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Abstract: World Bank macrodata for every country on our planet indicate that national incomes per
capita account for a significant portion of population disparity, and these incomes follow well-known
distributions documented in the literature across almost all continents. Measuring and comparing disparity
is a substantial task that requires assembling the relative nature of both small and large national incomes
without distinctions. This is the primary reason we consider the Atkinson inequality index (in the continuous
case) in this paper, which was developed towards the end of the 20th century to measure this disparity.
Since then, a nonparametric estimator for the Atkinson index has not been developed; instead, a well-known
classical discrete form has been utilized. This reliance on the classical form makes the estimation or
measurement of economic inequalities relatively straightforward. In this paper, we construct a kernel
estimator of the Atkinson inequality index and, by extension, that of its associated welfare function. We then
establish their almost sure asymptotic convergence. Finally, we explore the performance of our estimators
through a simulation study and draw conclusions about national incomes per capita on each continent, as
well as globally, by making comparisons with the classical form based on World Bank staff estimates derived
from sources and methods outlined in "The Changing Wealth of Nations". The results obtained highlight the
advantages of kernel-based measures and the sensitivity of the index concerning the aversion parameter.
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1. Introduction

M easuring inequality is essential for understanding the distribution of wealth in a society and changes
in the social structure. It helps guide public policies, particularly those related to redistribution, and

measures their impact. To measure economic inequality, there is a wide variety of tools that represent different
perspectives on the subject studied. After reflecting on the relevant level of analysis of inequality, this article
presents the various indicators that allow us to assess the extent of economic inequality, its evolution, and its
persistence. It then discusses the normative implications of the choice of indicators in relation to considerations
of social justice. After being ignored for several decades, the issue of inequality is back in the spotlight. The
recent resurgence of inequality raises questions and evokes serious concerns. Inequalities refer to differences
that generate phenomena of social hierarchy. These differences can relate to the allocation of resources that are
unequally distributed or refer to unequal access to certain goods or services; this is how we speak of income
inequality. Economic inequalities traditionally refer to disparities in income and wealth. These inequalities
are the subject of particular attention due to the importance of the economic dimension in the social valuation
of individuals in our societies. While not all inequalities are unfair, the assessment of whether a situation is
fair or unfair is always made in light of a standard of equality against which the situation is evaluated. Thus,
depending on whether we value equality of situations or equality of rights, a different perspective will be
taken on the same situation. It is therefore impossible to think of inequalities without reference to a conception
of social justice against which a judgement will be made about reality. This renewed interest in the study
of inequalities partly stems from publications that have highlighted their increase. Notably, we can cite the
work of Piketty [1] on this issue. One of the main contributions of this author (along with others) is to have
facilitated the dissemination of statistics, particularly on high incomes, allowing for a precise measurement
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of the evolution of inequalities. Documenting the existence of inequalities and having precise information
on their variation is a necessary prerequisite for any scientific debate. Far from being merely technical, the
discussion surrounding the choice of a relevant indicator to measure inequalities is, in reality, a scientific
challenge.

It should also be noted that the issue of the well-being of the population is of major importance in the
political, social, and economic spheres. Well-being means that the population has sufficient means to meet its
needs, organize its life independently, use and develop its abilities, and pursue its goals. This cannot happen
without appropriate framework conditions. The term well-being is used here as a synonym for quality of life.
Well-being is considered not only in its material and financial dimensions but also in a broader perspective
that encompasses the immaterial situation of the population. Material resources include income and wealth,
which enable individuals to meet their needs. However, other material dimensions, such as housing and work,
are also taken into account when measuring well-being. Education, health, and social relations are part of the
immaterial dimensions of well-being, which also encompass the legal and institutional framework that allows
citizens to participate in political life and ensures the physical security of individuals. Finally, the concept
of well-being includes environmental aspects such as water quality, air quality, and noise pollution. In an
approach to well-being that aims to be as broad as possible, it is important to consider not only objective living
conditions but also their subjective perception by the population, namely what the population thinks, for
example, about its housing conditions and the state of the environment, its feeling of security, and its degree of
satisfaction with the world of work and with life in general. Inequality indices aim to provide information on
the situation of the population. To this end, it is necessary to grasp a large number of elements that constitute
well-being and to describe its different facets. Inequality indices provide statistical information on the state
and evolution of well-being in a broad context, which can serve as a basis for forming public opinion and
making political decisions (see also Harper [2]).

Inequality indices are classified into categories. In this paper, we will mention the most widespread
ones. Generally speaking, inequality measures fall into two broad categories depending on the approach
used to calculate them: descriptive measures and normative measures (see Sen [3]). Descriptive inequality
measures are usually mathematical or statistical formulas, for example, the Gini index (see Agbokou et al. [4]
and Banerjee [5]). Therefore, the characteristics of these indices depend on their mathematical or statistical
properties, respectively. Most inequality indices are descriptive in nature. Normative inequality indices are
derived from a social welfare function based on a prior value judgement about the effects of inequality on
social welfare. These measures combine the inequality index with a social evaluation and specify whether
inequality is harmful or not, as well as the degree of welfare that a society loses or gains because of this
inequality. Atkinson inequality indices are among the most frequently cited normative measures. Note that
the inequality indices examined here do not necessarily satisfy all axioms (see Sen et al. [6]). For example, the
Atkinson index satisfies almost all of the axioms, but it is not additively decomposable. It is also worth noting
that there are inequality measures derived from entropy that we will not discuss here.

We denote by X a continuous random variable representing income. For simplicity, let X be strictly
positive (no zero or negative income), f (x) is its probability density, F(x) is its distribution function
representing the cumulative distribution of income, and µ is the average income. The consideration of a
welfare function to define an inequality index is illustrated first and foremost by the Atkinson index. We
start with the following welfare function:

W(θ) = ∫R
x1−θ

1− θ
f (x)dx. (1)

The inequality measure that we deduce from this simple welfare function is written as:

A(θ) = 1−
⎡⎢⎢⎢⎢⎣
∫R
( x

µ
)

1−θ

f (x)dx.
⎤⎥⎥⎥⎥⎦

1
1−θ

, (2)
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where θ ⩾ 0 is the inequality aversion parameter. We generally use values between 0 and 1 for θ. For θ = 1, the
form is indeterminate and we remove the indeterminacy by taking as a welfare function:

W(1) = ∫R
log(x) f (x)dx, (3)

and the corresponding form of the index in this case is therefore

A(1) = 1− 1
µ

exp [∫R
log(x) f (x)dx] . (4)

For θ Ð→ 0, we come across a Rawlsian measure, Rawls [7], where only the fate of the poorest matters
to society. The Atkinson index has a value in [0, 1]. It is worth 1 when an individual has everything and the
others nothing. The welfare function associated with this index is the one that weights the observations by
their rank. It is the poorest who will receive the greatest weight. We therefore deduce it, according to the
formulas (1) and (2), in the form:

W(θ) = { [µ(1− A(θ))]1−θ if θ ≠ 1 ,
log[µ(1− A(θ))] if θ = 1.

(5)

Several authors have worked on the parametric estimation of the Atkinson index. We can start by citing
Guerrero [8] who was one of the first to estimate the aversion parameter to determine the degree of inequality
for a given income distribution, with a construction of confidence intervals. We can also cite Biewen et al. [9]
and Tchamyou [10] to name only these. The aim of this paper is to provide a nonparametric estimation of the
Atkinson inequality index (2), based on the kernel method. Then a simulation study will be done on simulated
or real data. Finally we will make a comparative study of this estimator with the one that already exists in the
literature.

2. Description, materials and methods

2.1. Interpretation of the Atkinson index: graphical approach and approximation

Figure 1. Atkinson inequality index graphic description

The basis of the measurement of Atkinson inequalities is based on the concept of equitably distributed
equivalent income that we denote X∗. Income X∗ is the income that, if all individuals had this amount,
would give the same level of social utility as the existing one (W). Taking the case of two individuals, we
can graphically represent the construction of the Atkinson index. Figure 1 illustrates this concept of equitably
distributed equivalent. This graph shows the welfare function constructed on the space of individual incomes.
The (Ox) axis shows the income of individual 1, while the (Oy) axis shows that of individual 2. If X0 is
the income of the first individual and X1 that of the second, the average income is X. Suppose the income
distribution is such that point A prevails i.e. the point where we have X0 > X1. In the absence of inequality
aversion (θ = 0), utilitarian welfare would prevail i.e. the straight line. With this welfare function, the only way
to have equal incomes at the same level of welfare is therefore to give an average income to both individuals
i.e. X. Since inequality aversion is zero, we are not willing to reduce the size of the butter to have more equal
shares. With inequality aversion, the convex welfare function would prevail. Now, starting from A, we can
find a point where incomes are equally distributed at the same level of welfare. Since the welfare function is
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convex, income X∗ must be less than average income X. Income X∗ is the abscissa of point B of the 45 degree
line that has the same social welfare as A and C. Even though total income (the sum of the two individual
incomes) is less than XA, it is compensated by the gain in equality of the distribution. The reason being that,
since inequality aversion is positive, we are now willing to pay the lower price of butter in order to have more
equal shares. Equality is measured by the ratio X∗/X. If this ratio is equal to 1 then each individual has the
same level of income or if the welfare function is utilitarian (there is no perceived inequality). The approximatif
Atkinson inequality index can therefore be expressed as follows (see Bell et al. [11]):

Ã = 1− X∗

X
. (6)

Instinctively, this index tells us how much income we are willing to give up to have equal income. We
therefore deduce that if the welfare is of the discrete form

W̃(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n

n
∑
i=1

X1−θ
i

1− θ
if θ ≠ 1 ,

1
n

n
∑
i=1

log(Xi) if θ = 1 ,

(7)

then the discrete Atkinson index is given by:

Ã(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− [ 1
n

n
∑
i=1
(Xi

X
)

1−θ

]
1

1−θ

, if θ ≠ 1 ,

1− 1
X

exp [ 1
n

n
∑
i=1

log(Xi)] if θ = 1 .

(8)

The formulas (or estimators if we can say so) (7) and (8) are the most used in the literature so far and
would reveal inadequacies following the variation of the data since most of the data follow a distribution
or at worst approximately a distribution. Hence the need to construct a non-parametric estimator or kernel
estimator which often presents satisfactory results.

2.2. Construction of the kernel estimator

Kernel estimation (or Parzen-Rosenblatt method or KDE) is a non-parametric method for estimating the
probability density of a random variable. It is based on a sample of a statistical population and makes it
possible to estimate the density at any point of the support. In this sense, this method cleverly generalizes
the histogram estimation method. Kernel density estimation is used to obtain a smooth estimate of the data
distribution without making assumptions about the shape of the distribution and it is famous for its surprising
smoothing character.

Let (Xi)1⩽i⩽n be a random sample of size n from a population X with density function f , which represents
the distribution of income. Xi, for i ∈ [∣1, n∣], designating the respective income of the n individuals, are
independent and identically distributed (i.i.d.) observations. The main of nonparametric density estimation is
to estimate f with as few assumptions about f as possible. Among the existing kernel density estimators, we
choose the classic and most famous case well known in the literature, because of its simplicity for independent
observations. This estimator depends on a parameter called smoothing parameter or bandwidth parameter. It
is defined by:

f̂n(x) =
1

nh

n
∑
i=1

K (x −Xi

h
) , x ∈ R , (9)

where h = h(n) = hn is the bandwidth parameter depending on the sample size n and K a probability density
function called kernel function verifying certain particular properties called regularity properties.
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From the estimator (9) of the distribution function f , it is obvious that we obtain an estimator of the
Atkinson index (2), which is defined by:

Ân(θ) = 1−
⎡⎢⎢⎢⎢⎣
∫R
( x

µ̂n
)

1−θ

f̂n(x)dx.
⎤⎥⎥⎥⎥⎦

1
1−θ

= 1−
⎡⎢⎢⎢⎢⎣

1
nh

n
∑
i=1
∫R
( x

µ̂n
)

1−θ

K (x −Xi

h
) dx.

⎤⎥⎥⎥⎥⎦

1
1−θ

if θ ≠ 1, (10)

and

Ân(1) = 1− 1
µ̂n
[∫R

log(x) f̂n(x)dx] = 1− 1
µ̂n

exp [ 1
nh

n
∑
i=1
∫R

log(x)K (x −Xi

h
) dx.] , (11)

where µ̂n is the estimator average income µ. It is easy to verify that µ̂n satisfies:

µ̂n = ∫R
x f̂n(x)dx = 1

n

n
∑
i=1

Xi , (12)

and consequently, we can obtain the nonparametric estimator of (5)

Ŵn(θ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[µ̂n(1− Ân(θ))]1−θ if θ ≠ 1 ,

log[µ̂n(1− Ân(θ))] if θ = 1.
(13)

The following paragraph provides a study of the near convergence or strong consistency of our estimators
and also those of some estimators which will result from them under certain regularity hypotheses.

3. Study of the convergence of the Atkinson inequality index

In all that follows, besides the classical regularity conditions (see in Agbokou [12]), well known in the
literature, on the kernel function K and on the smoothing parameter h, we consider the following hypotheses.

3.1. Assumptions

3.1.1. The model assumptions

A1. The random variable X takes values in R+ or a compact subset of R+.
A2. The density function f of X is uniformly continuous on its support and satisfies

∫R
xτ f (x) = E(Xτ) > 0 , ∀ τ > 0.

A4. There exists a strictly positive constant η such that µ > η and θ takes values in [0; 1[.
A5. The function ϕ ∶ y z→ yα on R+ verifies the following conditions:
i. there exist κ > 1 strictly positive constant such: |ϕ(u) − ϕ(v)∣ ⩽ ακ ∣u − v∣ ,∀ α > 1 and ∀ u, v ∈ R+,
ii. there exist Cα ⩾ 1 strictly positive constant such: ϕ(∣u − v∣) ⩽ Cα∣u − v∣ ,∀α ∈ [0; 1] and ∀ u, v ∈ [0, 1],
iii. there exist Qα ⩾ 1 strictly positive constant such: ϕ(u + v) ⩽ Qα(uα + vα) ,∀α ∈ [0; 1] and ∀ u, v ∈ R+.

3.1.2. The kernel assumptions

K is a symmetric Kernel of bounded variation on R vanishing outside the interval [a,+a] for some a > 0
and satisfying:

K1. ∫R
K(u) = 1;

K2. ∫R
uK(u) = 0;

K3. ∫R
uτK(u) = ν(K) > 0 , ∀ τ > 0, τ ≠ 1.

3.1.3. The bandwidth parameter hypothesis

The bandwidth parameter h = (hn)n∈N is a sequence of positive nonincreasing real numbers satisfying:
H1. hτ

n Ð→ 0 , ∀ τ > 0, n Ð→ +∞;
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H2. nhn Ð→ +∞, n Ð→ +∞;

Remark 1. The assumptions A1 − A2, K1 − K2 and H2 are quite standard. A1 − A4, A5.i and iii., K1 − K3 and
H1 −H2 insure the strong uniform convergence of the estimators (10) and (11) to (2) and (4) respectively. Finally
all the assumptions ensure the strong uniform convergence of (13) to (5).

Note 1. To simplify the writings and make them easier to handle, we adopt the following notations:

○ ∆(θ) = ∫R
x1−θ f (x)dx and A(θ) then becomes: A(θ) = 1− [∆(θ)

µ1−θ
]

1
1−θ

,

○ Λ = exp [∫R
log(x) f (x)dx] and A(1) is written in the form: A(1) = 1− Λ

µ
.

Consequently, it is clear that their kernel estimators are respectively ∆̂n(θ) and Λ̂n.

3.2. Strong consistency

In this subsection, we prove the consistency of our estimator and give a rate of convergence. Our first
result is the almost sure uniform convergence with an appropriate rate of the estimators ∆̂n and Λ̂n stated in
Proposition 1, which are the key for investigating the strong consistency of Ân(θ) and Ân(1) given by Theorem
1. The last result deals with the strong consistency of the welfare function estimator Ŵn(θ) given by Corollary.

Proposition 1. Under assumptions A1, A5 − iii., K1, K3 and H1 we have:
(i)

∣∆̂n(θ) −∆(θ)∣ Ð→ 0 a.s., n → +∞ ∀ θ ∈ [0, 1[. (14)

(ii) In particular for θ = 1, we have,

∣Λ̂n −Λ∣ Ð→ 0 a.s., n → +∞ . (15)

The Proposition 1 leads to the convergence of the inequality index function which is established by the
following theorem:

Theorem 1. In addition to the assumptions of the Proposition 1, if hypotheses A2, A4 − A5 − i., K2 and H2 are satisfied,
then we obtain:

(i)
∣Ân(θ) − A(θ)∣ Ð→ 0 a.s., n → +∞ ∀ θ ∈ [0, 1[. (16)

(ii) In particular, if θ = 1, then we get,

∣Ân(1) − A(1)∣ Ð→ 0 a.s., n → +∞ . (17)

As a consequence of the Theorem 1, we arrive at the strong constancy of the estimator of the welfare
function (13).

Corollary 1. Under the same hypotheses as Theorem 1, assume that hypothesis A5 − ii. is verified, then we obtain:

∣Ŵn(θ) −W(θ)∣ Ð→ 0 a.s., n → +∞ ∀ θ ∈ [0, 1]. (18)

Corollary 2. Under the same assumptions as Theorem 1, we assume that the sequence (Xi)1⩽i⩽n of i.i.d. random
variables is such that E(Xi) = µ and Var(Xi) = σ2 ∀ i ∈ {1,⋯, n}. Then for n large enough, we get:

Ân(θ) − A(θ) Ð→ N(0, s2) a.s. ∀ θ ∈ [0, 1], (19)

where

s2 = (1+ µ2)(1+ σ2

µ2 ) .
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3.3. Appendix of proofs

As for the proofs of the previous proposition, theorem and corollary, we need some very important or
primordial lemmas whose demonstrations will be made or will be given here as well.

Let us first recall that if {Xi}n
1 are i.i.d random variables with a distribution F. Consider a parametric

function Π for which there exists an unbiased estimator. The parametric function Π can be expressed in the
following form:

Π(F) = E[ψ(X1,⋯, Xl)] = ∫Rl
ψ(X1,⋯, Xl)dF(x1) ×⋯× dF(xl),

where Ψ is a function of l i.i.d random variables from {Xi}n
1 with l ⩽ n. For any function Ψ, the

corresponding U-statistic for the estimation of Π based on a random sample of size n is obtained by averaging
Ψ symmetrically over the observations

Un = U(X1,⋯, Xn) =
1

(n
l
)
∑

s
ψ(X1,⋯, Xl),

where ∑
s

represents the summation over the (n
l
) combinations of l distinct elements ij, j ∈ {1,⋯, l} from

{1,⋯, n}. In particular, we have:

Lemma 1. For ψ(x) = xm (m > 0), the corresponding U-statistic is

Um = U(X1,⋯, Xn) =
1
n

n
∑
1

Xm
i ,

and for n large enough, we get
Um Ð→ µm = E[Xm] = ∫R

xmdF(x) .

In particular for m = 1, we set µ̂n = U1 Ð→ µ = µ1.

Proof. The proof of this lemma is similar to those found in Serfling [13] and Lehmann [14]. Thus we make an
exception to this one.

Lemma 2. For every p ∈]0; 1], the function defined on I = [0;+∞) by Φ ∶ z z→ zp satisfies the following condition:

∀ u, v ∈ I ∶ ∣Φ(u) −Φ(v)∣ ⩽ p∣u − v∣p , (20)

and the number p is the maximum of all values that verify this property.

Proof. For u, v let us suppose that u > v. Aware that p − 1 ⩽ 0, we have

∣Φ(u) −Φ(v)∣ = up − vp = ∫
u

v
pzp−1dz

⩽ ∫
u

v
p(z − v)p−1dz = (u − v)p

⩽ ∣u − v∣p because u > v.

In this case, the corresponding p of the inequality (20) which satisfies rhe condition is equal to 1.
On the other hand, from the relation (20), setting u = 1 and v = 0. It follows p ⩾ 1.
Now assume that p > 1. If there exists another real number q such that q > p and verifies the inequality

(20), then we obtain
∀ u, v ∈ I ∶ ∣Φ(u) −Φ(v)∣ ⩽ q∣u − v∣q . (21)
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By setting v = 0 in relation (21), we have

∣Φ(u)∣ = up ⩽ xq ∀ u > 0.

Taking into account that p − q < 0, we get up−q ⩽ q. This is absurd because the left-hand side diverges
towards +∞when u tends towards 0. This brings the proof of this lemma to term.

The lemmas having been established, let’s move on to the proofs of the main results obtained.

Proof of Proposition 1. (i) From the sequence of functions ∆̂n in θ, we obtain

∆̂n(θ) = ∫R
x1−θ f̂n(x)dx = 1

nh

n
∑
i=1
∫R

x1−θK (x −Xi

h
) dx.

A change of variable, the use of hypotheses and A5 − ii, K1 −K3, allows us to write successively

∆̂n(θ) =
1
n

n
∑
i=1
∫R
(Xi +wh)1−θK(w)dw

⩽ Q1−θ

n

n
∑
i=1
∫R
(X1−θ

i +w1−θh1−θ)K(w)dw

⩽ Q1−θ [
1
n

n
∑
i=1

X1−θ
i + h1−θ ∫R

w1−θK(w)dw]

⩽ Q1−θ [U1−θ + h1−θν(K)] .

Then we get
∣∆̂n(θ) −U1−θ ∣ ⩽ Mh1−θ where M > 0; is a constant.

In other words
∣∆̂n(θ) −U1−θ ∣ = O (h1−θ) a.s.

Furthermore, we have
∣∆̂n(θ) −∆(θ)∣ ⩽ ∣∆̂n(θ) −U1−θ ∣ + ∣U1−θ −∆(θ)∣. (22)

For n large enough and under hypothesis H1, Lemma 1 applied to inequality (22) completes the first part
(i) of the proof of this proposition.

(ii) The second part is inspired by the first, with a few exceptions since it is a special case. Since function
z z→ exp(z) is a convex function, Jensen’s inequality allows us to write

Λ̂n = exp [∫R
log(x) f̂n(x)dx] ⩽ 1

n

n
∑
i=1
∫R

xK (x −Xi

h
) .

The same change of variable and the use of the same hypotheses lead to

Λ̂n ⩽
1
n

n
∑
i=1

Xi + h∫R
wK(w)dw ⩽ U1 + hν(K) beacause here w > 0,

now we get
∣Λ̂n −U1∣ ⩽ Mh where M > 0 is a constant.

By using a similar inequality like that of (22) with Λ̂n, Λ and U1, Lemma 1 and hypothesis H1 complete
the last part of this proposition for n large enough.
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Proof of Theorem 1. (i) Thanks to hypothesis A2, A5 − i, we can write

∣Ân(θ) − A(θ)∣ =
RRRRRRRRRRRRRR
[ ∆̂n

µ̂1−θ
n
]

1
1−θ

− [ ∆
µ1−θ

]
1

1−θ
RRRRRRRRRRRRRR

⩽ ( 1
1− θ

)
κ

∣ ∆̂n

µ̂1−θ
n
− ∆

µ1−θ
∣

⩽ ( 1
1− θ

)
κ

{µ1−θ ∣
1

µ̂1−θ
n
− 1

µ1−θ
∣ + 1

lim infn←→+∞ µ̂1−θ
n
∣∆̂n −∆∣}

⩽ M [∣ 1
µ̂1−θ

n
− 1

µ1−θ
∣ + ∣∆̂n −∆∣] ,

where

0 < M =max{µ1−θ ;
1

lim infn←→+∞ µ̂1−θ
n
}× ( 1

1− θ
)

κ

.

Lemma 1 associated with the Mapping Theorem allows us to obtain

∣ 1
µ̂1−θ

n
− 1

µ1−θ
∣ Ð→ 0, a.s. n ←Ð +∞. (23)

Thus (23) and Proposition 1− (i) completes the first part of this theorem.
(ii) As previously in (i), the same qssumptions give us:

∣Â(1) − A(1)∣ = ∣ Λ̂n

µ̂
− Λ

µ
∣ ,

⩽ µ ∣ 1
µ̂
− 1

µ
∣ + 1

lim infn←→+∞ µ̂n
∣Λ̂n −Λ∣

⩽ M{∣ 1
µ̂
− 1

µ
∣ + ∣Λ̂n −Λ∣}

where

0 < M = {µ;
1

lim infn←→+∞ µ̂n
} .

As previously in proof (i), Lemma 1 associated with the mapping theorem and Proposition 1-(ii) complete
the last part of this theorem.

Proof of Corollary 1. (i) This first part will concern the case where θ ∈ [0; 1[. Lemma 2 and the Triangle
Inequality lead us to

∣Ŵn(θ) −W(θ)∣ = ∣[µ̂n(1− Ân(θ))]
1−θ
− [µ(1− A(θ))]1−θ∣

⩽ (1− θ) ∣µ̂(1− Â(θ)) − µ(1− A(θ))∣
1−θ

⩽ (1− θ) {(1+ A(θ))∣µ̂n − µ∣ + µ̂n∣Ân(θ) − A(θ)∣}
⩽ Mθ {∣µ̂n − µ∣ + ∣Ân(θ) − A(θ)∣} ,

where

0 < Mθ =max{1+ A(θ); lim sup
n←Ð+∞

µ̂n}× (1− θ) , ∀ θ ∈ [0; 1[.

Thus Lemma (1) and Theorem 1− (i) complete the first part of this corollary.
(ii) This second and last part concerns the case where θ = 1. For this case especially, we assume that

A(1) and its estimator Ân(1) are all different from 1 or all do not approach 1. Therefore µ(1 − A(1)) and
µ̂n(1 − Ân(1)) are strictly positive. Let us denote δ = min{µ(1− A(1)); µ̂n(1− Ân(1))}. We therefore have δ
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strictly positive. Thus the function z z→ log(z) is
1
δ
−Lipschitzian on [δ;+∞ because its derivative in absolute

value is bounded above by
1
δ

. This leads us to write:

∣Ŵn(1) −W(1)∣ = ∣log[µ̂n(1− Ân(1))] − log[µ(1− A(1))]∣

⩽ 1
δ
∣µ̂n(1− Ân(1)) − µ(1− A(1))∣

⩽ Mδ {∣µ̂n − µ∣ + ∣Ân(1) − A(1)∣} ,

where

0 < Mδ =
max{1+ A(1); lim supn←Ð+∞ µ̂n}

δ
.

Thus Lemma (1) and Theorem 1 -(ii) complete the last part of this corollary.

Proof of Corollary 2. ○ For θ ∈ [0, 1[, we directly and successively draw these inequalities from the following
relation (see proof of the Proposition 1):

∆̂n(θ) ⩽ Q1−θ [
1
n

n
∑
i=1

X1−θ
i + h1−θ ∫R

w1−θK(w)dw] .

Using the property of monotonic increasing and the linearity of the mathematical expectation and also
∣∣a∣ − ∣b∣∣ ⩽ ∣a − b∣, then we have

E [∆̂n(θ)] ⩽ Q1−θE [X1−θ] + h1−θQ1−θν(K) ⇒ E ∣∆̂n(θ) −∆(θ)∣ = O (h1−θ) . (24)

Moreover, we have

∣Ân(θ) − A(θ)∣ ⩽ M [∣ 1
µ̂n
− 1

µ
∣ + ∣∆̂n(θ) −∆(θ)∣]

⇒ E∣Ân(θ) − A(θ)∣ ⩽ M [E ∣ 1
µ̂n
− 1

µ
∣ +E ∣∆̂n(θ) −∆(θ)∣] .

Thus for n large enough, we have E∣Ân(θ) − A(θ)∣ Ð→ 0. In particular we obtain

E [Ân(θ) − A(θ)] Ð→ 0⇐⇒ E [Ân(θ)] Ð→ E [A(θ)] = A(θ). (25)

We have just shown that the estimator is asymptotically unbiased. We can notice that We can notice that
(a − b)2 ⩽ a2 + b2 (where a and b have the same sign) and also the function z z→ zp, p ⩾ 2 is convex (this allows
us to apply Jensen’s inequality). All this allows us to write

(Ân(θ) − A(θ))
2
⩽
⎡⎢⎢⎢⎢⎣
∫R
( x

µ̂n
)

1−θ

f̂n(x)dx
⎤⎥⎥⎥⎥⎦

2
1−θ

+
⎡⎢⎢⎢⎢⎣
∫R
( x

µ
)

1−θ

f (x)dx
⎤⎥⎥⎥⎥⎦

2
1−θ

⩽ ∫R
( x

µ̂n
)

2

f̂n(x)dx +∫R
( x

µ
)

2

f (x)dx

⩽ 1
µ̂2

n
[ 1

n

n
∑
i=1

X2
i ∫R

K(w)dw + 2h
1
n

n
∑
i=1

X2
i ∫R

wK(w)dw + h2 ∫R
w2K(w)dw] +

µ2

µ2

⇒ E [(Ân(θ) − A(θ))
2
] = µ2 +

µ2

µ2 +O (h
2) = (µ2 + 1)(1+ σ2

µ2 )+O (h
2) .
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Furthermore we know that

Var [Ân(θ) − A(θ)] = E [(Ân(θ) − A(θ))
2
] −E2 [Ân(θ) − A(θ)] .

So, from the relation (24) we have

Var [Ân(θ) − A(θ)] = (µ2 + 1)(1+ σ2

µ2 )+O(h
2−2θ) a.s. (26)

For n large enough, we have Var [Ân(θ) − A(θ)] Ð→ s2 = (µ2 + 1)(1+ σ2

µ2 ).

○ For θ = 1, we also have (see proof of Proposition 1):

Λ̂n ⩽
1
n

n
∑
i=1

Xi + h∫R
wK(w)dw ⇒ E[Λ̂n] ⩽ E[Xi] + hν(K)E∣Λ̂n − µ∣ = O(h) a.s.

On the one hand the convexity of the exponential function, the triangular inequality and ∣∣a∣ − ∣b∣∣ ⩽ ∣a − b∣
allows us to have

E∣Λ̂n −Λ∣ ⩽ E∣Λ̂n − µ∣ +E∣Λ − µ∣ Ô⇒ E∣Λ̂n −Λ∣ = O(h) a.s.

On the other hand

∣Ân(1) − A(1)∣ ⩽ M{∣ 1
µ̂
− 1

µ
∣ + ∣Λ̂n −Λ∣} .

Thus, for n large enough
E∣Ân(1) − A(1)∣ = O(h) a.s. (27)

We have also

(Ân(θ) − A(θ))
2
⩽ { 1

µ̂n
exp [∫R

log(x) f̂n(x)dx]}
2

+{ 1
µ

exp [∫R
log(x) f (x)dx]}

2

⩽ 1
µ̂2

n
exp [2∫R

log(x) f̂n(x)dx] + 1
µ2 exp [2∫R

log(x) f (x)dx]

⩽ 1
µ̂2

n
∫R

x2 f̂n(x)dx +
µ2

µ2

⇒ E [(Ân(θ) − A(θ))
2
] ⩽ M [µ2 + h2ν(K)] +

µ2

µ2 .

For n large enough, we get

⇒ E [(Ân(θ) − A(θ))
2
] = µ2 +

µ2

µ2 +O(h
2) a.s. (28)

Formulas (27) and (28) give the variance as previously Var [Ân(θ) − A(θ)] = (1+ µ2)(1+ σ2

µ2 )+O(h
2) a.s.

This which completes the proof of this corollary.

4. Simulation

Before moving on to numericals, we were able to calculate the Atkinson inequality index and welfare for
certain probability distributions that will be useful for the rest.

4.1. Atkinson index for some usual probability distributions

However, theoretical calculations of the Atkinson index with probability distributions are not easy or easy
to determine. With other distributions, this seems very complex or even impossible. We will spare you these
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details and the results obtained are grouped in the Table 1. The theoretical calculation of the Atkinson index
involves certain so-called special functions which are defined by:

○ Gamma function: Γ(a) = ∫
∞

0
za−1 exp(−z)dz , a ∈ R+

○ Digamma function: ψ(a) = ∫
∞

0
za−1 log(z) exp(z)dz = ∫

∞
0
( e−z

z
− e−az

1− e−z ) dz = d
da

log[Γ(a)] , a ∈ R+

○ Euler - Mascheroni constant: γ = −ψ(1) = −∫
∞

0
log(z)e−zdz = lim

nÐ→+∞
⎛
⎝

n
∑
k=1

1
k
− log(n)

⎞
⎠
≃

0.577216664901532860
○ Beta function: B(a, b) = Γ(a)Γ(b)

Γ(a + b)
, a, b ∈ R+

Table 1. Theoretical expressions of the Atkinson index and the welfare function

Name p.d.f. f (x) Atkinson index A(θ) Welfare function W(θ)

Beta B(α; β) 1
B(α, β)

xα−1(1− x)β−11[0,1](x)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1−
α + β

α
[

Γ(α + 1− θ)Γ(β)
B(α, β)Γ(α + β + 1− θ)

]
1

1−θ

1−
α + β

α
exp[ψ(α) −ψ(α + β)]

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Γ(α + 1− θ)Γ(β)
B(α, β)Γ(α + β + 1− θ)
ψ(α) −ψ(α + β)

Exponential E(λ) λe−λx1[0,+∞[(x)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1− Γ
1

1−θ (2− θ)

1− λ exp[ − (γ + log λ)]

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Γ(2− θ)
λ1−θ

−(γ + log λ)

Gamma Γ(α, β)
βα

Γ(α)
xα−1e−βx1[0,+∞[(x)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1− Γ
1

1−θ (1− θ + α)

α Γ
1

1−θ (α)
1−

β

α
exp[ψ(α) − log β]

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Γ(1− θ + α)
β1−θΓ(α)

ψ(α) − log β

Pareto P(α, β)
αβα

xα+1 1[β,+∞[

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1− α − 1

(α + θ − 1)
1

1−θ

1− α − 1
αβ

exp[
log(β) + 1

α
]

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(αβ)1−θ

α + θ − 1

α log(β) + 1
α

Uniform U([α; β]) 1
β − α

1[α;β](x)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− 2
α + β

[
β2−θ − α2−θ

(β − α)(2− θ)
]

1
1−θ

1− 2
α + β

exp[
β log(β) − α log(α)

β − α
− 1]

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

β2−θ − α2−θ

(β − α)(2− θ)
β log(β) − α log(α)

β − α
− 1

WeibullW(α; β) α

β
( x

β
)

α−1

exp[−( x
β
)

α

] 1[0,+∞[(x)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1−
Γ

1
1−θ (1+ 1−θ

α )

Γ
1
α (1+ 1

α)

1− 1
β1/α exp[

log β + γ

α
]

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

β1−θ

α
Γ(1+ 1−θ

α )

log(β) + γ

α

Remark 2. Recall that the first lines of the expressions that are in the braces represent the general case for θ ≠ 1
and those of the second lines represent the particular case for θ = 1.

The table being obtained, we choose one of these models to study the cobergence of our nonparametric
estimator with respect to that. Our choice is the Weibull model because of its particularity in terms of
application and its multitasking. The Weibull distribution intervenes in almost all areas like that of Pareto
in the estimations of income inequality measures (see Agbokou [4]). To do this, with the data we have, we will
determine these parameters by the Maximum Likelihood (M.L.) method to obtain the theoretical Atkinson
index.

4.2. Determination of the parameters of the Weibull distribution by the M.L. method

Due to its adaptability in fitting distributions or data particularly in data science, the Weibull distribution
has taken in recent years a major position in the field of parametric, semi or nonparametric estimations.
One of the main barriers to a more important or wider use of the Weibull distribution is the complexity of
estimating its parameters. Regrettably or sadly, the calculations that this estimation involves are not always
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simple enough. This subsection deals with the estimation of maximum likelihood in samples of the Weibull
probability density. The likelihood function of this sample (X1,⋯, Xn) is given by:

L(X1,⋯, Xn, (α, β)) = Πn
i=1

α

β
Xα−1

i exp(−
Xα

i
β
) .

We let L(α, β) = L(X1,⋯, Xn, (α, β)) = log L(X1,⋯, Xn, (α, β)) represent the log-likelihood, then we derive
L(α, β) respectively with respect to α and with respect to β then by setting the two partial derivatives equal to
zero each, we obtain:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂L(α, β)
∂α

= n
α
+

n
∑
i=1

log(Xi) −
1
β

n
∑
i=1

Xα
i log(Xi) = 0,

∂L(α, β)
∂β

= −n
β
+ 1

β2

n
∑
i=1

Xα
i = 0.

(29)

On eliminating β between these two equations of the system (29) and simpljfying the term, we get:

n
∑
i=1

Xα
i log(Xi)

n
∑
i=1

Xα
i

− 1
α
− 1

n

n
∑
i=1

log(Xi) = 0. (30)

We note that equation (30) is difficult or even impossible to solve analytically. We will therefore use a
numerical resolution or iterative methods such as the Newton method or the fixed point method or the secant
and regula falsi method in order to find the estimator α̂ of the parameter α. If the estimator α̂ is obtained, we
therefore deduce from (29), the estimator β̂ of β by the equality:

β̂ = 1
n

n
∑
i=1

Xα̂
i . (31)

4.3. Real data description and simulation results

For our study, we focused on the World Bank data that could be easily found on their website DataBank 1.
We were interested in the "adjusted net national income per capita (current US dollars)" of 2021 for each country
in the world (at least for those who have it because we could not find the updated data for all countries). Since
the data is allocated by region according to the World Bank’s breakdown, we organized this data by continent
as follows:

○ Europe Zone (1) = European Union
○ America Zone (2) = America and the Caribbean + North America
○ Asia Zone (3) = East Asia and the Pacific + South Asia + Middle East + Central Asia
○ Africa Zone (4) = Sub-Saharan Africa + North Africa
○ Eurasia Zone (5) = Europe Zone + Asia Zone
○ World (6) = the sum of all the above zones

Remark 3. The last two groupings aim not only to study the inequalities of countries between two countries
or between countries of the world but also to see the performance of our estimators when the sample size
increases and also the impact of the inversion parameter on them depending on these sizes.

Table 2 provides a statistical description of some position and dispersion characteristics of these data
taken to the thousandth in order to facilitate the calculations of the programming in the rest of this subsection
using Matlab software.

In view of the statistical summary of Table 2, we notice that the data, whatever the area, are very
heterogeneous since the coefficient of variation of each of these groupings is strictly greater than 0.30. This

1 https://data.worldbank.org/indicator/NY.ADJ.NNTY.PC.KD_gl=1*1plgah*_gcl_au*NDUzNDg5MzA1LjE3MjQ4ODM3MzY.

https://data.worldbank.org/indicator/NY.ADJ.NNTY.PC.KD_gl=1*1plgah*_gcl_au*NDUzNDg5MzA1LjE3MjQ4ODM3MzY.
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heterogeneity character makes this study very exciting since with simulated data (which we do not present
here), we always had homogeneous data which contribute to the robustness of our estimators from the size
n = 30. Thus the other objective is to see the behavior of our estimators facing heterogeneous data because
we know that heterogeneous data in statistical study such as estimates and forecasts negatively affect or slow
down the robustness of the estimators and by ricochet impact the forecasts.

Table 2. Statistical description of data from the World Bank website

Statistic summary Size Minimum Mean Median Mode Maximum Coefficient of variation
European area 27 7.6500 25.3004 19.6460 7.6500 65.3640 0.5857
America area 33 1.2510 10.6735 6.6080 1.2510 52.6190 0.9870
Asia area 51 0.3400 9.7364 3.5040 0.3400 44.5130 0.7573
Africa area 54 0.1560 1.9479 1.1455 0.1560 12.2520 0.7102
Eurasian area 78 0.3400 15.1239 9.0055 0.3400 65.3640 0.9823
World 165 0.1560 9.9217 4.0190 0.4860 65.3640 0.7618

Thus, for the simulation of our estimators, we chose as a statistical kernel K, the Epanechnikov kernel
also called the "parabolic" kernel. It is named after the author Epanechnikov [15], who used and studied it for
the first time in 1969. On the one hand, it is well known in the literature that the kernel has little influence on
the performance of nonparametric estimators. What motivates this choice is that this kernel allows to have the
most efficient estimator for the density, which concerns us in this document. On the other hand, the literature
reveals that the choice of the smoothing parameter h = hn has a major influence on the robustness of the kernel
estimator (see Agbokou et al. [16,17]). The process of this choice in the presence of real data is not as easy as in
the presence of simulated data. We therefore opted for the numerical cross-validation method which consists
in minimizing the integrated squared error defined from a series of observations or data (xi)1⩽i⩽n of size n.
This error is defined by:

Φ(hn) = ∫
x(n)

x(1)
(Ân(θ) − A(θ))

2
dx, (32)

where x(1) =min(xi) and x(n) =max(xi) for all i ∈ {1,⋯, n}.
The bandwith parameter selection rule results in the minimization of this criterion:

ĥn = arg min
hn

Φ(hn). (33)

The smoothing parameter of (33) thus obtained is asymptotically optimal. To determine the parameter h,
our Matlab code is programmed in such a way that we obtain at the same time the RMSE (Residual Mean
Square Error). This is the root mean square deviation, which is the standard deviation of the residuals
(prediction errors). The residuals are the measure of the deviation between the data points and the regression
line. The RMSE metric is the measure of the distribution of these residuals. In other words, it indicates the
concentration of the data around the line of best fit. In our work we have two parameters h to determine
and therefore two RMSEs. We denote them respectively h1n for the estimator of the Atkinson index and
h2n for its associated welfare function. Similarly, their errors or residuals are respectively noted RMSE1

and RMSE2. To get an idea of the impact of the aversion parameter, we chose the parameter θ such that
θ ∈ {0.01, 0.05, 0.1, 0.5, 0.9, 1} for each sample size (or area or region). We also calculated for each θ the classical
estimators (usual classical forms) of the Atkinson index (8) and its welfare function (7) in order to see if they
best estimate the theoretical Atkinson index and its theoretical welfare function.

Let us recall that the two parameters of the theoretical Atkinson index and its theoretical welfare function
cannot be taken arbitrarily, we opted for the maximum likelihood (M.L.) method with the intervention of
Newton’s numerical method in order to be able to assign a value to each of these parameters.

The results obtained are summarized in Table 3. A visualization of all these results obtained is
summarized in Figure 2.
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Table 3. Comparison of theoretical values and estimates of the Atkinson index and the welfare

θ ĥ1n ĥ2n α̂ β̂ A(θ) Ân(θ) Ã(θ) W(θ) Ŵn(θ) W̃(θ) RMSE1 RMSE2
European area

0.01 0.4609 0.4268 1.8719 535.6642 0.0016 0.0015 0.0027 24.5977 24.0057 22.1368 0.0092 0.0560
0.05 0.4701 0.4193 1.8719 535.6642 0.0075 0.0077 0.1035 21.3725 20.4040 22.4932 0.0081 3.8750
0.1 0.4900 0.4191 1.8719 535.6642 0.0155 0.0154 0.2129 19.9669 19.4668 20.0677 0.0094 2.1319
0.5 0.8231 0.5110 1.8719 535.6642 0.0815 0.0816 0.0706 4.3684 4.5351 9.1670 3.08e-08 0.0278
0.9 0.2676 0.3029 1.8719 535.6642 0.1534 0.1534 0.1337 1.0515 0.3670 3.6170 1.15e-11 0.0782
1 0.7500 0.5036 1.8719 535.6642 0.9991 0.5698 0.5432 3.6651 3.0713 3.0708 0.2078 0.3532

America area
0.01 0.9000 0.0224 1.1726 17.2937 0.0033 0.0036 0.0037 10.4673 10.4673 10.4908 8.59e-08 2.13e-18
0.05 0.9000 0.1859 1.1726 17.2937 0.0166 0.0182 0.0185 9.3710 9.3174 9.8079 3.57e-06 0.0029
0.1 0.5255 0.2401 1.1726 17.2937 0.0332 0.0362 0.0364 8.1578 8.1482 9.0539 1.01e-05 9.21e-05
0.5 0.5290 0.4931 1.1726 17.2937 0.1703 0.1704 0.1682 2.6477 2.8142 9.9593 7.36e-10 0.0277
0.9 0.9116 0.0824 1.1726 17.2937 0.3160 0.3160 0.2799 0.8255 0.8261 2.2623 8.27e-12 3.33e-07
1 0.6641 0.1854 1.1726 17.2937 0.9953 0.4203 0.4205 2.9232 2.0131 2.0042 0.3304 0.8464

Asia area
0.01 0.6464 0.3758 0.7907 5.3641 0.0000 0.0000 0.0006 9.3052 9.4544 9.5485 4.36e-10 0.0223
0.05 0.2968 0.3760 0.7907 5.3641 0.0300 0.0300 0.0300 8.3408 8.4081 8.8504 1.53e-10 0.0045
0.1 0.3824 0.4680 0.7907 5.3641 0.0390 0.0390 0.0406 7.2691 7.2782 8.0833 2.84e-09 0.0065
0.5 0.3809 0.2296 0.7907 5.3641 0.2950 0.3200 0.3242 2.3305 2.4987 5.1461 8.78e-04 0.0283
0.9 0.3839 0.2992 0.7907 5.3641 0.5226 0.5206 0.5396 0.6472 0.8069 1.6730 0.0014 0.0175
1 0.0009 0.3833 0.7907 5.3641 0.9931 0.9837 0.3153 2.8545 2.8535 1.4622 8.95e-05 1.04e-06

Africa area
0.01 0.7214 0.6738 1.0477 22.9593 0.0039 0.0034 0.0045 18.8885 18.8885 19.0143 2.91e-07 7.28e-18
0.05 0.6010 0.4701 1.0477 22.9593 0.0246 0.0242 0.0346 16.4931 17.2964 14.6103 0.0131 3.4100
0.1 0.5973 0.5712 1.0477 22.9593 0.0395 0.0477 0.1114 13.9155 12.4864 13.4340 0.0125 0.2423
0.5 0.5802 0.3833 1.0477 22.9593 0.3082 0.3095 0.3267 3.3051 7.8615 2.0464 9.64e-04 0.0047
0.9 0.5804 0.9853 1.0477 22.9593 0.3692 0.3395 0.4800 0.8351 0.8641 0.9505 0.0195 0.0123
1 0.7422 0.5658 1.0477 22.9593 0.9985 0.5211 0.3809 3.5419 2.1503 2.4167 0.0123 8.80e-04

Eurasian area
0.01 0.5468 0.9741 0.8894 10.6895 0.0050 0.0049 0.0047 12.7454 12.7584 13.5694 1.01e-07 2.59e-10
0.05 0.8526 0.3224 0.8894 10.6895 0.0250 0.0252 0.0242 12.9685 12.9685 13.6272 1.92e-06 0.0195
0.1 0.8565 0.9523 0.8894 10.6895 0.0499 0.0496 0.0492 11.0575 12.2792 12.7792 7.14e-07 1.89e-09
0.5 0.8705 0.0528 0.8894 10.6895 0.2254 0.2254 0.2615 2.9975 3.2815 3.2485 0.0025 0.0032
0.9 0.5163 0.5703 0.8894 10.6895 0.4554 0.4598 0.5058 2.3421 3.2487 2.3127 0.0028 0.0083
1 0.0001 0.8003 0.8894 10.6895 0.9995 0.9998 0.5044 3.1328 3.1328 3.1045 0.0080 0.0093

World
0.01 0.5662 0.4996 0.7660 5.0871 0.0063 0.0062 0.0068 9.5207 9.6375 9.7281 2.35e-07 0.0137
0.05 0.8813 0.5002 0.7660 5.0871 0.0314 0.0314 0.0304 8.5243 8.5641 9.0722 7.23e-09 0.0016
0.1 0.5095 0.4999 0.7660 5.0871 0.0627 0.0627 0.0712 8.0066 8.2228 8.6013 1.36e-12 0.0086
0.5 0.5095 0.5512 0.7660 5.0871 0.3072 0.3072 0.3426 2.3449 2.5392 2.6174 7.58e-04 0.0379
0.9 0.4223 0.5093 0.7660 5.0871 0.5411 0.5411 0.6412 0.6402 0.8083 0.6392 0.0040 0.0196
1 0.0029 0.5095 0.7660 5.0871 0.9933 0.9841 0.1288 2.8771 2.8771 1.4180 8.49e-05 1.02e-10

4.4. Discussion

First of all, we note that kernel estimators provide very good adjustments for large samples, i.e. from size
n = 70 and these provide better adjustments compared to those that are classical. Apparently these estimators
are less sensitive (evolve linearly) for values less than 1 of the aversion parameters compared to those that are
classical. In addition, we note that, the more the parameter increases, the more the indices increase sharply
and their welfare functions decrease slightly. For θ = 1 all the estimators, even those qualified as classical, are
very sensitive and their values sometimes differ in terms of the direction of variations (some increase when the
others decrease for the Atkinson indices). Generally speaking, for Theta close to 0, the values of the estimators
are very small and in the neighborhood of 1 or at 1, they are very large. This character shows the major impact
of the aversion parameter for the study of inequalities in a population and it poses a great debate because a bad
choice of the aversion parameter can lead us to make a hasty conclusion or one that may be far from reality.
Thus for a global view, we calculated the average of all the values of the Atkinson index, which is provided by
the following Figure 3:
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Figure 2. Comparison of theoretical and estimates curves of the Atkinson index and the welfare
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Figure 3. Diagram of the average Atkinson indices and average welfare values

This last figure shows that the Atkinson index whatever the type of estimator does not exceed 0.35 in each
zone and therefore on each continent. Although these averages do not allow us to conclude effectively or to
draw an efficient objective conclusion, nevertheless they allow us to have more or less or approximately an
overall view of the trend of the Atkinson indices and the values of the associated welfare in each region or
zone. On the one hand, we therefore conclude that Figure 2 and Table 3 have provided us with the behavior
of our estimators in relation to the progressive choice of the aversion parameter θ. On the other hand, to
estimate the Atkinson indices and the values of social welfare, it is therefore essential to find an estimator of
the parameter θ or therefore find the corresponding value of θ for each data or observation. Thus we therefore
propose here to find the value of θ for each of our observations. To do this, the function Φ (32) therefore
becomes a bivariate function whose variables are the bandwidth and aversion parameters. The optimization
problem (33) is therefore a bivariate optimization problem on the unit square surface and becomes:

(ĥn, θ̂n) = arg min
hn ,θ∈[0,1]

Φ(hn, θ). (34)

Let θ̂1n and θ̂2n be the respective aversion parameters of the Atkinson index and welfare. The only
parameters that do not change compared to the previous results are the parameters α̂ and β̂ from the M.L
method. The results obtained are grouped in Table 4, giving the values of the Atkinson indices and those of
welfare after estimating the aversion parameters. Since the classical Atkinson indices and associated welfare
function do not provide a very good fit, we no longer present it in this table.

Table 4. Atkinson indices and welfare values based on the estimated aversion parameter

Area or Zone ĥ1n θ̂1n RMSE1 Ân(θ) A(θ) ĥ2n θ̂2n RMSE2 ŵn(θ) W(θ)
Europe 0.4495 1.0000 0.0127 0.2849 0.2981 0.9604 0.0851 0.0759 2.8102 2.8233
America 0.6547 0.5329 1.79e-10 0.1820 0.1820 0.8718 0.1152 0.0002 7.8195 7.8195
Asia 0.5710 0.7049 7.42e-08 0.4125 0.4125 0.0458 0.1140 2.13e-09 0.9093 0.9093
Africa 0.3894 0.6457 0.0018 0.2606 0.2612 0.5649 0.4643 0.0033 3.9650 3.9653
Eurasia 0.5571 0.3962 2.33e-11 0.2034 0.2034 0.4721 0.3316 9.07e-07 5.2194 5.2194
World 0.5306 0.4209 1.05e-07 0.2604 0.2604 0.7792 0.0939 6.56e-10 7.5482 7.5482

Table 4 allows us to draw a relatively effective conclusion as it reflects the true trends of the Atkinson
index. However, we observe that in each region, the aversion parameter averages around 0.5 for the Atkinson
index, except for the European region. This could be explained by the small sample size, which is less than 50.
Conversely, for larger samples, the aversion parameter is lower. Regarding welfare, the aversion parameter
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averages 0.3. This diversity in the values of the aversion parameter once again highlights the importance of
its estimation, as it has a significant influence on the estimators. Thus, compared to previous results (where
θ was taken arbitrarily), we see a slight significant difference, as the indices in this case are around 0.35 or
even exceed it. However, it is noteworthy that inequality is more pronounced in the Americas than in other
continents. This may be due to the per capita income in North America, which is more than ten times higher
than that of countries in the South or the Caribbean. In Africa and Europe, this inequality is almost identical
to that of the world. Inequality is less reduced in Asia, which could be explained by the nearly identical per
capita income of several countries in the Gulf and the Pacific. Overall, the disparity is significant across all
continents, and world leaders must make greater efforts to raise the level of net national income per capita
so that the inequality index in each continent or even in each country is at least higher than 0.7, by making
appropriate decisions for the development of each country.

5. Conclusion

In this paper, we have conducted a more in-depth study of the Atkinson index and its welfare function
than we initially anticipated. First, we focused on the construction of the two estimators and then examined
their almost pure asymptotic convergence as well as their asymptotic normality. Next, we explored a
simulation study that confirms the robustness of the two estimators for large sample sizes by working with
real data that is highly heterogeneous. These studies revealed that the aversion parameter has a significant
influence on the estimation of the Atkinson index and cannot be chosen randomly or arbitrarily for an effective
analysis. Therefore, we proposed a numerical estimation of this parameter using the cross-validation method
to address the issue of selecting the aversion parameter. Finally, our study has shown that global disparity is
a pressing issue that cannot be resolved in the short term; it is a collective problem that requires long-term
solutions. As a consequence or open problem arising from this study, it is important to find a way to
analytically estimate the aversion parameter using existing methods such as maximum likelihood, method
of moments, or Bayesian methods (as discussed in Agbokou and Mensah [18]), or to explore new methods (as
in Dabana et al. [19,20]) that could better assist us. This will be the focus of our future work.

Acknowledgments: The author would like to thank the anonymous referees for their constructive comments, which
helped to improve on the elegance of this note.
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