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1. Introduction

F or the basic terminology and notions of graph theory see [1]. Recall that the distance between two vertices
vi and vj of G, denoted by dG(vi, vj), is the length of the shortest path joining them. The empty graph

(edgeless graph) of order n ≥ 1 will be denoted by, Nn. The notion of exact deg-centric graphs of simple graphs
was introduced in [2]. Recall the definition of an exact deg-centric graph from [2].

Definition 1. [2] The exact deg-centric graph of a simple graph G is the graph Ged with V(Ged) = V(G) and
E(Ged) = {vivj ∶ dG(vi, vj) = degG(vi)}.

From the definition of the exact deg-centric graph of a graph G it follows that, if the addition of an edge
vivj in Ged is possible, the addition of the edge vjvi in Ged is not necessarily possible. Furthermore, if ∀ vi ∈ V(G)
the distance dG(vi, vj) ≠ degG(vi),∀j then Ged is an empty graph. The interest of the notion of exact deg-centric
graphs lies mainly in enlarging the scope of the established study of graphs from graph. Note that obtaining the
exact deg-centric graph of any graph (including a disconnected graph) is possible. However, for disconnected
graphs the convention is to apply Defifinition 1 componentwise.

Recall that a dominating set in a graph G with vertex set V(G) is a set S of vertices of G such that every
vertex in V(G)− S is adjacent to at least one vertex in S. The domination number of G, denoted by γ(G), is the
minimum cardinality of a dominating set of G. A dominating set of G of cardinality γ(G) is called a γ(G)-set,
[3–5]. The importance of domination in graphs and the applications thereof have been widely studied.

Recent developments in graph theory have introduced advanced parameters such as the fault-tolerant
mixed metric dimension [6], local edge partition dimension [7], mixed partition dimension [8], and face metric
dimension [9], which strengthen the framework for vertex and edge identification. These concepts have
real-world relevance, especially in nanostructures like V-Phenylenic nanotubes [10] and polyomino-based
graphs studied under magic labeling [11]. Studying these advanced parameters for the exact deg-centric
graphs of nanostructures is deemed both worthy and important in the field of mathematical chemistry.

The family of linear Jaco graphs (for brevity, Jaco graphs) was introduced by Kok et al. in 2014. Readers
are referred to [14] and the references thereto. Also, Assous et al. remarked in [12] that posets of minimal
type are related to the notion of Jaco graphs. Note that Jaco graphs are inherently directed graphs. Recall the
definitions of Jaco graphs from [13].

Definition 2. [13] The infinite Jaco Graph J∞(x), x ∈ N is defined by V(J∞(x)) = {vi ∶ i ∈ N}, A(J∞(x)) ⊆
{(vi, vj) ∶ i, j ∈ N, i < j} and (vi, vj) ∈ A(J∞(x)) if and only if 2i − d−(vi) ≥ j.

Open J. Discret. Appl. Math. 2025, 8(2), 52-60; doi:10.30538/psrp-odam2025.0116 https://pisrt.org/psr-press/journals/odam

https://pisrt.org/psr-press/journals/odam/
https://pisrt.org/psr-press
https://pisrt.org/psr-press/journals/odam


Open J. Discret. Appl. Math. 2025, 8(2), 52-60 53

Definition 3. [13] The family of finite Jaco Graphs is defined by {Jn(x) ⊆ J∞(x) ∶ n, x ∈ N}. A member of the
family is referred to as the Jaco Graph, Jn(x).

Linear Jaco graphs are a fairly new addition to graph theory It represents an infinite family of graphs
and the study thereof intersects with amongst others, number theory (specifically with Fibonacci and Lucas
number theory, integer sequences in graphs) and modern algebra. In this paper the interest lies with the
underlying Jaco graph. Hence, we consider an undirected Jaco graph. Therefore, we shall present an
alternative construction method to obtain the family of underlying Jaco graphs.

Construction method to obtain Jn(x):
(a) Let X = {vi ∶ i = 4, 5, 6, . . . , n} and let G2 = P3 ∪Nn−3 where, V(Nn−3) = X.
(b) By normal consecutive step-count for i = 3, 4, 5, . . . , n − 1 do as follows:

To obtain Gi add the edges vivi+1, vivi+2,. . . , vivi+t with t a maximum such that, degGi(vi) ≤ i.

(c) After completion of step-count i = n − 1 label the resultant graph, Jn(x).
Note that Jn(x) is a simple graph. To clarify the construction method the reader is encouraged to

reconstruct the example below.
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Figure 1. Jaco graph J9(x)

Since both, Jaco graphs and the notion of exact deg-centric graph from a graph received attention in
the literature the authors deem it worthy to contribute by studying firstly, the domination number of a Jaco
graph, secondly, studying the exact deg-centric graph of Jaco graphs, thirdly, to find the domination number
of Jn(x)ed, n ≥ 1 and finally, to consider the complement graphs.

2. Domination number of a Jaco graph

For the purpose of this section we write the open neighborhood of vi in a given Jn(x) as:

N(vi) = N−(vi)∪N+(vi),

where, N−(vi) = {vj ∶ j < i and the edge vjvi exists (by definition)} and N+(vi) = {vj ∶ j > i and the edge vivj
exists (by definition)}.

Also let
t1(vi) = ∣N−(vi)∣ and t2(vi) = ∣N+(vi)∣.

Note that as n increase through the consecutive step-count 1, 2, 3, . . . the max{t1(vi) ∶ ∀ n ≥ i} = t1(vi)
is obtained in any Jaco graph Jn(x) which contains the vertex vi. The same does not necessarily hold for
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max{t2(vi) in Jn(x) ∶ ∀ n ≥ i}. Professor Stephan Wagner1 identified that, in accordance with sequence A060144
in www.oeis.org the result t1(vi) = ⌊ 2(i+1)

3+
√

5
⌋ holds. Therefore, for a minimum sufficiently large n,

t⋆2 (vi) = max{t2(vi) in Jn(x) ∶ n ≥ m} = i − ⌊ 2(i+1)
3+
√

5
⌋,

in all Jaco graphs of order, at least n. We now state a trivial claim which requires no further proof.

Claim 1. If two complete graphs, Kn, Km, n ≥ 1, m ≥ 2 share one common vertex vi then, {vi} is a minimum
dominating set. Note that m = 1 is permissible but redundant.

Notation: For a vertex vi ∈ V(Jn(x)) we denote, v⋆i = vi+t⋆2 (vi)
. For example, v⋆1 = v1+t⋆2 (v1)

= v2, v⋆2 =
v2+t⋆2 (v2)

= v3, and v⋆4 = v4+t⋆2 (v4)
= v7, v⋆7 = v7+t⋆2 (v7)

= v11. Using the new notation the vertex set of a Jaco graph
can be written as:

V(Jn(x)) ={v1, v2, v3}∪ {v4, v5, v6, v7, . . . , v11}∪ {v12, . . . , v12+t⋆2 (v12)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=v⋆12

, . . . , v⋆12+t⋆2 (v
⋆
12)
}∪⋯∪ R

={v1, v2, v3}∪ {v4, v5, v6, v7, . . . , v11}∪ {v12, . . . , v20, . . . , v32}∪⋯∪ R,

where R is the set of possible residual vertices at the tail end of Jn(x). This vertex set representation is called
the τ-representation. As it will become clear later on, it is safe to state at this stage that the τ-representation is
a specific partition of the vertex set of a finite linear Jaco graph such that each partition subset say X besides
possible R contains exactly one dominating vertex in respect of X. This property yields the minimum over
minimality of dominating sets. Hence, it ensures obtaining a γ-set.

Example 1. From Figure 1 it follows that, V(J9(x)) = {v1, v2, v3} ∪ {v4, v5, v6, v7, v8, v9}. Since the elements
could not run through to contain v7+t⋆2 (v7)

= v11 we have R = {v4, v5, v6, v7, v8, v9}.

Lemma 1. Consider a Jaco graph Jn(x) and the τ-representation:

V(Jn(x)) = {v1, v2, v3}∪ {v4, v5, v6, v7, . . . , v11}∪ {v12, . . . , v12+t⋆2 (v12)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=v⋆12

, . . . , v⋆12+t⋆2 (v
⋆
12)
}∪⋯∪ R.

For brevity the τ-representation is written as τ(V(Jn(x))). Each of the induced subgraphs:

⟨{v1, v2, v3}⟩, ⟨{v4, v5, v6, v7, . . . , v11}⟩, ⟨{v12, . . . , v12+t⋆2 (v12)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=v⋆12

, . . . , v⋆12+t⋆2 (v
⋆
12)
}⟩,⋯⟨R⟩,

has domination number equal to one.

Proof. It is a trivial consequence of Claim 1. Observe that, without loss of generality, the induced subgraph
⟨{vs, . . . , vs+t⋆2 (vs)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=v⋆s

, . . . , v⋆s+t⋆2 (v
⋆
s )
}⟩ has a γ-set = {vs+t⋆2 (vs)}. Similarly, γ(⟨R⟩) = 1. The result is settled.

Theorem 1. For a given Jn(x) assume that the τ-representation has k subsets (including R). Then, γ(Jn(x)) = k.

Proof. From Lemma 1 read together with Claim 1 it follows that,

{v2, v7, v12+t⋆2 (v12)
, . . . , vi ∈ R},

is a dominating set hence, γ(Jn(x)) ≤ k. For J3(x) it is obvious that there exist the unique γ-set, {v2}. For J4(x)
it is evident that amongst the options the set {v2, v4} is a γ-set. In fact it is trivial to state that {v2, v4} is a γ-set
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of Jn(x), 1 ≤ n ≤ 7. However, for 8 ≤ n ≤ 11 vertex v4 can be interchanged with v7 as an optimal choice. Hence,
{v2, v7} is a γ-set (not necessarily unique) of Jn(x), 1 ≤ n ≤ 11. The procedure can be argued as n increases
through to 12 ≤ n ≤ 20 and thereafter as n increases through 21 ≤ n ≤ 32 and so forth. Suffice to say that,
through immediate induction it follows that, γ(Jn(x)) > k − 1. So the result γ(Jn(x)) = k is settled.

2.1. Heuristic method to obtain γ(Jn(x)) and γ-set, n ≥ 4

Notation: If x = a and a new value say, b has to be allocated to x the change will be written as x ← b.

2.2. For Jn(x), n ≥ 4

The next heuristic method descibes a method to yield a γ-set X by identifying a "central" vertex of each
vertex subset in the τ-representation (vertex partitioning). Since the set X is of minimum cardinality it follows
that, γ(Jn(x)) = ∣X∣.
Step 0: Let k = 4, j = 0, t = 0 and let set X = {v2}. Go to Step 1.
Step 1: Calculate t⋆2 (vk) = k − ⌊ 2(k+1)

3+
√

5
⌋ and let j ← k + t⋆2 (vk). If n ≤ j let X ← X ∪ {vk} and go to Step 4. If n > j let

X ← X ∪ {vj} and go to Step 2.

Step 2: Calculate t⋆2 (vj) = j − ⌊ 2(j+1)
3+
√

5
⌋ and let t ← j + t⋆2 (vj). If n ≤ t go to Step 4. If n > t go to Step 3.

Step 3: Let k = t + 1 and go to Step 1.
Step 4: Let γ(Jn(x)) = ∣X∣ and exit.

Recall the definition of the Fibonacci numbers i.e. f0 = 0, f1 = 1 and for i ≥ 2, fi = fi−1 +
fi−2. For experimental research it is recommended to utilize a Fibonacci number calculator such as the
ΣCalculatorSoup R⃝ Online Fibonacci Calculator. The next lemma requires no proof and is presented as a utility
result.

Lemma 2. A direct consequence of the τ-representation of the vertex set of J∞(x) is that the set of counting numbers
has a similar τ-representation i.e.:

N = {1, 2, 3}∪ {4, 5, 6, 7, 8, 9, 10, 11}∪ {12, . . . , 12+ t⋆2 (12) = 20
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

, . . . , 20+ t⋆2 (20) = 32
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

}∪⋯.

For brevity the τ-representation is written as τ(N). For the purpose of τ(N) we abandon the commutative
property of the union of sets and maintain the natural chronological position of each subset say, S1 = {1, 2, 3},
S2 = {4, 5, 6, 7, 8, 9, 10, 11}, S3 = {12, . . . , 12+ t⋆2 (12) = 20, . . . , 20+ t⋆2 (20) = 32} and so forth.

The next corollary is a direct consequence from the heuristic method read together with Lemma 2.

Corollary 1. Consider the Jaco graph Jn(x), n ≥ 1. If n ∈ Sk then,

γ(Jn(x)) = k.

Example 2. For J9(x) in Figure 1 we have, 9 ∈ S2. Therefore, γ(J9(x)) = 2.

3. Domination number of exact deg-centric graph of Jaco graph

It is easy to that γ(J1(x)ed) = γ(J2(x)ed) = γ(J3(x)ed) = 1. Computational data (by brute force
determination) is tabled below.

Let η(vi) = i. Note that in Table 1 the γ-set for each value n ∈ N has been selected by the criteria that:

∑
vi∈γ−set

η(vi) = min
⎧⎪⎪⎨⎪⎪⎩
∑

vj∈γ−set
η(vj) ∶ ∀ γ-sets

⎫⎪⎪⎬⎪⎪⎭
.

This criteria is meant to provide a reliable method to identify patterns if such exist, which may lead to provable
results or worthy conjectures. The author is currently researching the topic Integer sequences from finite linear
Jaco graphs.
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Table 1. Extract from [14], Paper 1. Columns 4 and 5 are new additions

i ∈ N t1(vi) t⋆2 (vi) γ(Jn(x)ed) γ-set
1= f2 0 1 1 {v1}
2= f3 1 1 1 {v1}
3= f4 1 2 1 {v2}

4 1 3 2 {v1, v2}
5= f5 2 3 2 {v2, v3}

6 2 4 2 {v1, v3}
7 3 4 2 {v2, v3}

8= f6 3 5 3 {v1, v2, v3}
9 3 6 5 {v1, v2, v3, v6, v7}

10 4 6 5 {v2, v3, v6, v7, v8}
11 4 7 5 {v2, v3, v6, v7, v8,}
12 4 8 5 {v2, v3, v6, v7, v8,}

13= f7 5 8 5 {v2, v3, v6, v7, v8,}
14 5 9 5 {v2, v3, v6, v7, v8,}
15 6 9 6 {v1, v2, v3, v6, v7, v8,}
16 6 10 8 {v1, v2, v3, v6, v7, v8, v14, v15,}
17 6 11 9 {v1, v2, v3, v6, v7, v8, v14, v15, v16}
18 7 11 10 {v2, v3, v6, v7, v8, v14, v15, v16, v17, v18}

Convention: For general graphs multiple edges and loops are permitted. By convention the edge vivi is
a loop provided that the graph G is explicitly classified as a general graph. In simple graphs the edge vivi is
either not permitted or considered to be undefined. The aforesaid is unsatisfactory in many instances. Hence,
if a graph G is explicitly classified as a simple graph the edge vivi will be defined as an invisible edge within
vi itself. This convention is sensible because K1 is the complete graph of smallest order and is connected. The
connectedness is compatible with the convention that,

K1¯
complete graph

≅ ⟨{vi}⟩
´¹¹¹¹¹¸¹¹¹¹¶

induced graph

≡ vi®
vertex

≡ vivi
°

invisible edge
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Simple graph

.

Next, a construction method to obtain Jn(x)ed is presented. The construction method is cumbersome in
that it requires that all n vertices must be considered in say, consecutive order (not a necessary requirement).

Lemma 3. With reference to Jn(x), n ≥ 1 assume deg(vi) = k. If a smallest j ≤ i exists such that d(vi, vj) = k then,
j ∈ {1, 2, 3}.

Proof. We will prove the result through induction for only vn. Hence, for deg(vn) = k = t1(vn). If the result
holds for d(vi, vj) = t1(vi) then by implication, either it holds for deg(vi) = k in Jn(x) in general or such
j ∈ {1, 2, 3} does not exists for deg(vi) = k. Important though is that the proof technique excludes the absurdity
that, "such j ∈ {1, 2, 3} does not exist for t1(vi) and such j does exist for deg(vi)."

It is easy to see that the result holds for n = 1, 2, 3, 4. For n = 5 we have k = 2 and j = 2. Hence the result
holds for n = 5. For n = 6 we have k = 2 and j = 3. Hence the result holds for n = 6. Assume that the result holds
for 7 ≤ n ≤ k. Consider n = k + 1.

Clearly t1(vk+1) > t1(v(k+1)−t1(vk+1)
). Let t1(vk+1)− 1 ≥ t1(v(k+1)−t1(vk+1)

). Then the result holds because it
holds for v(k+1)−t1(vk+1)

. Hence, if j exists in respect of vertex vk+1 then j ∈ {1, 2, 3}. Else, such j does not exists.
By induction the result holds for n ≥ 1 at the distance measure t1(vn).

By implied-induction it follows that the main result i.e. if deg(vi) = k then, either a smallest j ≤ i and
j ∈ {1, 2, 3} exists such that d(vi, vj) = k or such j does not exist, holds for n ≥ 1.

A direct consequence of Lemma 3 is that for n ≥ 4 the distance in Jn(x)ed, d(vi, v3) ≤ t1(vi), 4 ≤ i ≤ n. A
further direct consequence is put as the next corollary.

Corollary 2. (a) In Jn(x)ed, n ≥ 2, i ≥ 2 it follows that, d(vi, v1) ≤ i.
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(b) Without loss of generality, if the edge viv3 exists in Jn(x)ed, n ≥ 4, i ≥ 4 then, the edge viv2 (and not viv3) exists
in Jn+1(x)ed. Furthermore, the edge viv1 (and not the edges viv2, viv3) exists in Jn+2(x)ed. Finally, in Jn+3(x)ed a value
j as intended (or meant) in Lemma 3 does not exist for vi.

Construction method to obtain Jn(x)ed, n ≥ 2:
Let X = {vi ∶ i = 1, 2, 3, . . . , n}. For each vi ∈ X do as follows:
With reference to Jn(x) assume deg(vi) = k. Then if it exists,
(a) By Lemma 3, find smallest j ≤ i such that d(vi, vj) = k and add the (dashed) edge vivj and,
(b) Find greatest (or largest) ℓ, i ≤ ℓ such that d(vi, vj) = k − 1. Then add the (solid) edge(s)

vivℓ+1, vivℓ+2,. . . ,vivℓ+t2(vi)
.

(c) After completion of step-count i = n label the resultant graph, Jn(x)ed.

Example 3. Figure 2 depicts J9(x)ed.

v1

v2

v3
v4

v5

v6

v7
v8

v9

Figure 2. Jaco graph J9(x)ed

Note that the definition of the exact deg-centric graph of a graph G, implies pseudo orientation. Hence, the
edges of J9(x)ed are v1v2, v2v4, v2v5, v3v9, v8v1, v9v3. In general the vertex vi in an edge vivj, i ≠ j will be called
the initiator vertex.

For a given Jn(x)ed we write the initiated neighborhood of vi as:

Ned(vi) = N−ed(vi)∪N+ed(vi),

where, N−ed(vi) = {vj ∶ j < i and the edge vivj exists (by definition)} and N+ed(vi) = {vj ∶ j > i and the edge vivj
exists (by definition)}.

Theorem 2. For i ∈ N there exists a minimum n ∈ {i + 1, i + 2, i + 3} such that, N−ed(vi) = ∅ in Jn(x)ed.

Proof. The result is a direct consequence of Corollary 2.

A concise description of the exact deg-centric graph of Jaco graphs in general remains elusive. However,
three axiom descriptors are important.

Axiom 1. For a sufficiently large Jn(x) and therefore, a sufficiently large Jn(x)ed:
(a) We have that, ∣N−ed(vi)∣ = 0 or 1 for any 1 ≤ i ≤ n.
(b) There exists an i = max{j ∶ 1 ≤ k ≤ j, N−ed(vk) = ∅} for n ≥ 1. Furthermore, ∀ i + 1 ≤ q ≤ n exactly one edge

vqvs, s ∈ {1, 2, 3} exists.
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(c) If i ≥ 1 and the vertex vi ∉ ⋃
j<i

N+ed(vj) then, vi is either isolated in Jn(x)ed or for sufficiently large m > n,

vi is a root vertex in some tree-subgraph of Jm(x)ed.

Theorem 3. For the Jaco graph J∞(x) the exact deg-centric graph J∞(x)ed is a forest. Put differently,
lim

n→∞
Jn(x)ed →forest.

Proof. The proof will follow in two parts. Both parts will follow through immediate induction.
Part 1: Without loss of generality begin with vertex v1. From Theorem 2 read with Axiom 1 it follows that

in J∞(x)ed there exists the tree-subgraph T(v1)with edge set,

E(T(v1)) = { v1v2,
²

v2v4, v2v5,
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

v4v19, v4v20, . . . , v4v29,
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

v5v35, v5v36, . . . , v5v55,
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⋯}.

The root vertex of T(v1) is v1. For brevity, denote v1 ⇢= v1v2
±

, v2 ⇢= v2v4, v2v5
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

, v4 ⇢=

v4v19, v4v20, . . . , v4v29,
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

and so forth.

From observation it follows that the next rooted tree-subgraph is T(v3). The edge set is given by,

E(T(v3)) = {v3v9, v3v10, . . . , v3v13,
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

v9 ⇢, v10 ⇢, v11 ⇢,⋯}.

Through immediate induction it follows that tree-subgraphs can be iteratively constructed such that all
vertices vi, i ∈ N are contained in V(T(v1)) ∪ T(v3)) ∪V(T(v6) ∪⋯. Hence, J∞(x)ed can be decomposed into
infinitely many rooted tree-subgraphs each of which is a tree.

Part 2: What remains is to show that a pair of rooted tree-subgraphs with distinct root vertices do not
share a common vertex. Let the root vertices of the respective tree-subgraphs be vr1 = v1, vr2 = v3, vr3 = v6,
vr4 , vr5 , . . . . Consider two distinct root vertices say, vri , vrj , i > j. Let ri = rj +m1, m1 ≥ 1. The aforesaid is always
possible. From Step (b) in the construction method to obtain Jn(x)ed, n ≥ 2 the first distance jumps from vertex vri

and vertex vrj are to vri+t⋆2 (vri)
and to vrj+t⋆2 (vrj)

, respectively. For the latter two vertices to be a common vertex it

must be that ri + t⋆2 (vri) = rj + t⋆2 (vrj). Hence, (rj +m1)+ t⋆2 (vri) = rj + t⋆2 (vrj). Thus, m1 + t⋆2 (vri) = t⋆2 (vrj). Since,
i > j ⇒ ri > rj the condition m1 + t⋆2 (vri) = t⋆2 (vrj) cannot be satisfied. The condition implies a contradiction
to the definition of the general parameter t⋆2 (⊡). By immediate induction it follows that through all iterative
distance jumps ∀ vl ∈ V(Jn(x)) the contraction holds. Therefore, it follows that any two rooted tree-subgraphs
are distinct. This settles the result i.e. the exact deg-centric graph J∞(x)ed is a forest.

A consequence of Theorem 3 is that as n →∞ the domination number γ(J∞(x)ed)→∞.

4. Domination number of Jn(x) and (Jn(x))ed

Recall that that the complement of a graph G is defined as the graph, G with V(G) = V(G) and E(G) =
{vivj ∶ vivj ∉ E(G)}. Since Jn(x), n = 1, 2, 3, 4 are paths we only consider the Jaco graphs for ≥ 5.

Proposition 1. Let n ≥ 5. Then γ(Jn(x)) = 2.

Proof. Clearly, in Jn(x) the vertex v1 is adjacent to vj, 3 ≤ j ≤ n and v2 is adjacent to vk, 4 ≤ k ≤ n. Hence, the
vertex subset {v1, v2} is a γ-set implying that γ(Jn(x)) ≤ 2. Since v1 and v2 are not neighbors we have that,
∆(Jn(x)) ≠ n − 1. So γ(Jn(x)) > 1. That settles the result.

Note that for n ≥ 5, n ≠ 6 the exact deg-centric graph Jn(x)ed has at least one isolated vertex (or K1). By
similar reasoning as in the proof of Proposition 1 we state the next corollary.

Corollary 3. Let n ≥ 5, n ≠ 6. Then γ((J6(x))ed) = 2 and γ((Jn(x))ed) = 1.
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5. Conclusion

Note that the τ-representation of the counting numbers N read together with Corollary 1 inherently
describes an alternative heuristic method to obtain γ(Jn(x)), n ≥ 1.

Table 1 provides values for both γ(Jn(x)ed) and a corresponding γ-set, 1 ≤ n ≤ 18. These values
were obtained through computational method. Observe the difficulty in that, the construction of the exact
deg-centric graph requires nested-like calculations. For example to find the edge vnvj, j ∈ {1, 2, 3} if such exists,
requires the below.

Claim 2. For the edge vnvj, j ∈ {1, 2, 3} to exists in (Jn(x)ed) it is required that:

t1(vn) ≤ (t1(vn)− t1(vn−t1(vn)))− t1(v(t1(vn)−t1(vn−t1(vn))))−⋯
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

nested−calculations

−{t1(v3), t1(v2)}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

possibly

.

Claim 2 opens an avenue for both a number theoretic approach or a computational mathematics approach
to delve deeper into the properties of exact deg-centric graphs of the family of finite Jaco graphs. There is scope
for complexity studies and interesting sequences from J∞(x)ed remain to be discovered.
Problem 1. Having Jn(x)ed as an initial graph, can the construction method to find Jn+1(x)ed can be optimized?

5.1. Research avenue:

Various of the graph parameters remain open for a similar analysis as found in this research note. For
example, with regards to the chromatic number of a graph G denoted by, α(G)we have:

Proposition 2. For n ≥ 2, α(Jn(x)ed) = 2 or 3. Furthermore, as n →∞ almost all,

Jm(x)ed ∈ {J2(x)ed, J3(x)ed, J4(x)ed, . . . },

has α(Jm(x)ed) = 2.

Proof. Part 1. Since, any Jn(x)ed has a spanning forest say F it is known that α(F) = 2. From Lemma 3 it follows
that for sufficiently large n and on a case to case basis there might exist an i≫ 3 such that vertex vi initiates an
edge, either viv1, or viv2 or viv3. In all these cases, either a 2-coloring or a 3-coloring is required.

Part 2. From Theorem 3 it follows that as n → ∞ we have that, α(Jn(x)ed) → 2. Hence, almost all
α(Jm(x)ed) = 2, n ≥ 2.
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