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Abstract: Let E(G) and dx denote the edge set and degree of a vertex x in G, respectively. Recently, the elliptic
Sombor index has been defined as

ESO(G) = ∑
xy∈E(G)

(dx + dy)
√

d2
x + d2

y .

A molecular tree is a tree in which the maximum degree does not exceed 4. In this paper, we establish sharp
upper and lower bounds for the ESO index in the class of molecular trees with order n and exactly k vertices
of maximum degree ∆ ≥ 2. Moreover, we completely characterize the extremal trees attaining these bounds.
Our findings contribute to the structural analysis of molecular trees and further the understanding of the
elliptic Sombor index in chemical graph theory.
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1. Introduction

A rticle introduction. Throughout this paper, we consider only simple connected undirected graphs.
Let G be such a graph, with vertex set V(G) and edge set E(G). Let dx = dx(G), Nx = Nx(G) and

∆ = ∆(G) denote, respectively, the degree of the vertex x ∈ V(G), the neighbor set of the vertex x, and the
maximum degree of a vertex in G. The number of vertices of maximum degree ∆ will be denoted by k.

An r-vertex is a vertex of degree r. If r = 1 and r ≥ 3, then an r-vertex is said to be pendent and branching,
respectively.

If there is an edge between vertices x and y, we denote it by xy (or yx). Let G \ {xy} and G ∪ {xy}
represent the subgraphs of G obtained by deleting the edge xy and adding the edge xy /∈ E(G), respectively.
In what follows, the sequence π = (d1, d2, . . . , dn) is said to be the degree sequence of the graph G if di = dxi

holds for 1 ≤ i ≤ n, where V(G) = {x1, x2, . . . xn}. Hereafter, we use the symbol pq to define q copies of the
real number p.

As usual, let Pn and Sn denote the path graph and the star graph over n vertices. The double star graph
DSi,j with n vertices is formed by connecting the centers of two stars Si+1 and Sj+1, where i + j + 2 = n. The
broom tree Bn,∆ with n vertices is constructed by attaching ∆− 1 pendent vertices to one end-vertex of the path
Pn−∆+1. A pendent segment of a tree T is a path-subtree S with one end as a pendent vertex and the other of
degree different from 2 in T, while an internal segment has both ends of degrees greater than 2. All intermediate
vertices (if any) of S have degree 2 in T.

We denote by ni = ni(G) the number of vertices of degree i, and by xij = xij(G) the number of edges
between adjacent vertices of degrees i and j in G. When the graph under consideration is evident, we omit G
from the notations. A connected acyclic graph whose maximum degree does not exceed 4 is referred to as a
molecular tree (or chemical tree).

The undefined notations used, can be found in [1].
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For an n-vertex molecular graph, we have the well-known relation:

∆=4

∑
j=1
j ̸=i

xji + 2 xii = i · ni ∀ i = {1, . . . , ∆ = 4}. (1)

Topological indices numerically characterize molecular structures and help estimating physicochemical
properties [2]. Many degree-based indices have been introduced in the literature [3]. One such index, the
Sombor index, is based on a geometric interpretation of edge degree radius, and is defined in [4]. This index has
attracted significant attention, leading to extensive studies on its mathematical and physicochemical properties
[5–14]. Quite recently, the elliptic Sombor index [15] was introduced as a variant of the Sombor index, also
formulated using geometric arguments. It is defined as:

ESO(G) = ∑
xy∈E(G)

(dx + dy)
√

d2
x + d2

y.

Extremal graph problems for topological indices play an important role in Chemical Graph Theory. Here
we present a concise review of these studies, pertaining to the ESO index. In [15], the authors introduced
the ESO index, investigating its mathematical and chemical properties, and characterizing extremal graphs
among (i) trees and (ii) connected graphs. Tang et al. [16] determined the maximal ESO values for trees with
a given (i) diameter, (ii) matching number, and (iii) number of pendent vertices, and characterized the the
corresponding extremal graphs. The chemical applicability of the ESO index in modeling physicochemical
properties of benzenoid hydrocarbons was studied through regression models in [17], while its ordering
in benzenoid systems was explored in [18,19]. Qi et al. [20] established maximal bicyclic graphs for the
ESO index and characterized the corresponding extremal graph. In [21], the authors demonstrated that the
ESO outperforms the SO index in predicting physicochemical properties such as entropy, acentric factor, and
enthalpy of vaporization. They also established the following bounds for trees with complete characterization:
(i) lower bounds for trees with given branching vertices or maximum degree, (ii) lower and upper bounds
for trees with given segments or degree-2 vertices. In [22], the authors solve some optimization problems
for the generalized ESO, in particular on the set of graphs (respectively, trees) with n vertices. Alternative
formulations, including multiplicative and modified versions, were considered in [23,24]. Espinal et al. [25]
solved the extremal problems for the ESO index over chemical graphs and chemical trees of fixed order.
Additional contributions can be found in [26].

Building on the earlier works on bounds of trees with fixed order and maximum degree (see [27–34]), we
aim to establish sharp bounds on the ESO index for molecular trees. By fixing not only the maximum degree
∆ but also the number of vertices of maximum degree, n∆ = k ≥ 1, we introduce an additional constraint that
makes the problem more suited to chemical applications.

As an illustrative example, in Figure 1 are displayed the (molecular) trees for selected values of 8 ≤ n ≤ 9,
3 ≤ ∆ ≤ 4, and 2 ≤ k ≤ 3.

Since n∆ = k, we have the following well-known relations:

n1 + n2 +
∆−1
∑

i=3
ni + k = n,

n1 + 2n2 +
∆−1
∑

i=3
i ni + ∆ k = 2 (n − 1).


(2)

From the above, we obtain n1 = 2 + n3 + 2n4 + · · · + k(∆ − 2) ≥ 2 + k(∆ − 2). Combining this with
n ≥ n1 + k, we obtain n ≥ (∆ − 1)k + 2.

Define the class Γk
n,∆ as the set of molecular trees of order n ≥ (∆ − 1)k + 2, maximum degree ∆ ≥ 2, and

k ≥ 1. For recent studies on this class, we refer the reader to [35,36]. If ∆ = 2, then obviously the path is the
unique element of Γn−2

n,2 . Therefore, in what follows, it will be assumed that ∆ ≥ 3.
We start with an auxiliary result that will have frequent applications in the subsequent section.
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∆ = 3 & k = 3
n = 8

T1

n = 9

n = 10
T2 T3 T4

T5 T6 T7 T8 T9

T10 T11 T12 T13 T14

n = 8 n = 9 n = 10
∆ = 4 & k = 2

T15 T16 T17 T18 T19

T20 T21 T22 T23 T24

Figure 1. All trees satisfying the constraints 8 ≤ n ≤ 10, 3 ≤ ∆ ≤ 4, and 2 ≤ k ≤ 3

Lemma 1. Let

f (y) = (s + y)
√

s2 + y2 − (t + y)
√

t2 + y2,

for y ≥ 1 and s, t > 0. Then:
(i) f (y) is an increasing function for s ≥ t and strictly increasing for s > t.
(ii) f (y) is a decreasing function for s ≤ t and strictly decreasing for s < t.

Proof. Since y ≥ 1 and s, t > 0, it follows that

(s − t)
(
(st)2(s + t) + 2y(st)2 + 2y3(s − t)2 + y2(s + t)(s2 + t2) + y4(s + t) + 2y3(st + 2y2)

)
= (s2 + 2y2 + sy)2(t2 + y2)− (t2 + 2y2 + ty)2(s2 + y2).

This means

(s2 + 2y2 + sy)2(t2 + y2) ≥ (or ≤)(t2 + 2y2 + ty)2(s2 + y2) for s ≥ t (or s ≤ t). (3)

The relation in (3) is strict if s > t or s < t.
The derivative of f (y) is

f ′(y) =
1√

(s2 + y2)(t2 + y2)

[
(s2 + 2y2 + sy)

√
t2 + y2 − (t2 + 2y2 + ty)

√
s2 + y2

]
.

(i) If s ≥ t, then from (3), it follows immediately that f ′(y) ≥ 0, i.e., f (x) is an increasing function.
Moreover, one can see that f (y) is strictly increasing for s > t.

(ii) If s ≤ t, then the desired result follows directly from (3). In addition, the function f (y) strictly
decreases when s < t.

The remainder of the paper is organized as follows. In §2, we establish best possible bounds on the elliptic
Sombor index for trees within Γk

n,∆. In §3, we conclude with final insights and remarks.
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2. Sharp bounds of the ESO index in Γk
n,∆

This section establishes sharp upper and lower bounds for the elliptic Sombor index within Γk
n,∆ and

characterizes the corresponding extremal trees. Throughout this paper, denote by Θ(i, j) = (i + j)
√

i2 + j2,
where Θ(i, j) = Θ(j, i) and min{i, j} > 0.

2.1. Upper bound

This subsection reports an upper bound for the ESO index in Γk
n,∆, along with a complete characterization

of the molecular trees that achieve this bound. For ∆ = 3 and n ≥ 2k + 2, the vertices of degree 2 must be
placed either on internal or pendent segments (for an example, see trees T1, T2, . . . , T14 in Figure 1). This case
is addressed in Theorem 1. Next we examine structural properties of trees attaining the highest ESO index in
Γk

n,∆ for ∆ = 4, k ≥ 1 and n ≥ 3k + 2, leading to the following key observations:

Lemma 2. For a tree T ∈ Γk
n,4 with the highest ESO index, n2 ≤ 1 holds.

Proof. By contradiction, suppose that T contains at least two vertices x and y of degree 2. Let Nx = {x1, x2}
and Ny = {y1′ , y2′}. Without loss of generality, assume that x1 and y1′ lie on the x − y path. Thus d1 ≥ 2 and
d1′ ≥ 2. Let T1 ∈ Γk

n,4 be a tree obtained from T by deleting the edge yy2′ and adding the edge xy2′ . This
modification results in dx(T1) = 3, dy(T1) = 1, while maintaining dv(T1) = dv(T) ∀ v ∈ V(T)\{x, y}. We now
proceed by considering the following two cases:

Case 1. xy /∈ E(T). Then

ESO(T′)− ESO(T) = Θ(3, d2)− Θ(2, d2) + Θ(3, d1)− Θ(2, d1) + Θ(3, d2′)− Θ(2, d2′) + Θ(1, d1′)− Θ(2, d1′)

> Θ(3, d1)− Θ(2, d1) + Θ(1, d1′)− Θ(2, d1′).

Since d1 ≥ 2 and d1′ ≥ 2, then from Lemma 1 (i) and (ii), it follows that

ESO(T′)− ESO(T) > Θ(3, 2)− Θ(2, 2) + Θ(1, 4)− Θ(2, 4) ≈ 0.46 > 0, a contradiction.

Case 2. xy ∈ E(T). Then

ESO(T′)− ESO(T) = Θ(3, d2)− Θ(2, d2) + Θ(3, d2′)− Θ(2, d2′) + Θ(1, 3)− Θ(2, 2) > 0.

In each case, we arrive at a contradiction to our assumption. Hence, for the tree T, n2 ≤ 1 holds.

From Lemma 2, we conclude that T ∈ Γk
n,4 with highest ESO index contains at most one vertex of degree 2.

In the following lemma, we establish the conditions under which T either has no vertex of degree 2 or exactly
one vertex of degree 2.

Lemma 3. The tree T ∈ Γk
n,4 satisfies the following:

(a) n2 = 0 if and only if n − k ≡ 0 (mod 2). Moreover, T has the degree sequence
(

4(k), 3(
n−3k−2

2 ), 1(
n+k+2

2 )
)

.

(b) n2 = 1 if and only if n− k ≡ 1 (mod 2). Moreover, T has the degree sequence
(

4(k), 3(
n−3k−3

2 ), 2(1), 1(
n+k+1

2 )
)

.

Proof. For a chemical tree, from (2) we have

n = n1 + n2 + n3 + k,

2n − 2 = n1 + 2n2 + 3n3 + 4k.

}
(4)

By combining both relations in (4), we obtain

n1 = 2 + n3 + 2k. (5)
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Combining the first relation of (4) with (5), yields

n − k = 2(n3 + k + 1) + n2, that is, n − k ≡ n2 (mod 2). (6)

From (6), we get

n3 =
n − 3k − n2 − 2

2
. (7)

From (5) and (7), we get

n1 =
n + k − n2 + 2

2
. (8)

From (6)–(8), the desired results follow.

Lemma 4. If the tree T ∈ Γk
n,4 with the highest ESO index contains a vertex of degree 2, then that vertex does not have

more than one branching neighbor.

Proof. By Lemma 2, we have n2 ≤ 1. Suppose in contrast that a 2 degree vertex x is adjacent to two branching
vertices x1 and x2 in T. Therefore d1 ≥ 3 and d2 ≥ 3. We now suppose that a pendent vertex y is adjacent to
a branching vertex y1′ in T (as n2 ≤ 1). Without loss of generality, let x1 lies on the x − y path. Let T1 ∈ Γk

n,4
can be constructed from T as follows T1 = (T\{x2x, xx1}) ∪ {x2x1, yx}. This results in dy(T1) = 2, dx(T1) = 1,
while preserving dv(T) = dv(T1) ∀ v ∈ V(T)\{x, y}. Then

ESO(T1)− ESO(T) = Θ(1, 2) + Θ(2, d1′)− Θ(1, d1′) + Θ(d1, d2)− Θ(d1, 2)− Θ(2, d2).

Since d1′ ≥ 3, by Lemma 1 (i), it follows that

ESO(T1)− ESO(T) ≥ Θ(1, 2) + Θ(2, 3)− Θ(1, 3) + Θ(d1, d2)− Θ(d1, 2)− Θ(2, d2).

By setting y = d1 ≥ 3, s = d2 ≥ 3 and t = 2 in Lemma 1 (i), we obtain f (d1) = Θ(d1, d2)− Θ(d1, 2) >

Θ(3, d2) − Θ(3, 2) = f (3). Then by again setting y = d2 ≥ 3, s = 3 and t = 2 in Lemma 1 (i), we obtain
f (d2) = Θ(3, d2) − Θ(2, d2) > Θ(3, 3) − Θ(2, 3) = f (3). By combining these results with the preceding
relation, we obtain

ESO(T1)− ESO(T) > Θ(1, 2) + Θ(2, 3)− Θ(1, 3) + Θ(3, 3)− Θ(3, 2)− Θ(2, 3) ≈ 1.46 > 0.

We arrive at a contradiction to our assumption. Thus we conclude that a 2 degree vertex in T does not
have more than one branching neighbor.

Lemma 5. If k ≥ 2, then for the tree T ∈ Γk
n,4 with the highest ESO index it holds x44 = k − 1.

Proof. We prove this result by contradiction. Since n4 = k ≥ 2, thus for otherwise, we suppose that x44 < k− 1
in T. By Lemma 4, note that if T contains a vertex of degree 2, then it lies on pendent segment. Thus we suppose
that T contains a path x0 − xℓ : x0x1 · · · xℓ−1xℓ of length ℓ ≥ 2, where d0 = 4 = dℓ and d1 · · · = dℓ−1 = 3. Since
n4 = k ≥ 2 and n2 ≤ 1 (by Lemma 2), it follows that T has a pendent vertex y adjacent to a branching vertex
y1′ . Therefore d1′ ≥ 3. The vertex y1′ may or may not be coincident with either of the vertices x0 and xℓ. Let
T1 ∈ Γk

n,4 can be obtained from T as follows:

T1 = (T\{x0x1, xℓ−1xℓ, y1′y}) ∪ {x0xℓ, y1′x1, xℓ−1y}.

This implies that the degree of all vertices remains unchanged in T and T1. We now continue by
distinguishing two cases:

Case 1. The vertex y1′ is distinct from both x0 and xℓ. Then

ESO(T1)− ESO(T) = Θ(4, 4)− Θ(4, 3) + Θ(1, 3)− Θ(4, 3) + Θ(3, d1′)− Θ(1, d1′).
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Since d1′ ≥ 3, then from Lemma 1 (i), it follows that

ESO(T1)− ESO(T) > Θ(4, 4)− Θ(4, 3) + Θ(1, 3)− Θ(4, 3) + Θ(3, 3)− Θ(1, 3) ≈ 0.71 > 0,

which is a contradiction.
Case 2. The vertex y1′ coincides with either x0 or xℓ. In this case,

ESO(T′)− ESO(T) = Θ(4, 4)− Θ(4, 3) + Θ(1, 3)− Θ(4, 3) + Θ(3, 4)− Θ(1, 4) ≈ 2.26 > 0.

In each case, one arrives at a contradiction. Thus we conclude that x44 = k − 1.

Lemma 6. For tree T ∈ Γk
n,4 with highest ESO index, x33 and x14 cannot be simultaneously positive.

Proof. Suppose to the contrary that x33, x14 > 0 holds. Then T contains xy, wz ∈ E(T) such that dx = 3 = dy,
dw = 4 and dz = 1. Let Nx\{y} = {x1, x2}. Without loss of generality, assume that y lies on the x − z path.
Let T1 = (T\{xx1, xx2}) ∪ {zx1, zx2} be a tree in Γk

n,4 such that dx(T1) = 1, dz(T1) = 3 and dv(T1) = dv(T)
∀ v ∈ V(T)\{x, z}. Then

ESO(T1)− ESO(T) = Θ(1, 3) + Θ(4, 3)− Θ(3, 3)− Θ(1, 4) ≈ 1.56 > 0,

which is a contradiction. Hence x33 and x14 cannot be simultaneously positive.

Base on Lemma 3 (b), which states that T contains exactly one vertex of degree 2 when n− k ≡ 1 (mod 2),
we now discuss the adjacency of this degree 2 vertex in the following lemma.

Lemma 7. For n − k ≡ 1 (mod 2), for a tree T ∈ Γk
n,4 with highest ESO index the following holds:

(a) If n ≤ 7k + 5, then x23 = 0.
(b) If n ≥ 7k + 7, then x24 = 0.

Proof. By Lemmas 2 and 3 (b), we obtain n2 = 1 and n3 = n−3k−3
2 for n − k ≡ 1 (mod 2). This (namely,

n2 = 1) by Lemma 4 implies that x12 = 1. Therefore we suppose that a 2 degree vertex x is adjacent to a
pendent vertex x2. By Lemma 5, we have x44 = k − 1.

(a) By contradiction, suppose that x23 = 1 (as n2 = 1 and x12 = 1). Then T contains a 3 degree vertex that
is adjacent to x. Since n2 = 1 and x12 = 1 = x23, then it is evident that x22 = x24 = 0. By setting i = ∆ = 4 in
(1), then this with x24 = 0 and x44 = k − 1 implies that x14 + x34 = 2k + 2. Since n3 = n−3k−3

2 ≤ 2k + 1, then
this with x14 + x34 = 2k + 2 implies that x14 + x34 ≥ n3 + 1. This means x14 ≥ 1. Thus T contains a pendent
vertex y adjacent to a 4 degree vertex in T. Let T1 be a tree in Γk

n,4 such that T1 = (T\{xx2}) ∪ {yx2}. Then
dx(T1) = 1, dy(T1) = 2 and dv(T1) = dv(T) ∀ v ∈ V(T)\{x, y}. We obtain

ESO(T1)− ESO(T) = Θ(2, 4) + Θ(1, 3)− Θ(1, 4)− Θ(2, 3) ≈ 0.82 > 0,

which is a contradiction.
(b) We prove that x24 = 0. Otherwise, suppose that x24 = 1 (as n2 = 1 and x12 = 1). Then T contains

a 4-vertex (say, x1) adjacent to x. Since n2 = 1 and x12 = 1 = x24, then it is obvious that x22 = x23 = 0.
By setting i = ∆ = 4 in (1), then this with x24 = 1 and x44 = k − 1 implies that x14 + x34 = 2k + 1. Since
n3 = n−3k−3

2 ≥ 2k + 2, then this with x14 + x34 = 2k + 1 implies that n3 ≥ x14 + x34 + 1. This means x33 ≥ 1
as x23 = 0. Hence T contains an edge yz ∈ E(T) such that dy = 3 = dz. Without loss of generality, let x and y
be located on the x1 − z path. Let T2 ∈ Γk

n,4 can be obtained from T such that T2 = (T\{xx1, yz}) ∪ {x1z, yx}.
This results in dv(T2) = dv(T) ∀ v ∈ V(T). Then

ESO(T2)− ESO(T) = Θ(4, 3) + Θ(3, 2)− Θ(4, 2)− Θ(3, 3) ≈ 0.72 > 0,

which is a contradiction.
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We define the degree sequences π0(T), π1(T) and π2(T) as follows:

π0(T) = (3(k),2(n−2k−2), 1(k+2)), π1(T) =
(

4(k), 3(
n−3k−2

2 ), 1(
n+k+2

2 )
)

and

π2(T) =
(

4(k), 3(
n−3k−3

2 ), 2(1), 1(
n+k+1

2 )
)

, respectively.

Denote by Γ0 ⊆ Γk
n,3 the subset of n-vertex molecular trees characterized by the degree sequence π0(T)

and the structural properties of those trees outlined in Table 1.

Table 1. The structural properties (i.e., the values of xij) for trees in Γ0 ⊆ Γk
n,3

n x33 x23 x13 x22 x12

Γ0 ⊆ Γk
n,3

n ≤ 3k + 4 k − 1 n − 2k − 2 3k + 4 − n 0 n − 2k − 2
n > 3k + 4 k − 1 2k + 2 0 n − 3k + 4 2k + 2

For a pictorial representation of trees in Γ0 ⊆ Γ3
n,3, refer to T2 and T3 for n = 9, and T5, T6, and T7 for

n = 10 in Figure 1. Additionally, see T25 ∈ Γ0 ⊆ Γ3
14,3 in Figure 2.

T25 T26 T27 T28

Figure 2. The trees T25, T26, T27, and T28

Let Γ1 and Γ2 be the subclasses of Γk
n,4 consisting of trees containing no vertex of degree 2 and exactly one

vertex of degree 2, respectively. According to Lemmas 2 and 3, trees in Γ1 or Γ2 satisfy n − k ≡ 0(mod 2) or
n − k ≡ 1(mod 2) with degree sequence π1(T) or π2(T), respectively. Taking these properties into account,
we define the structural properties (i.e., the values of xij) for the trees in Γ1 ⊆ Γk

n,4 and Γ2 ⊆ Γk
n,4, as presented

in Table 2.

Table 2. The structural properties (i.e., the values of xij) for trees in Γ1 ⊆ Γk
n,4 and Γ2 ⊆ Γk

n,4

Γ1 & Γ2 n x44 x34 x14 x33 x13 x24 x23 x12

Γ1 ⊆ Γk
n,4

n ≤ 7k − 6 k − 1 n−3k−2
2

7k+6−n
2 0 n − 3k − 2 0 0 0

n > 7k − 6 k − 1 2k + 2 0 n−7k−6
2

n+2+k
2 0 0 0

Γ2 ⊆ Γk
n,4

n ≤ 7k + 5 k − 1 n−3k−3
2

7k+5−n
2 0 n − 3k − 3 1 0 1

n > 7k + 5 k − 1 2k + 2 0 n−7k−7
2

n+k−1
2 0 1 1

For instance, see T21 ∈ Γ1 ⊆ Γ2
10,4 and T16 ∈ Γ2 ⊆ Γ2

9,4 in Figure 1. Additionally, T26 ∈ Γ2 ⊆ Γ2
19,4,

T27 ∈ Γ2 ⊆ Γ2
21,4, and T28 ∈ Γ1 ⊆ Γ2

22,4 in Figure 2.
We are now in the state of providing the main theorem.
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Theorem 1. Let T be a molecular tree in Γk
n,∆. Then

ESO(T) ≤ (k − 1)



Θ(3, 3) +

(3k + 4 − n)Θ(1, 3) + (n − 2k − 2)[Θ(1, 2) + Θ(2, 3)], if ∆ = 3 and n < 3k + 4;

(n − 3k + 4)Θ(2, 2) + (2k + 2)[Θ(1, 2) + Θ(2, 3)], if ∆ = 3 and n ≥ 3k + 4;

Θ(4, 4) +



(n − 3k − 2)Θ(1, 3) + Θ(3, 4) n−3k−2
2 + 7k+6−n

2 Θ(1, 4),

if ∆ = 4, n ≤ 7k + 6 and n − k ≡ 0(mod 2);

n+k+2
2 Θ(1, 3) + Θ(3, 4)(2k + 2) + n−7k−6

2 Θ(3, 3),

if ∆ = 4, n > 7k + 6 and n − k ≡ 0(mod 2);

(n − 3k − 3)Θ(1, 3) + Θ(3, 4) n−3k−3
2 + 7k+5−n

2 Θ(1, 4) + Θ(1, 2) + Θ(2, 4),

if ∆ = 4, n ≤ 7k + 5 and n − k ≡ 1(mod 2);

n+k−1
2 Θ(1, 3) + Θ(3, 4)(2k + 2) + n−7k−7

2 Θ(3, 3) + Θ(1, 2) + Θ(2, 3),

if ∆ = 4, n > 7k + 5 and n − k ≡ 1(mod 2).

The equality holds if and only if T ∈ Γ0 for ∆ = 3; T ∈ Γ1 for ∆ = 4 and n − k ≡ 0(mod 2), and T ∈ Γ2 for
∆ = 4 and n − k ≡ 1(mod 2).

Proof. Let T⋆ be a molecular tree with the highest ESO index among all trees in Γk
n,∆, where 3 ≤ ∆ ≤ 4,

n ≥ (∆ − 1)k + 2 and k ≥ 1. It follows that ESO(T) ≤ ESO(T⋆) with equality if and only if T ∼= T⋆. We now
proceed to discuss the problem in two cases: ∆ = 3 and ∆ = 4.

Case 1. ∆ = 3. This with n3 = k and (3) implies that

π0(T⋆) =
(

3(k), 2(n−2k−2), 1(k+2)
)

.

We now establish the following claims:

Claim 1. If k ≥ 2, then for the tree T⋆, x33 = k − 1 holds.

Proof of Claim 1. By contradiction, suppose that T⋆ contains an internal segment of length ℓ ≥ 2 with both
terminal vertices of degree 3. Since T is a tree, it is evident that T⋆ contains a pendent segment of length ℓ′ ≥ 1.
We obtain T1 from T⋆ by replacing the path of length ℓ with a path of length 1 and the path of length ℓ′ with a
path of length ℓ+ ℓ′ − 1. We now discuss the possible cases that may arise:

Case 1.1. ℓ′ = 1. In this case, we obtain

ESO(T1)− ESO(T⋆) = Θ(3, 3) + Θ(2, 1)− Θ(3, 1)− Θ(3, 2) ≈ 1.487 > 0.

Case 1.2. ℓ′ ≥ 2. Then

ESO(T′)− ESO(T⋆) = Θ(3, 3) + Θ(2, 2)− 2Θ(3, 2) ≈ 0.714 > 0.

In each case, we arrive at a contradiction. Thus we conclude that x33 = k − 1. This completes the Claim
1.

Combining π0(T⋆) and Claim 1 with (2), we derive

x12 + x13 = k + 2,

x12 + 2 x22 + x23 = 2 (n − 2k − 2),

x13 + x23 = k + 2.

 (9)

Claim 2. x13 and x22 cannot be simultaneously positive.
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Proof of Claim 2. We prove this result by contradiction. Otherwise, assume that x13, x22 > 0. This together
with Claim 1 implies that T⋆ contains pendent segments of length 1 and at least 3. We construct a tree T2 ∈ Γk

n,3
from T⋆ by replacing a pendent segment of length 1 with one of length 2 and a pendent segment of length at
least 3 with one of at least 2, ensuring that dv(T2) = dv(T⋆) ∀ v ∈ V(T⋆). Then we have

ESO(T2)− ESO(T⋆) = Θ(2, 3) + Θ(1, 2)− Θ(1, 3)− Θ(2, 2) ≈ 0.76 > 0,

a contradiction. Thus we conclude that x13 and x22 cannot be simultaneously positive, which completes the
proof of Claim 2.

According to Claims 1 and 2, we need to place vertices of degree 2 between the vertices of degree 3 and
1 in T⋆, ensuring that each pendent segment has a length of at most 2. The remaining vertices of degree 2 can
then be placed arbitrarily on any pendent segment of length at least 2. Thus the following possible cases arise:

Case 1.1. n ≤ 3k + 4. Since n2 = n − 2k − 2 and n1 = k + 1, in this case,

n2 = n − 2k − 2 ≤ k + 1 = n1.

We now prove that x22 = 0. Otherwise, suppose that x22 > 0. This with above relation and Claim 1
implies that x13 > 0. However, Claim 2 then yields a contradiction. Hence x22 = 0. Combining this with
Claim 1 and (9), we obtain x12 = n − 2k − 2 = x23, x13 = 3k + 4 − n and x33 = k − 1. Thus T⋆ ∈ Γ0. As a result

ESO(T⋆) = (k − 1)Θ(3, 3) + (3k + 4 − n)Θ(1, 3) + (n − 2k − 2)[Θ(1, 2) + Θ(2, 3)].

Case 1.2. n > 3k + 4. This implies n2 = n − 2k − 2 > k + 1 = n1. In this case, we prove that x13 = 0.
Otherwise, assume that x13 > 0. This together with n2 > n1 and Claim 1 ensures that x22 > 0. However,
by Claim 2, we obtain a contradiction. Thus we conclude that x13 = 0. Combining this with Claim 1 and
incorporating it into (9), we get x12 = k + 2 = x23, x22 = n − 3k − 4 and x33 = k − 1. So T⋆ ∈ Γ0. Consequently

ESO(T⋆) = (k − 1)Θ(3, 3) + (n − 3k − 4)Θ(2, 2) + (k + 2) [Θ(1, 2) + Θ(2, 3)] .

Case 2. ∆ = 4.
By Lemma 2, we have n2 ≤ 1. If n2 = 0, then by Lemma 3 (a), n − k ≡ 0(mod 2) and we conclude that

T⋆ has the degree sequence π1(T⋆). If n2 = 1, then by Lemma 3 (b), n − k ≡ 1(mod 2) and hence T⋆ has the
degree sequence π2(T⋆). Based on these observations, we discuss the proof into the following two cases:

Case 2.1. n − k ≡ 0 (mod 2). In this case, by Lemma 3 (b), T⋆ has the degree sequence

π1(T⋆) =
(

4(k), 3(
n−3k−2

2 ), 1(
n+k+2

2 )
)

.

By Lemma 5, it holds that x44 = k − 1. Taking this and the above degree sequence into consideration
along with (1), we derive

x13 + x14 =
n + k + 2

2
,

x13 + 2x33 + x34 = 3
(

n − 3k − 2
2

)
,

x14 + x34 + 2(k − 1) = 4k.


(10)

From the above, we obtain

x33 − x14 =
1
2
(n − 7k − 6). (11)

We now consider the following two cases that arise:
Case 2.1.1. n ≤ 7k − 6. In this case, we prove that x33 = 0. Otherwise, assume that x33 > 0. Since

n ≤ 7k − 6, by (11), we obtain x14 ≥ x33 ≥ 1 (as x33 ≥ 1). Therefore x33, x14 > 0. Then by Lemma 6, we can
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obtain a contradiction. Hence x33 = 0. Combining this with (10), we obtain x13 = n − 3k − 2, x34 = n−3k−2
2 ,

x14 = 7k+6−n
2 and x44 = k − 1. Thus T⋆ ∈ Γ1. Consequently

ESO(T⋆) = (k − 1)Θ(4, 4) + (n − 3k − 2)Θ(1, 3) +
n − 3k − 2

2
Θ(3, 4) +

7k + 6 − n
2

Θ(1, 4).

Case 2.1.2. n > 7k − 6. For this case, we prove that x14 = 0. Otherwise, assume that x14 > 0. Since
n > 7k − 6, by (11), we obtain x33 > x14 ≥ 1 (as x14 ≥ 1). Thus x33, x14 > 0, this contradicts the Lemma
6. Hence we conclude that x14 = 0. This combining along with (13) implies that x13 = n+k+2

2 , x34 = 2k + 2,
x33 = n−7k−6

2 and x44 = k − 1. Thus T⋆ ∈ Γ1. As a result

ESO(T⋆) = (k − 1)Θ(4, 4) +
(

n + k + 2
2

)
Θ(1, 3) + (2k + 2)Θ(3, 4) +

(
n − 7k − 6

2

)
Θ(3, 3).

Case 2.2. n − k ≡ 1(mod 2). In this case, by Lemmas 2 and 3 (b), T⋆ has the degree sequence

π2(T⋆) =
(

4(k), 3(
n−3k−3

2 ), 2(1), 1(
n+k+1

2 )
)

.

By Lemmas 4 and 5, it holds that

x12 = 1 and x44 = k − 1,

respectively. By combining above relations and the degree sequence π2(T⋆) along with (1), we obtain

1 + x13 + x14 =
n + k + 1

2
,

x23 + x24 = 1,

x13 + x23 + 2x33 + x34 = 3
(

n − 3k − 3
2

)
,

x14 + x24 + x34 + 2(k − 1) = 4k.


(12)

Case 2.2.1. n ≤ 7k + 5. By Lemma 7 (a), we have x23 = 0. This with (12) implies that x33 − x14 =
1
2 (n − 7k − 5). In this case, we prove x33 = 0. Otherwise, suppose that x33 > 0. Since n ≤ 7k + 5 and
x33 − x14 = 1

2 (n − 7k − 5), then by combining these, we obtain x14 ≥ x33 ≥ 1 (as x33 ≥ 1). Thus we have
x33, x14 > 0. Then by Lemma 6, we can obtain a contradiction. Hence x33 = 0. Bearing this and x23 = 0
into consideration with (12) and solving them simultaneously, we obtain x13 = n − 3k − 3, x34 = n−3k−3

2 ,
x14 = 7k−n+5

2 and x24 = 1. So T⋆ ∈ Γ3. Consequently

ESO(T⋆) = (k − 1)Θ(4, 4) + (n − 3k − 3)Θ(1, 3) +
(

n − 3k − 3
2

)
Θ(3, 4)

+

(
7k + 5 − n

2

)
Θ(1, 4) + Θ(1, 2) + Θ(2, 4).

Case 2.2.2. n ≥ 7k + 7. By Lemma 7 (b), we have x24 = 0. This with (12) implies that x33 − x14 =
1
2 (n − 7k − 7). In this case, we prove x14 = 0. Otherwise, suppose that x14 > 0. Since n ≥ 7k + 7 and
x33 − x14 = 1

2 (n − 7k − 7), then by combining these, we obtain x33 ≥ x14 ≥ 1 (as x14 ≥ 1). Thus x33, x14 > 0.
Then by applying the Lemma 6, we obtain a contradiction. Hence x14 = 0. Taking this and x24 = 0 into account
along with (12) and by some computation, we obtain x13 = n+k−1

2 , x34 = 2k + 2, x33 = n−7k−7
2 and x23 = 1.

Thus T⋆ ∈ Γ3. Hence

ESO(T⋆) = (k − 1)Θ(4, 4) +
(

n + k − 1
2

)
Θ(1, 3) + (2k + 2)Θ(3, 4) +

(
n − 7k − 7

2

)
Θ(3, 3)

+ Θ(1, 2) + Θ(2, 3).

This concludes the proof of this theorem.
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2.2. Lower bound

In this subsection, we establish the sharp lower bound for the ESO index in Γk
n,∆ and characterize the

corresponding molecular trees. For k = 1 and ∆ + 1 ≤ n ≤ ∆ + 2, we have Γ1
4,3 = {S4} and Γ1

5,3 = {DS2,1} for
∆ = 3, while Γ1

5,4 = {S5} and Γ1
6,4 = {DS3,1} for ∆ = 4. We analyze the problem by considering two cases: (i)

k = 1 with n ≥ ∆ + 3 and (ii) k ≥ 2 with n ≥ (∆ − 1)k + 2. We first establish the following result for k = 1.

Theorem 2. Let T ∈ Γ1
n,∆ be a molecular tree with n ≥ ∆ + 3. Then

ESO(T) ≥ (∆ − 1)Θ(∆, 1) + Θ(∆, 2) + (n − ∆ − 2)Θ(2, 2) + Θ(2, 1).

The inequality becomes equality if and only if T ∼= Bn,∆.

Proof. Let T∗ ∈ Γ1
n,∆ be a tree with the lowest ESO index. We prove that T∗ ∼= Bn,∆. Suppose to the contrary

that T is not isomorphic to Bn,∆. Then T∗ with n∆ = k = 1 contains at least two pendent segments of lengths
ℓ ≥ 2 and ℓ′ ≥ 2, respectively. We replace two pendent segments by pendent segments of lengths 1 and
ℓ+ ℓ′ − 1 to obtain a new tree T1 from T∗. Then

ESO(T1)− ESO(T∗) = Θ(∆, 1)− Θ(∆, 2) + Θ(2, 2)− Θ(1, 2).

By selecting y = ∆ ≥ 3, s = 2 and t = 1 in Lemma 1 (i), it follows that f (2) = Θ(2, 2) − Θ(2, 1) <

Θ(∆, 2)− Θ(∆, 1) = f (∆). This means ESO(T1)− ESO(T∗) < 0, which is a contradiction. Hence we conclude
that T∗ ∼= Bn,∆. As a result

ESO(Bn,∆) = (∆ − 1)Θ(∆, 1) + Θ(∆, 2) + (n − ∆ − 2)Θ(2, 2) + Θ(2, 1).

Thus we complete the proof.

Let us define a degree sequence π3(T) as follows:

π3(T) =
(

∆(k), 2(n−k(∆−1)−2), 1(k(∆−2)+2)
)

for ∆ ∈ {3, 4}.

Denote by Γ3 ⊆ Γk
n,∆ the family of molecular trees with n ≥ (∆ − 1)k + 2, k ≥ 2, and degree sequence

π3(T). Moreover, trees in Γ3 possess the structural properties given in the following table.

Table 3. The structural properties (i.e., the values of xij) for trees in Γ3 ⊆ Γk
n,∆, where ∆ ∈ {3, 4}

n x∆∆ x2∆ x1∆ x22

Γ3 ⊆ Γk
n,∆

n ≤ ∆k ∆k − n + 1 2n − 2k(∆ − 1)− 4 k(∆ − 2) + 2 0
n ≥ ∆k + 1 0 2(k − 1) k(∆ − 2) + 2 n − ∆k − 1

To illustrate the trees in Γ3, refer to Figure 1, where T3 ∈ Γ3 ⊆ Γ3
9,3, T14 ∈ Γ3 ⊆ Γ3

10,3, T17 ∈ Γ3 ⊆ Γ2
9,4, and

T23 ∈ Γ3 ⊆ Γ2
10,4.

We now proceed to establish our main result for k ≥ 2.

Theorem 3. Let T ∈ Γk
n,∆ (k ≥ 2) be a molecular tree, then we have

ESO(T) ≥ (k(∆ − 2) + 2)Θ(1, ∆) +

2(n − k(∆ − 1)− 2)Θ(2, ∆) + (∆k − n + 1)Θ(∆, ∆), if n ≤ ∆k;

2(k − 1)Θ(2, ∆) + (n − ∆k − 1)Θ(2, 2), if n ≥ ∆k + 1.

The equality holds if and only if T ∈ Γ4 for n ≤ ∆k, and T ∈ Γ5 for n ≥ ∆k + 1.

Proof. Among the family of molecular trees in Γk
n,∆, let T∗ be the tree with the lowest ESO index. We now

proceed to establish certain claims:
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Claim 3. If ∆ = 4, then for the tree T∗, n3 = 0 holds.

Proof of Claim 3. We prove this claim by contradiction method. Suppose that T∗ contains a vertex x of degree
3 and Nx = {x1, x2, x3}. Let y be a pendent vertex adjacent to y1′ such that d1′ ≥ 2. Without loss of generality,
assume that x3 lies on x − y path (possibly x3 = y1′ ). This means d3 ≥ 2. We consider a tree T1 = (T∗\{xx1})∪
{yx1} in Γk

n,∆ such that dx(T1) = 2, dy(T1) = 2 and dv(T1) = dv(T∗) ∀ v ∈ V(T∗)\{x, y}. We now consider the
following possible two cases:

Case 1. xy /∈ E(T∗). Then

ESO(T1)− ESO(T∗) = Θ(2, d3)− Θ(3, d3) + Θ(2, d2)− Θ(3, d2) + Θ(2, d1)− Θ(3, d1)

+ Θ(2, d1′)− Θ(1, d1′)

< Θ(2, d3)− Θ(3, d3) + Θ(2, d1′)− Θ(1, d1′).

Since d3 ≥ 2 and d1′ ≤ 4, it follows from Lemma 1 (i) and (ii) that

ESO(T1)− ESO(T∗) < Θ(2, 2)− Θ(3, 2) + Θ(2, 4)− Θ(1, 4) ≈ −0.48 < 0.

Case 2. xy ∈ E(T∗). Then we have

ESO(T1)− ESO(T∗) = Θ(2, d2)− Θ(3, d2) + Θ(2, d1)− Θ(3, d1) + Θ(2, 2)− Θ(3, 1) < 0.

From the above cases, we derive a contradiction. Thus T∗ does not contain any vertex of degree 3. This
proves the Claim 3.

By taking into consideration the Claim 3 (namely, n3 = 0 when ∆ = 4) or ∆ = 3 with (2), we conclude
that T∗ has the degree sequence:

π3(T∗) =
(

∆(k), 2(n−k(∆−1)−2), 1(k(∆−2)+2)
)

, where ∆ ∈ {3, 4}.

Claim 4. For the tree T∗, x12 = 0 holds.

Proof of Claim 4. By contradiction, assume that T∗ contains a pendent vertex x adjacent to a 2 degree vertex
(say x1). Since k ≥ 2, it follows that T∗ contains an internal segment yℓ . . . y0 of length ℓ ≥ 1 such that d0, dℓ ≥ 3.
Without loss of generality, we can assume that y0 is not located on x − yℓ path. Let T2 = (T∗\{xx1, yℓyℓ−1}) ∪
{x1yℓ−1, yℓx} be a tree in Γk

n,∆ such that dv(T2) = dv(T∗) ∀ v ∈ V(T∗). We now distinguish the following two
cases:

Case 1. ℓ ≥ 2. Then

ESO(T2)− ESO(T∗) = Θ(1, dℓ)− Θ(2, dℓ) + Θ(2, 2)− Θ(1, 2).

By choosing y = dℓ ≥ 3, s = 1 and t = 2 in Lemma 1 (ii), it is evident that f (dℓ) = Θ(1, dℓ)− Θ(2, dℓ) <
Θ(1, 2)− Θ(2, 2) = f (2). In conjunction with the above, this leads to

ESO(T2)− ESO(T∗) < 0,

a contradiction.
Case 2. ℓ = 1. Then we have

ESO(T2)− ESO(T∗) = Θ(1, d0)− Θ(dℓ, d0) + Θ(dℓ, 2)− Θ(1, 2).

By setting y = dℓ ≥ 3, s = 1 and t = d0 ≥ 3 in Lemma 1 (ii), we obtain f (dℓ) = Θ(1, dℓ)− Θ(d0, dℓ) <
Θ(1, 2)− Θ(d0, 2) = f (2). By combining this result with the preceding relation, we conclude that

ESO(T2)− ESO(T∗) < 0,
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which is a contradiction.
From the above cases, we obtain a contradiction. Hence x12 = 0, which establishes Claim 4.

By taking into account the degree sequence π3(T∗) and Claim 4 with (1), we obtain

x1∆ = k(∆ − 2) + 2,

2 x22 + x2∆ = 2 (n − 2 − k(∆ − 1)),

x1∆ + x2∆ + 2 x∆∆ = ∆ × k.

 (13)

From the above relation, we obtain

x22 − x∆∆ = n − (∆k − 1). (14)

Claim 5. x∆∆ and x22 cannot be simultaneously positive.

Proof of Claim 5. We prove this result by contradiction. For this we assume that x∆∆, x22 > 0. This with
Claim 4 yields that T∗ contains an internal segments of length 1 and of length at least 3. We transform a tree
T3 ∈ Γk

n,∆ from T∗ by modifying its internal paths: replacing an internal path of length 1 with one of length 2
and an internal path of length at least 3 with one of at least 2, while preserving the degree of each vertex, that
is, dv(T3) = dv(T∗) ∀ v ∈ V(T∗). Then we have

ESO(T3)− ESO(T∗) = Θ(2, ∆) + Θ(2, ∆)− Θ(∆, ∆)− Θ(2, 2).

Since ∆ ≥ 3, we start with an evident relation ∆2 ((∆ − 2)2 − 1
)
+ (2∆ − 4)2 + ∆2 > 0. Using this, we

have 2(∆2 + 4)2 > (2 + ∆)2(∆2 + 4), which implies that

2(2 + ∆)
√

4 + ∆2 < 2∆2
√

2 + 4
√

8, that is, Θ(2, ∆) + Θ(2, ∆) < Θ(∆, ∆) + Θ(2, 2),

from which it immediately follows that ESO(T3) − ESO(T∗) < 0. Hence either x∆∆ = 0 or x22 = 0. This
completes the Claim 5.

We now discuss the following cases:
Case 1. n ≤ ∆k. In this case, we prove that x22 = 0. For the sake of contradiction, we suppose that x22 > 0.

Since x12 = 0 (by Claim 4), it follows that T∗ contains an internal segment of length at least 3. Since n ≤ ∆k,
by (14), we obtain x∆∆ ≥ x22 ≥ 1. Therefore there exists an internal segment of length 1. So T∗ obeys the
conditions x∆∆, x22 > 0. Then by Claim 5, we obtain a contradiction. Consequently x22 = 0.

Taking into account x22 = 0 along with (13) and solving the equations simultaneously, we obtain x1∆ =

k(∆ − 2) + 2, x2∆ = 2(n − k(∆ − 1)− 2) and x∆∆ = ∆k − n + 1. Thus T∗ ∈ Γ4. Consequently

ESO(T∗) = (k(∆ − 2) + 2)Θ(1, ∆) + 2(n − k(∆ − 1)− 2)Θ(2, ∆) + (∆k − n + 1)Θ(∆, ∆).

Case 2. n ≥ ∆k + 1. For this case, we prove that x∆∆ = 0. Suppose, for the sake of contradiction, that
x∆∆ ≥ 1. Since n ≥ ∆k + 1, it follows from (14) that x22 ≥ x∆∆ ≥ 1 (as x∆∆ ≥ 1). Together with x12 = 0
(by Claim 4), this implies that T∗ must contain an internal segment of length at least 3. Thus T∗ satisfies the
conditions x∆∆, x22 > 0. However, this contradicts Claim 5. Hence we conclude that x22 = 0.

By incorporating x22 = 0 along with (13) and evaluating the respective system of equations, we deduce
x1∆ = k(∆ − 2) + 2, x2∆ = 2(k − 1) and x22 = n − ∆k − 1. Hence T∗ ∈ Γ5. As a result

ESO(T∗) = (k(∆ − 2) + 2)Θ(1, ∆) + 2(k − 1)Θ(2, ∆) + (n − ∆k − 1)Θ(2, 2).

This completes the proof.

3. Conclusion

In this paper, we established sharp upper and lower bounds on the elliptic Sombor index for molecular
trees within the class Γk

n,∆, along with a complete characterization of the trees attaining these bounds. Our
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analysis reveals that the extremal molecular trees are not unique. Specifically, molecular trees achieving the
upper bound are classified into three families based on their degree sequences: π0(T), π1(T), and π2(T).
Likewise, those attaining the lower bound form a single set determined by the degree sequence π3(T). An
interesting direction for future research is to derive sharp bounds on the ESO index for trees in Γk

n,∆ when
∆ ≥ 5.
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