, C3 such that o(C1) and o(C2)

disagree on C1 ∩C2, o(C1) and o(C3) agree on C1 ∩C3, and o(C2) and o(C3) agree on C2 ∩C3.

Required cycle orientations in θ-subgraphs corresponding to the given pre-orientation are illustrated in
Figure 3.

C1 C2 C1 C2

C3

Figure 3. Required orientations of cycles in theta subgraphs for a pre-orientation
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3.1. Pre-orientations from real additive gains

Let φ be an R-gain function on G and let o(C) be an oriented cycle in G. If φ(o(C)) = 0, then C is balanced.
If C is unbalanced, then define oφ(C) = o(C)when φ(o(C)) > 0 and oφ(C) = −o(C)when φ(o(C)) < 0.

Proposition 2. If φ is an R-gain function on G, then oφ is a pre-orientation of (G,Lφ).

Proof. Let o(C1), o(C2), o(C3) be orientations of the three cycles of theta subgraph H of G as shown in Figure
4. Therefore φ(o(C1)) + φ(o(C2)) + φ(o(C3)) = 0. If exactly one φ(o(Ci)) = 0, say i = 3, then without loss of
generality oφ(C1) = o(C1) and oφ(C2) = −o(C2) which means oφ satisfies Property (1) for pre-orientations. If
all φ(Ci) ≠ 0, then two of these φ-values have the same sign (say without loss of generality that φ(o(C1)) and
φ(o(C1)) are both positive) and φ(o(C3)) is negative. Thus oφ(C1) = o(C1), oφ(C2) = o(C2), and oφ(C3) =
−o(C3). Thus oφ satisfies Property (2) for pre-orientations.

C1 C2

C3

Figure 4. Each pair of oriented cycles disagree on their intersecting paths

4. Orientations

An orientation of a biased graph (G,L) is a pair (o, τ) in which o is a pre-orientation of (G,L) and τ is an
orientation of G. We will use (o, τ) to define a circuit signature and cocircuit signature of L0(G,L). In Theorem
4 we will prove that these signatures define an orientation and dual orientation of L0(G,L). The resulting
oriented matroid with underlying matroid L0(G,L)will be denoted by O(τ, e).

4.1. Circuit signatures

For each circuit C of L0(G,L), an orientation (o, τ) of (G,L)will produce two signed circuits [o, τ, C] and
−[o, τ, C] which are defined as follows. The notation [o, τ, C] is used because the underlying circuit of this
signed circuit is C and the signing depends on (o, τ).

(1) If C is a balanced cycle, then arbitrarily choose one orientation of the cycle. Now e ∈ [o, τ, C]+ when e
under τ is in the chosen orientation; otherwise, e ∈ [o, τ, C]−.

(2) If C = C0 ∪ e0 in which C0 is an unbalanced cycle, then e ∈ [o, τ, C]+ when e = e0 or the orientation of e
under τ is in o(C); otherwise, e ∈ [o, τ, C]−.

(3) If C = C1 ∪C2 where C1, C2 is a modular pair of cycles with the additional condition that o(C1) and o(C2)
disagree on C1 ∩ C2 when C is a theta graph, then e ∈ [o, τ, C]+ when the orientation of e under τ is in
o(C1) or −o(C2); otherwise, e ∈ [o, τ, C]−.

Cyclic orientations of circuits formed by the union of modular pairs of cycles are illustrated in Figure 5.

C1 C2

C3

C1 C2

Figure 5. Cyclic orientations of circuits which are unions of modular pairs of cycles
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4.2. Cocircuit signatures

For each cocircuit C of L0(G,L), an orientation (o, τ) will produce two signed cocircuits [o, τ, C] and
−[o, τ, C]; however, before we can define [o, τ, C], we need to establish a property of minimal balancing sets.

Let o be a pre-orientation of (G,L), B a minimal balancing set of (G,L), and e ∈ B. Because G/B is balanced
and B is minimal, a cycle in (G/B)∪ e is unbalanced if and only if it contains e; furthermore, such an unbalanced
cycle must exist. So let C be an unbalanced cycle in (G/B) ∪ e. Let (C, o, B, e) denote the orientation of e which
is in o(C). In Proposition 3 we show that (C, o, B, e) is independent of C and so we denote this orientation of e
with respect to B and o by (o, B, e).

Proposition 3. For any two unbalanced cycles C1 and C2 in (G/B) ∪ e, (C1, o, B, e) = (C2, o, B, e).

Proof. First, assume that C1, C2 is a modular pair of cycles in G. Since e ∈ C1∩C2 it must be that C1∪C2 is a theta
graph whose third cycle is balanced. By the property of pre-orientations on (G,L) (C1, o, B, e) = (C2, o, B, e), as
required.

Now suppose that C1, C2 is not a modular pair of cycles. Since e ∈ C1 ∩C2, M(G)∣(C1 ∪C2) is a connected
matroid. LetLe be the linear class of cycles in M(G)∣(C1∪C2) that do not contain e. By Theorem 3 there is a path
of adjacent cycles A1, . . . , At with A1 = C1, At = C2, and Ai ∉ Le for each i. Now (Ai, o, B, e) = (Ai+1, o, B, e) as in
the previous paragraph because the third cycle of the theta graph Ai ∪Ai+1 is balanced. Our result follows.

Now for a cocircuit C of L0(G,L)we define the signed cocircuit [o, τ, C] as follows.

(1) If C is a bond in G, then arbitrarily choose one direction across C. Now e ∈ [o, τ, C]+ when the orientation
of e given by τ is in the chosen direction across C; otherwise, e ∈ [o, τ, C]−.

(2) If C = B ∪ e0 in which B is a minimal balancing set of (G,L), then e ∈ [o, τ, C]+ when e = e0 or when the
orientation of e given by τ is −(o, B, e); otherwise, e ∈ [o, τ, C]−.

4.3. Orientations of biased graphs produce orientations of their matroids

Theorem 4 (Main Result 1). If (o, τ) is an orientation of biased graph (G,L), then the circuit signature given by
(o, τ) is an orientation of L0(G,L) and the cocircuit signature given by (o, τ) is the corresponding dual orientation of
L0(G,L).

Proof. Let C be a circuit and D a cocircuit of L0(G,L). The signed circuit [o, τ, C] and signed cocircuit [o, τ, D]
are orthogonal when

([o, τ, C]+ ∩ [o, τ, D]−) ∪ ([o, τ, C]− ∩ [o, τ, D]+) ≠ ∅,

and
([o, τ, C]+ ∩ [o, τ, D]+) ∪ ([o, τ, C]− ∩ [o, τ, D]−) ≠ ∅.

In order to prove our theorem, we need to show that for each circuit C and cocircuit D with 2 ≤ ∣C ∩D∣ ≤ 3
that [o, τ, C] and [o, τ, D] are orthogonal. (See, for example, [1, Theorem 3.4.3].) In Case 1 say that D is a bond
and in Case 2 that D = B ∪ e0 in which B is a minimal balancing set.

Case 1. Either C/e0 is a cycle (either balanced or unbalanced) or C = C1 ∪C2 in which C1, C2 is a modular
pair of cycles. If C1 ∪C2 is a theta graph, then assume that C1 and C2 are the cycles for which o(C1) and o(C2)
disagree on C1 ∩C2. In the former case C ∩D = {e1, e2} and in the latter case Ci ∩D = {e1, e2} for some i. Now
e1 and e2 have the same sign in [o, τ, D] if and only if these edges are oriented by τ in the same direction across
the bond D and e1 and e2 have the same sign in [o, τ, C] if and only if they are oriented in opposite directions
across the bond D. Thus [o, τ, C] and [o, τ, D] are orthogonal.

Case 2. By its definition and the definition of our circuit and cocircuit signatures, orthogonality is not
affected by reorientation of τ. So we may assume throughout Case 2 that [o, τ, C] is all positive. In Case 2.1
assume that C/e0 is a cycle and in Case 2.2 that C is a union of a modular pair of cycles.

Subcase 2.1. Let C0 = C/e0. Thus 1 ≤ ∣C0 ∩ B∣ ≤ 3. Split this case into three subcases based on ∣C0 ∩ B∣.
Subsubcase 2.1.1. Write C0 ∩ B = {e}. Thus C = C0 ∪ e0. By assumption in this case e0, e ∈ [o, τ, C]+ which

implies that e is in the direction of (o, B, e) under τ. Thus e ∈ [o, τ, D]− while e0 ∈ [o, τ, D]+ and so [o, τ, C] and
[o, τ, D] are orthogonal.
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Subsubcase 2.1.2. Write C0 ∩ B = {e1, e2}. Now write C0 = P1 ∪ e1 ∪ P2 ∪ e2 where P1 and P2 are the two
vertex-disjoint paths between e1 and e2 on C0. Since G/B has the same number of connected components as G,
there is a path P0 ⊆ G/B connecting P1 to P2 such that P0 ∪C0 is a theta graph. The cycle C0 may be balanced or
unbalanced but the other two cycles of the theta graph, call them C1 and C2, are unbalanced.

Suppose that C0 is balanced. Then o(C1) and o(C2) agree on C1 ∩C2 = P0. This implies that (o, B, e1) and
(o, B, e2) are in opposite directions along C0. Thus e1 and e2 have different signs in [o, τ, D] and so [o, τ, C] and
[o, τ, D] are orthogonal.

Suppose C0 is unbalanced. If o(C1) and o(C2) agree on C1 ∩ C2 = P0, then [o, τ, C] and [o, τ, D] are
orthogonal as in the previous paragraph because, again, (o, B, e1) and (o, B, e2) are in opposite directions along
C0. If, however, o(C1) and o(C2) disagree on C1 ∩C2 = P0, then (o, B, e1) and (o, B, e2) are in the same direction
along C0; in fact, it must be that (o, B, e1), (o, B, e2) ∈ o(C0) because o(C0)must agree with both o(C1) and o(C2)
on their paths of intersection by the properties of a pre-orientation. Thus e1, e2 ∈ [o, τ, D]− while e0 ∈ [o, τ, D]+.
Thus [o, τ, C] and [o, τ, D] are orthogonal.

Subsubcase 2.1.3. Write C0 ∩B = {e1, e2, e3}. Because ∣C∩B∣ ≤ 3, e0 ∉ C which makes C a balanced cycle. Now
write C = e1 ∪ P1 ∪ e2 ∪ P2 ∪ e3 ∪ P3 in which P1, P2, P3 are mutually vertex-disjoint paths with Pi connecting ei to
ei+1. Since [o, τ, C] is all positive, we need to show that there are i, j ∈ {1, 2, 3} such that (o, B, ei) and (o, B, ej)
are not in the same direction around C. By way of contradiction, assume that (o, B, e1), (o, B, e2), (o, B, e3) are
all in the same direction around C. Again, there is a path P ⊆ G/B connecting Pi and Pj such that C ∪ P is a
theta graph. Let C1, C′1 denote the two cycles of C∪ P whose intersection is P. Without loss of generality e1 ∈ C1

and e2, e3 ∈ C′1. Since C1 ∩ B = {e1}, we must have that (o, B, e1) ∈ o(C1). Since C is balanced, o(C′1) agrees with
o(C1) on P. Thus (o, B, e2), (o, B, e3) ∉ o(C′1) (see the left configuration in Figure 6.)

(o,B, e1)

P1

P2

P3

(o,B, e2)

(o,B, e3)

C1
C ′

1
P2

(o,B, e2)

(o,B, e3)

C ′
1

P
P

P ′

C2

C3

Figure 6. Depiction of Subsubcase 2.1.3

Now, there is a path P′ ⊆ G/B for which C′1 ∪ P′ is a theta graph. Let C2, C3 denote the two cycles of C′1 ∪ P′

whose intersection is P′. Say e2 ∈ C2 and e3 ∈ C3. For i ∈ {2, 3}, Ci ∩ B = {ei} and so (o, B, ei) ∈ o(Ci). Now,
however, o(C′1), o(C2), o(C3) pairwise disagree on their paths of intersection. This contradicts the fact that o is
a pre-orientation of (G,L) (See the right configuration in Figure 6.)

Subcase 2.2. Say that C = C1 ∪C2 in which C1, C2 is a modular pair of unbalanced cycles. In the case that
C is a theta graph, choose C1, C2 so that o(C1) and o(C2) disagree on C1 ∩C2. Now [o, τ, C1 ∪ e0] is all positive
and [o, τ, C2 ∪ e0] is all negative aside from e0 ∈ [o, τ, C2 ∪ e0]+. By Case 2.1 both [o, τ, C1 ∪ e0] and [o, τ, C2 ∪ e0]
are orthogonal to [o, τ, D] and so there is e1 ∈ C1 for which e1 ∈ [o, τ, D]− and e2 ∈ C2 for which e2 ∈ [o, τ, D]+.
Thus [o, τ, C] and [o, τ, D] are orthogonal.

Example 1. Let 3K2 be the theta graph consisting of three parallel links a, b, c. The matroid L0(3K2,∅) is the
uniform matroid U2,4. Up to reorientation, there are three orientations of a labeled copy of U2,4. The three
orientations of (3K2,∅) shown in Figure 7 produce the circuit signatures given below which are pairwise
unequal up to reorientation.
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a b c a b c a b c

e0 a b c
abc 0 + + +
e0bc + 0 + +
e0ac + − 0 +
e0ab + − − 0

e0 a b c
abc 0 + + +
e0bc + 0 + +
e0ac + − 0 −
e0ab + − + 0

e0 a b c
abc 0 + + +
e0bc + 0 − +
e0ac + + 0 +
e0ab + − − 0

Figure 7. The three orientations of a labeled U2,4 described by orientations of (3K2,∅)

4.4. Reorientations

If τ is an orientation of a graph G, then denote the reorientation of τ on X ⊆ E(G) by τX . Now let (o, τ)
be an orientation of (G,L) and O(o, τ) denote the orientation of L0(G,L) given by (o, τ). The reorientation of
O(o, τ) on X ⊆ E(G) is clearly given by O(o, τX) according to our definition of circuit signatures. Furthermore,
as with any general oriented matroid, the reorientation of O(o, τ) on X ∪ e0 is the same as the reorientation of
O(o, τ) on the complement of X ∪ e0; that is, E(G)/X. Thus reorientations of τ on subsets of E(G) are enough
to describe all reorientations O(o, τ).

Proposition 4. If o is a pre-orientation of (G,L), then any two orientations of L0(G,L) given by o and −o are equal up
to reorientation.

Proof. The reorientation of O(o, τ) on e0 is O(o, τE(G)) which according to our definition of circuit signatures
is O(−o, τ). This implies our result.

Theorem 5 (Main Result 2). Let G be a 2-connected graph without loops. If o1 and o2 are pre-orientations of (G,L),
then any two orientations of L0(G,L) given by o1 and o2 are equal up to reorientation if and only if o1 = ±o2.

Proof. The easier direction is given by Proposition 4. So now assume that o1 ≠ ±o2. This means that there
are unbalanced cycles C and C′ for which o1(C) = o2(C) and o1(C′) ≠ o2(C′). Since G is 2-connected and
without loops M(G) is connected. Theorem 3 implies that there is a path of unbalanced cycles A1, . . . , At for
which C = A1, C′ = At, and Ai ∪ Ai+1 is a theta graph. Thus there is i for which o1 and o2 agree on Ai and
disagree on Ai+1. Since o1 and o2 are pre-orientations, this implies that the theta graph Ai ∪ Ai+1 does not
contain any balanced cycles. The cosimplification of L0(G,L)∣(Ai ∪ Ai+1) is U2,4 and so the circuit signatures
on the coparallel classes of elements of L0(G,L)∣(Ai ∪ Ai+1) are among those shown in Figure 7. Thus any two
orientations given by o1 and o2 are unequal up to reorientation on L0(G,L)∣(Ai ∪Ai+1) and hence on the whole
of L0(G,L).

There are examples of biased graphs for which there are only two pre-orientations o and −o. The canonical
example is an additively biased graph. A biased graph (G,L) is additively biased when every theta subgraph
contains either one or three balanced cycles (i.e., never contains zero balanced cycles).

Theorem 6. Let G be a 2-connected graph without loops. If (G,L) is additively biased and has a pre-orientation o, then
o and −o are the only pre-orientations of (G,L).

Proof. Let o1 and o2 be pre-orientations on (G,L) and C be an unbalanced cycle. Using negation, assume that
o1(C) = o2(C). Now for any other unbalanced cycle C′ in (G,L) we may use Theorem 3 as in the proof of
Theorem 5 to show that o1 and o2 are equal on C′.
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4.5. Sufficiency

Our final result is Theorem 7. This result combined with Theorems 4 and 5 tell us that every orientation
of any single-element coextension of a connected graphic matroid is uniquely represented by an orientation
(o, τ) of the associated biased graph (G,L) up to negation of o.

Theorem 7 (Main Result 3). Every orientation of L0(G,L) is given by an orientation (o, τ) of (G,L).

Proof. Let O be an oriented matroid whose underlying matroid is L0(G,L). Thus O/e0 is an orientation of
M(G) and there are exactly two orientations of G, say τ along with its reversal τE(G), which represent O/e0.
Now let C be an unbalanced cycle of (G,L) and let Ĉ be the signing of circuit C∪ e0 in O in which e0 is positive.
Since the signing of C in O/e0 is inherited by O, the edges of C which are positive in Ĉ are all oriented under
τ in the same direction around C. Let o(C) be the orientation of C which contains these oriented edges. We
have now defined o on all unbalanced cycles. We claim that o is a pre-orientation and that (o, τ) determines
O. The latter will be done by checking that the circuit signatures of O are given by (o, τ) which we have just
established is the case for both the balanced and unbalanced cycles.

Consider a circuit of C1 ∪C2 in which C1 and C2 are edge-disjoint unbalanced cycles. Reorient O on the
edges of C1 so that we have an all-positive signing, call it Ĉ1, of C1 ∪ e0. Reorient the edges of C2 (which is edge
disjoint from C1) so that we have a signing, call it Ĉ2, of circuit C2 ∪ e0 that is all positive except for e0. We have
already established that the signatures on Ĉ1 and Ĉ2 are given by (o, τ). Thus the orientation of the edges of C1

given by τ are all in o(C1) and the orientation of the edges of C2 given by τ are all in −o(C2). Thus according
to our definition, this signature (which is all positive) on C1 ∪C2 is given by (o, τ), (confer Figure 5).

Now, consider a circuit of C1 ∪ C2 which is a theta graph. Let C3 denote the third cycle of C1 ∪ C2. For
some pair of cycles Ci, Cj ∈ {C1, C2, C3} it must be true that o(Ci) and o(Cj) disagree on the path Ci ∩Cj. Assume
without loss of generality that it is true for C1, C2. Because o(C1) and o(C2) disagree on the path C1 ∩C2 we may
obtain Ĉ1 and Ĉ2 as in the previous paragraph. After we show that o is a pre-orientation (which we do in the
last two paragraphs of this proof) our definition of circuit signatures will yield that the all-positive signature
on C1 ∪C2 is given by (o, τ).

It remains only to show that o is a pre-orientation. Let C1 ∪C2 be a theta graph with third cycle C3. First,
assume that C1, C2, C3 are all unbalanced and let Ĉ1 and Ĉ2 be as in the last paragraph. If we perform signed
circuit exchange on Ĉ1 and Ĉ2 using some arbitrary e ∈ C1 ∩C2, then we obtain the signing for C3 ∪ e0 in which
the elements of E(C3 ∩C1)∪ e0 are positive and E(C3 ∩C2) are negative. Thus o(C3)must agree with both o(C1)
and o(C2) on their paths of intersection. Thus o satisfies Property (2) for pre-orientations.

Finally, assume that C1 and C2 are unbalanced and C3 is balanced. Reorient O on the edges of C1 so that
we have an all-positive signing, call it Ĉ1, of C1 ∪ e0. Now reorient O on E(C3)/E(C1) so that signed circuit Ĉ3

on the edges of C3 is also all positive. Performing signed circuit exchange on e ∈ E(C1) ∩ E(C3) using Ĉ1 and
−Ĉ3 gives that the signing on C2 ∪ e0 is positive on E(C1 ∩C2)∪ e0. Thus o(C1) and o(C2)must agree on C1 ∩C2.
Thus o satisfies Property (1) for pre-orientations.
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