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Abstract: Classical graph theory represents pairwise relationships using vertices and edges, while
hypergraphs extend this model by allowing hyperedges to join any number of vertices, enabling complex
multi-way connections. SuperHyperGraphs further generalize hypergraphs through iterated powerset
constructions, capturing hierarchical relationships at multiple layers. Weighted and signed graph models
assign numerical weights or positive/negative signs to edges, respectively, and these concepts have been
lifted to hypergraphs and, more recently, to SuperHyperGraphs. In this paper, we systematically develop
the definitions and core properties of weighted SuperHyperGraphs and signed SuperHyperGraphs. We provide
detailed examples to illustrate their structure and discuss potential applications in modeling layered
networks with quantitative and polarity annotations. Our results lay a foundation for future theoretical and
algorithmic advances in this emerging area.
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1. Introduction

1.1. SuperHyperGraph

C lassical graph theory represents pairwise relationships among entities using vertices (nodes) and edges
(links), providing an intuitive framework that has found applications across numerous domains [1,2].

However, classical graphs can struggle to capture more intricate or higher-order relationships. A hypergraph
extends this framework by allowing hyperedges to connect any number of vertices, making it well suited for
modeling complex, multi-way interactions [3–7]. Although hypergraphs improve expressiveness over classical
graphs, they still face limitations when representing deeply hierarchical structures.

To overcome these limitations, the concept of a SuperHypergraph has been introduced.
A SuperHypergraph incorporates recursive, hierarchical relationships by drawing both vertices and

hyperedges from iterated powersets of a base set [8–12]. In essence, SuperHypergraphs generalize
hypergraphs into multi-layered networks, capturing relationships at multiple scales [8,13]. We also note that
hypergraphs are closely related to the theory of hyperstructures, and SuperHypergraphs likewise correspond
to SuperHyperstructures in algebraic hyperstructure theory [14,15].

1.2. Weighted and signed extensions

In many applications, edges carry additional information. A weighted graph assigns each edge a
nonnegative value such as cost, distance, or capacity enabling quantitative analyses of paths and flows [16–18].
A signed graph instead labels edges with positive or negative signs to model cooperative versus adversarial
interactions [19,20]. These ideas have been lifted to hypergraphs yielding weighted hypergraphs and signed
hypergraphs and most recently to SuperHypergraphs, giving rise to weighted SuperHypergraphs and signed
SuperHypergraphs [21]. Such extensions support refined network analyses that account for both hierarchical
structure and edge-level annotations.
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1.3. Our contribution

Although the theory and applications of graphs, hypergraphs, weighted graphs, and signed graphs
are well established, the exploration of weighted and signed SuperHyperGraphs remains in its infancy. In
this paper, we develop rigorous mathematical foundations for these two novel classes, derive their key
structural properties, and demonstrate their relevance through concrete examples. We further anticipate
that weighted and signed SuperHyperGraphs will enable clearer, multi-layered schematic representations
of complex hierarchical systems encountered in practice. Our work thus advances hierarchical network
modeling and lays the groundwork for future algorithmic and application-driven research in multi-layered
graph systems.

1.4. Structure of the paper

The remainder of this paper is organized as follows. In §2, we review the fundamental definitions of
hypergraphs and SuperHypergraphs. §3 introduces weighted SuperHypergraphs and examines their key
properties. §4 explores signed SuperHypergraphs, focusing on their definitions and structural characteristics.
Finally, §5 concludes the paper and outlines directions for future research.

2. Preliminaries

This section provides an introduction to the foundational concepts and definitions required for the
discussions in this paper. Throughout this paper, all sets and structures are assumed to be finite. Unless
otherwise specified, the symbol n denotes a non-negative integer. Readers who wish to explore the detailed
operations on each graph structure are encouraged to consult the relevant references as needed.

2.1. SuperHyperGraphs

Let H be a nonempty set and let n ∈ N. We first recall the iterated powerset construction and then
define SuperHyperGraphs. Powerset collects all subsets of a set; the n-th iterated powerset repeatedly applies
powerset operation n times recursively.

Definition 1 (Powerset). (cf. [22,23]) Let S be any set. The powerset of S, denoted P(S), is the collection of all
subsets of S:

P(S) = { A | A ⊆ S}.

In particular, ∅ ∈ P(S) and S ∈ P(S).

Definition 2 (Nonempty Powerset). Let S be any set. The nonempty powerset of S, denoted P∗(S), is

P∗(S) = { A | A ⊆ S, A ̸= ∅}.

Definition 3 (n-th Iterated Powerset). (cf. [24–27]) For a set H and integer n ≥ 1, the n-th iterated powerset of H,
denoted Pn(H), is defined recursively by

P1(H) = P(H), Pn+1(H) = P
(
Pn(H)

)
.

Its nonempty analogue is given by

P∗
1 (H) = P∗(H), P∗

n+1(H) = P∗(P∗
n (H)

)
.

Example 1 (Iterated Powersets in a Smart-Building Sensor Hierarchy). Consider a smart building with three
sensors:

H = {SA, SB, SC}.

• The first-level powerset

P1(H) = P(H) =
{

∅, {SA}, {SB}, {SC}, {SA, SB}, {SA, SC}, {SB, SC}, {SA, SB, SC}
}

,
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corresponds to all possible rooms (sensor clusters).
• The second-level powerset

P2(H) = P
(
P1(H)

)
,

corresponds to all possible floors (sets of rooms). For example, define two floors:

F1 =
{
{SA, SB}, {SB, SC}

}
, F2 =

{
{SA}, {SC}

}
.

Then F1, F2 ∈ P2(H).
• The third-level powerset

P3(H) = P
(
P2(H)

)
,

corresponds to all possible buildings (sets of floors). For instance, define a building:

B = { F1, F2} ∈ P3(H).

Thus, Pn(H) models hierarchical groupings of sensors into rooms, floors, and buildings via iterated
powersets.

The definition of a Hypergraph is given below.

Definition 4 (Hypergraph [28,29]). A hypergraph is an ordered pair G = (V, E) where

• V is a nonempty finite set of vertices,
• E ⊆ P(V) is a set of hyperedges.

The definition of a SuperHyperGraph is given below [30,31]. SuperHyperGraphs constitute an important
area of research, as they have been studied both for applications in decision science and for investigations
across various classes of graphs [32–35]. While some definitions of a SuperHyperGraph assume both the
vertex set V and the edge set E lie in the same n-th iterated powerset Pn, in this paper we adopt

V ⊆ Pn, E ⊆ Pn+1.

Definition 5 (SuperHyperGraph [8,36]). Let H be a nonempty set and n ∈ N. A SuperHyperGraph of depth n is
an ordered pair

H = (V, E),

satisfying
V ⊆ Pn(H), E ⊆ Pn+1(H).

Here Pn(H) and Pn+1(H) denote the n-th and (n + 1)-th iterated powersets of H, respectively. In
particular, vertices lie in the n-th layer, while hyperedges lie one layer higher, ensuring a proper hierarchy:

V ⊆ P(P(· · · P︸ ︷︷ ︸
n

(H) · · · )), E ⊆ P(P(· · · P︸ ︷︷ ︸
n+1

(H) · · · )).

Example 2 (Real-World Example of a 2-SuperHyperGraph: Corporate Collaboration Network). Consider a
corporate collaboration network in which individual employees form project teams, and project teams form
divisions. We model this as a 2-SuperHyperGraph

SuHyG(2) = (V, E)

over a finite base set V0 of employees.

• Base Set of Employees:
V0 = {Hiroko, Yutaka, Shinya, Maika},

where each element represents a distinct employee.
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• First Powerset (Teams):
P1(V0) = P(V0),

whose nonempty subsets correspond to project teams. For example:

{Hiroko, Yutaka}, {Yutaka, Shinya}, {Shinya, Maika}, {Hiroko, Maika}, . . . ,

might represent distinct teams working on different short-term projects.
• Second Powerset (Divisions):

P2(V0) = P
(
P(V0)

)
,

whose nonempty elements are divisions, each consisting of several project teams. For instance:

D1 =
{
{Hiroko, Yutaka}, {Yutaka, Shinya}

}
, D2 =

{
{Shinya, Maika}, {Hiroko, Maika}

}
.

Here:

– D1 is a division containing two teams: Team {Hiroko, Yutaka} and Team {Yutaka, Shinya}.
– D2 is another division containing Team {Shinya, Maika} and Team {Hiroko, Maika}.

• Vertex Set V: We choose a collection of divisions as the set of 2-supervertices:

V =
{

D1, D2, D3
}

,

where

D1 =
{
{Hiroko, Yutaka}, {Yutaka, Shinya}

}
, D2 =

{
{Shinya, Maika}, {Hiroko, Maika}

}
,

and
D3 =

{
{Hiroko, Shinya}, {Yutaka, Maika}

}
.

Each Di ⊆ P1(V0) is itself a subset of the set of all teams, so Di ∈ P2(V0).
• Edge Set E: We define 2-superedges as collaborations between divisions. For example:

E =
{

E1, E2
}

,

where
E1 = { D1, D2}, E2 = { D1, D3}.

Concretely:

– E1 connects divisions D1 and D2, indicating that those two divisions collaborate on a cross-division
initiative.

– E2 connects divisions D1 and D3, representing a different collaborative project.

Since each Ej ⊆ P2(V0), we have Ej ∈ P2(V0).
• Interpretation:

– Each 2-supervertex Di is a division composed of several teams (each team itself being a subset of
employees).

– Each 2-superedge Ej is a collaboration between divisions. For instance, E1 = {D1, D2} means
Division D1 collaborates with Division D2 on a joint corporate project.

– This structure thus captures a three-level hierarchy:

Employees︸ ︷︷ ︸
V0

−→ Teams︸ ︷︷ ︸
P1(V0)

−→ Divisions︸ ︷︷ ︸
P2(V0)

−→ Inter-Division Collaborations︸ ︷︷ ︸
E

.

– In general, an n-SuperHyperGraph uses n nested powersets to represent n-level hierarchical
groupings and their higher-level connections.
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Example 3 (SuperHyperGraph Modeling a LAN Hierarchy). Let the base set of network elements be

H = {PCA, PCB, PCC, PCD, Printer, Server}.

Subnets correspond to first-level subsets:

S1 = {PCA, PCB}, S2 = {PCC, PCD}, S3 = {Printer, Server},

so {S1, S2, S3} ⊆ P1(H).
VLANs are second-level subsets of subnets:

V1 = {S1, S3}, V2 = {S2, S3}, V3 = {S1, S2},

hence {V1, V2, V3} ⊆ P2(H).
Trunk links between VLANs define third-level hyperedges:

e1 = {V1, V2}, e2 = {V2, V3}, e3 = {V1, V3},

so {e1, e2, e3} ⊆ P3(H).
Collecting these, the 2-depth SuperHyperGraph H(2) = (V, E) is

V = {V1, V2, V3}, E = {e1, e2, e3}.

In this model:

• Level 0 (H): individual devices.
• Level 1 (P1(H)): subnets of devices.
• Level 2 (V): VLANs grouping subnets.
• Level 3 (E): trunk links interconnecting VLANs.

This SuperHyperGraph captures the hierarchical structure of a LAN—from devices through subnets and
VLANs to trunk segments—within a unified mathematical framework.

The following shows that the concept of a SuperHyperGraph in this paper generalizes the classical notion
of a HyperGraph.

Proposition 1 (Hypergraphs as Depth-0 SuperHyperGraphs). Every hypergraph G = (V, E) can be realized as a
SuperHyperGraph of depth 0. Concretely, set the base set H = V. Then

P0(H) = H, P1(H) = P(H),

so
V ⊆ P0(H), E ⊆ P1(H).

Thus H = (V, E) is a SuperHyperGraph of depth 0 whose vertex set and edge set coincide with those of the original
hypergraph.

Proof. Let G = (V, E) be any hypergraph, so by definition E ⊆ P(V). Take H = V. Since P0(H) = H, we
have V ⊆ P0(H). Likewise P1(H) = P(H) = P(V), so E ⊆ P1(H). These inclusions exactly match the
requirements for a SuperHyperGraph of depth 0. Hence H = (V, E) satisfies

V ⊆ P0(H), E ⊆ P1(H),

and is therefore a depth-0 SuperHyperGraph. This construction is bijective: any SuperHyperGraph of depth 0
on H yields a hypergraph on the same V and E.

For use in the subsequent theorems, we define the concepts of walk, path, and cycle in a
SuperHyperGraph.
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Definition 6 (Walk, Path, and Cycle in a SuperHyperGraph). Let H = (V, E) be a SuperHyperGraph of depth
n, where V ⊆ Pn(H) and E ⊆ Pn+1(H).

A walk of length k in H is an alternating sequence

v0, e1, v1, e2, . . . , ek, vk,

such that for each i = 1, . . . , k,
ei ∈ E and { vi−1, vi} ⊆ ei.

A path is a walk in which all vertices v0, v1, . . . , vk are distinct and all hyperedges e1, e2, . . . , ek are distinct.
A cycle is a closed walk of length k ≥ 2, namely

v0, e1, v1, . . . , ek, vk with v0 = vk,

such that

• the hyperedges e1, e2, . . . , ek are all distinct,
• the vertices v0, v1, . . . , vk−1 are all distinct.

Example 4 (Walk, Path, and Cycle in a Smart-Building Hierarchy). Let the set of sensors be

H = {SA, SB, SC}.

Rooms are first-level subsets:

R1 = {SA, SB}, R2 = {SB, SC}, R3 = {SC, SA},

so {R1, R2, R3} ⊆ P1(H). Floors are second-level subsets:

F1 = {R1, R2}, F2 = {R2, R3}, F3 = {R3, R1},

hence {F1, F2, F3} ⊆ P2(H). Buildings are third-level subsets:

B1 = {F1, F2}, B2 = {F2, F3}, B3 = {F3, F1},

giving {B1, B2, B3} ⊆ P3(H).
Thus we obtain a 2-SuperHyperGraph H = (V, E) with

V = {F1, F2, F3}, E = {B1, B2, B3}.

• A walk of length 2 is, for example,

F1
B1−→ F2

B2−→ F3.

Here {Fi−1, Fi} ⊆ Bi for i = 1, 2.
• This walk is also a path, since F1, F2, F3 and B1, B2 are all distinct.
• A cycle of length 3 is

F1
B1−→ F2

B2−→ F3
B3−→ F1,

with F1 = F4. All floors Fi (for i = 1, 2, 3) and buildings Bi (for i = 1, 2, 3) are distinct, and F0 = F3, so this
is a simple cycle.

3. Review and results: Weighted n-SuperHyperGraphs

A weighted graph is a graph in which each edge is assigned a numerical weight representing cost, distance,
capacity, or strength between its two vertices [16–18]. A weighted hypergraph is a hypergraph whose hyperedges
carry numerical weights indicating the strength, cost, or importance of multi-vertex connections [37–39]. A
weighted n-SuperHyperGraph extends this concept by assigning numerical weights to n-superedges, thereby
capturing connection strengths at each hierarchical layer [40].
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In this section, we review the definition, properties, and potential applications of weighted
n-SuperHyperGraphs as outlined below.

Definition 7 (Weighted n-SuperHyperGraph [40]). Let V0 be a finite base set of vertices, and define the iterated
powersets

P0(V0) = V0, P k+1(V0) = P
(
P k(V0)

)
(k ≥ 0).

A weighted n-SuperHyperGraph is a triple

WSuHyG(n) =
(
V, E, w

)
,

where

• V ⊆ Pn(V0) is the set of n-supervertices,
• E ⊆ Pn+1(V0) is the set of n-superedges,
• w : E → R>0 is a weight function assigning to each superedge e ∈ E a positive real weight w(e).

In particular, vertices inhabit the nth layer of the iterated powerset, while hyperedges inhabit the (n + 1)th
layer, ensuring a proper hierarchical distinction.

Example 5 (Weighted 2-SuperHyperGraph: Team Collaboration Network). Let the base set of individuals be

V0 = {Hiroko, Yutaka, Shinya}.

Then

P1(V0) =
{
{Hiroko}, {Yutaka}, {Shinya}, {Hiroko, Yutaka}, {Hiroko, Shinya}, {Yutaka, Shinya}, ∅, V0

}
,

and P2(V0) = P(P1(V0)), P3(V0) = P(P2(V0)).
Define three 2-supervertices:

v1 = {{Hiroko}, {Yutaka}}, v2 = {{Yutaka}, {Shinya}}, v3 = {{Hiroko, Yutaka}, {Yutaka, Shinya}}.

Thus
V = {v1, v2, v3} ⊆ P2(V0).

Next, each 2-superedge is a subset of the 2-supervertices, hence lies in P(P2(V0)) = P3(V0):

e1 = {v1, v2}, e2 = {v2, v3}, e3 = {v1, v3},

so
E = {e1, e2, e3} ⊆ P3(V0).

Finally, assign weights reflecting collaboration strength:

w(e1) = 10, w(e2) = 5, w(e3) = 8.

Collecting these, the weighted 2-SuperHyperGraph is

WSuHyG(2) = (V, E, w),

with V ⊆ P2(V0) and E ⊆ P3(V0).

Example 6 (Weighted 2-SuperHyperGraph: Navigation Route in a LAN). Consider a navigation app
connecting four locations:

V0 = {Airport, Station, Museum, Hotel},
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with direct distances (in km):

d(Airport, Station) = 30, d(Station, Museum) = 10, d(Museum, Hotel) = 20.

First-level subsets (P1(V0)) represent direct legs. At the second level, define two 2-supervertices in
P2(V0):

v1 = {{Airport, Station}, {Station, Museum}}, v2 = {{Museum, Hotel}}.

Thus
V = {v1, v2} ⊆ P2(V0).

At the third level, connect these supervertices:

e1 = {v1, v2} ⊆ P3(V0),

so
E = {e1}.

Assign the travel distance as a weight:

w(e1) = d(Airport, Station) + d(Station, Museum) + d(Museum, Hotel) = 30 + 10 + 20 = 60.

Collecting these,
WSuHyG(2) = (V, E, w),

models the two-leg route from Airport to Hotel via Station and Museum, with total distance 60 km.

Example 7 (Weighted 3-SuperHyperGraph: Global Supply Network). Let

V0 = {Supplier, Manufacturer, Distributor}.

Form P1(V0), P2(V0) = P(P1(V0)), P3(V0) = P(P2(V0)), P4(V0) = P(P3(V0)).
Define three 3-supervertices in P3(V0):

X1 ={{Supplier}, {Manufacturer}},

X2 ={{Manufacturer}, {Distributor}},

X3 ={{Supplier,Manufacturer}, {Distributor}},

v1 ={X1, X2}, v2 = {X2, X3}, v3 = {X1, X3},

so
V = {v1, v2, v3} ⊆ P3(V0).

Each 3-superedge lies in P(P3(V0)) = P4(V0):

e1 = {v1, v2}, e2 = {v2, v3},

E = {e1, e2} ⊆ P4(V0).

Assign weights representing annual transaction volumes (in millions USD):

w(e1) = 150, w(e2) = 200.

Hence the weighted 3-SuperHyperGraph is

WSuHyG(3) = (V, E, w),

with V ⊆ P3(V0) and E ⊆ P4(V0).
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Example 8 (Weighted 3-SuperHyperGraph: Metropolitan Train Lines). Let the set of stations be

V0 = {A, B, C, D, E}.

Define the direct track segments (first-level subsets) with their lengths (in km):

s1 = {A, B}, d(s1) = 5, s2 = {B, C}, d(s2) = 4,

s3 = {C, D}, d(s3) = 3, s4 = {D, E}, d(s4) = 6.

Form three routes (second-level subsets):

r1 = {s1, s2}, r2 = {s2, s3}, r3 = {s3, s4}.

Then {r1, r2, r3} ⊆ P2(V0).
Group routes into two train lines (third-level subsets):

ℓ1 = {r1, r2}, ℓ2 = {r2, r3},

so {ℓ1, ℓ2} ⊆ P3(V0), and set
V = {ℓ1, ℓ2}.

Finally, connect these lines by a superedge (fourth-level subset):

e = {ℓ1, ℓ2} ⊆ P4(V0),

and let
E = {e}.

Define the weight w(e) to be the length of the shared segment s2, representing the overlap where
passengers transfer between lines:

w(e) = d(s2) = 4.

Thus the weighted 3-SuperHyperGraph

WSuHyG(3) = (V, E, w),

models two overlapping train lines, capturing both the hierarchical structure (stations� segments� routes
� lines� network) and the quantitative overlap of 4 km where line transfers occur.

Definition 8 (Weighted Degree). Let WSuHyG(n) = (V, E, w) be a weighted n-SuperHyperGraph. The
weighted degree of a supervertex v ∈ V is

deg(v) = ∑
e∈E: v∈e

w(e).

Example 9 (Weighted Degree in a Team Collaboration Network). Consider the weighted 2-SuperHyperGraph
WSuHyG(2) = (V, E, w), where

V = {v1, v2, v3}, E = {e1, e2, e3},

with
e1 = {v1, v2}, e2 = {v2, v3}, e3 = {v1, v3},

and weights
w(e1) = 10, w(e2) = 5, w(e3) = 8.

By Definition 8, the weighted degree of each supervertex is

deg(v1) = w(e1) + w(e3) = 10 + 8 = 18, deg(v2) = w(e1) + w(e2) = 10 + 5 = 15,
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deg(v3) = w(e2) + w(e3) = 5 + 8 = 13.

Theorem 1 (Degree–Edge-Weight Sum). In any weighted n-SuperHyperGraph WSuHyG(n) = (V, E, w),

∑
v∈V

deg(v) = ∑
e∈E

w(e)
∣∣e∣∣.

Proof. Interchange the order of summation over the finite sets V and E:

∑
v∈V

deg(v) = ∑
v∈V

∑
e∈E: v∈e

w(e) = ∑
e∈E

∑
v∈e

w(e) = ∑
e∈E

w(e)
∣∣e∣∣.

Definition 9 (Weighted Coverage Function). Let WSuHyG(n) = (V, E, w). Define

f : 2V −→ R≥0, f (X) = ∑
e∈E: e⊆X

w(e), ∀ X ⊆ V.

Example 10 (Weighted Coverage Function in the Team Collaboration Network). Let WSuHyG(2) = (V, E, w)

be as in Example, 5, with

V = {v1, v2, v3}, E = {e1, e2, e3}, w(e1) = 10, w(e2) = 5, w(e3) = 8.

Then for any X ⊆ V, the coverage function f (X) = ∑
e⊆X

w(e) takes the values:

f (∅) = 0,

f ({v1}) = 0,

f ({v1, v2}) = w(e1) = 10,

f ({v2, v3}) = w(e2) = 5,

f ({v1, v3}) = w(e3) = 8,

f ({v1, v2, v3}) = w(e1) + w(e2) + w(e3) = 23.

Theorem 2 (Monotonicity of the Coverage Function). Let WSuHyG(n) = (V, E, w) be a weighted
n-SuperHyperGraph with coverage function

f (X) = ∑
e∈E: e⊆X

w(e), X ⊆ V.

Then for any X, Y ⊆ V with X ⊆ Y,
f (X) ≤ f (Y).

Proof. If e ⊆ X then certainly e ⊆ Y. Hence the index set {e ∈ E : e ⊆ X} is contained in {e ∈ E : e ⊆ Y}, and
since all weights w(e) are nonnegative, it follows that

f (X) = ∑
e⊆X

w(e) ≤ ∑
e⊆Y

w(e) = f (Y).

Theorem 3 (Modularity of the Coverage Function). With f as above, for all X, Y ⊆ V one has the exact relation

f (X) + f (Y) = f (X ∪ Y) + f (X ∩ Y).

In particular, f is both submodular and supermodular.
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Proof. Partition the index set E into three disjoint parts:

E1 = {e : e ⊆ X ∩ Y}, E2 = {e : e ⊆ X ∪ Y, e ̸⊆ X ∩ Y}, E3 = E \ (E1 ∪ E2).

Then
f (X) = ∑

e∈E1∪E2

w(e), f (Y) = ∑
e∈E1∪E2

w(e),

f (X ∩ Y) = ∑
e∈E1

w(e), f (X ∪ Y) = ∑
e∈E1∪E2

w(e).

Adding the first two sums gives

f (X) + f (Y) = 2 ∑
e∈E1∪E2

w(e) = ∑
e∈E1

w(e) + ∑
e∈E1∪E2

w(e) = f (X ∩ Y) + f (X ∪ Y),

as required.

Definition 10 (Marginal Gain). Let WSuHyG(n) = (V, E, w) be a weighted n-SuperHyperGraph with coverage
function f . For any X ⊆ V and v ∈ V \ X, the marginal gain of adding v to X is

∆ f (v | X) = f
(
X ∪ {v}

)
− f (X).

Example 11 (Marginal Gain in the Team Collaboration Network). Recall the weighted 2-SuperHyperGraph
WSuHyG(2) = (V, E, w), with

V = {v1, v2, v3}, E = {e1, e2, e3}, w(e1) = 10, w(e2) = 5, w(e3) = 8,

and coverage function
f (X) = ∑

e⊆X
w(e).

• For X = {v1} and v = v2:
f ({v1}) = 0, f ({v1, v2}) = w(e1) = 10,

hence
∆ f (v2 | {v1}) = f ({v1, v2})− f ({v1}) = 10 − 0 = 10.

• For X = {v1, v2} and v = v3:

f ({v1, v2}) = 10, f ({v1, v2, v3}) = w(e1) + w(e2) + w(e3) = 23,

hence
∆ f (v3 | {v1, v2}) = 23 − 10 = 13.

Theorem 4 (Diminishing Marginal Returns). Let X, Y ⊆ V satisfy X ⊆ Y ⊆ V, and let v ∈ V \ Y. Then

∆ f (v | X) ≥ ∆ f (v | Y).

Proof. Submodularity of f gives

f (X ∪ {v}) + f (Y) ≥ f (Y ∪ {v}) + f (X).

Rearranging yields
f (X ∪ {v})− f (X) ≥ f (Y ∪ {v})− f (Y),

i.e. ∆ f (v | X) ≥ ∆ f (v | Y).
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Definition 11 (Cut Function). Define the cut function

g : 2V −→ R≥0, g(X) = ∑
e∈E: e∩X ̸=∅, e ̸⊆X

w(e), ∀ X ⊆ V.

Theorem 5 (Symmetry and Submodularity of the Cut). Let g be the cut function on (V, E, w). Then for all X, Y ⊆
V:

1. g(X) = g(V \ X) (symmetry).
2. g(X) + g(Y) ≥ g(X ∪ Y) + g(X ∩ Y) (submodularity).

Proof. (1) Since e ∩ X ̸= ∅ and e ̸⊆ X if and only if e ∩ (V \ X) ̸= ∅ and e ̸⊆ (V \ X), the same superedges
contribute to g(X) and g(V \ X).

(2) For each e ∈ E, let

δX(e) =

{
1, e ∩ X ̸= ∅, e ̸⊆ X,

0, otherwise,

and similarly define δY(e), δX∪Y(e), δX∩Y(e). A straightforward case analysis shows

δX(e) + δY(e) ≥ δX∪Y(e) + δX∩Y(e), ∀ e ∈ E.

Multiplying by w(e) ≥ 0 and summing over E yields the desired inequality.

Theorem 6 (Total Coverage and Upper Bound). For any weighted n-SuperHyperGraph (V, E, w) with coverage
function f ,

f (V) = ∑
e∈E

w(e) and f (X) ≤ f (V) ∀ X ⊆ V.

Proof. By definition of f ,
f (V) = ∑

e∈E: e⊆V
w(e) = ∑

e∈E
w(e).

Monotonicity of f then implies f (X) ≤ f (V) for every X ⊆ V.

4. Review and results: Signed n-SuperHyperGraphs

A signed graph is a graph whose edges carry a sign + or −, modeling cooperative or adversarial
interactions among vertices [19,20]. A signed hypergraph extends this by assigning each hyperedge a sign,
capturing polarity in multi-way group interactions [41–43]. In this section, we review the definition, properties,
and potential applications of Signed n-SuperHyperGraphs as outlined below.

Definition 12 (Signed n-SuperHyperGraph [21]). Let V0 be a finite base set and, for k ≥ 0, define

P0(V0) = V0, P k+1(V0) = P
(
P k(V0)

)
.

A signed n-SuperHyperGraph is a triple

SWSuHyG(n) = (V, E, φ),

where
V ⊆ Pn(V0), E ⊆ Pn+1(V0),

and
φ : V × E −→ {−1, 0,+1}
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is the incidence sign function defined by

φ(v, e) =


+1, v ∈ e and the incidence is positive,

−1, v ∈ e and the incidence is negative,

0, v /∈ e.

When n = 1 this recovers a signed hypergraph, and if additionally each e ∈ E has exactly two vertices, a
signed graph.

Example 12 (Signed 2-SuperHyperGraph). Let V0 = {A, B, C}. Then

P1(V0) = {{A}, {B}, {C}, {A, B}, {A, C}, {B, C}, ∅, V0},

P2(V0) = P(P1(V0)), P3(V0) = P(P2(V0)).

Choose
v1 = {{A}, {B}}, v2 = {{B}, {C}}, v3 = {{A, B}, {C}},

so V = {v1, v2, v3} ⊆ P2(V0). Then define

e1 = {v1, v2}, e2 = {v2, v3}, e3 = {v1, v3},

so E = {e1, e2, e3} ⊆ P3(V0). The incidence sign function φ may be given by

e1 e2 e3

v1 +1 0 −1
v2 +1 +1 0
v3 0 −1 −1

so that φ(vi, ej) is +1 for positive incidence, −1 for negative, and 0 otherwise. Thus SWSuHyG(2) = (V, E, φ)

is a signed 2-SuperHyperGraph.

Example 13 (Signed 2-SuperHyperGraph: Corporate Collaboration). Let V0 = {Manager, Engineer,
Designer}. Form P1(V0), P2(V0), P3(V0) as above. Pick

v1 = {{Manager}, {Engineer}}, v2 = {{Engineer}, {Designer}}, v3 = {{Manager}, {Designer}},

so V = {v1, v2, v3} ⊆ P2(V0), and

e1 = {v1, v2}, e2 = {v1, v3}, e3 = {v2, v3},

so E = {e1, e2, e3} ⊆ P3(V0). Define φ by

e1 e2 e3

v1 +1 +1 0
v2 +1 0 −1
v3 0 −1 +1

interpreting +1 as collaborative incidence, −1 as competitive, and 0 as no incidence. Hence SWSuHyG(2) =

(V, E, φ) models signed relations among hierarchical role-pairs.

Theorem 7 (Signed Degree Sum). Let H = (V, E, φ) be a signed n-SuperHyperGraph, and define the signed degree
of each supervertex v ∈ V by

degφ(v) = ∑
e∈E

φ(v, e).
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Assume that each superedge e ∈ E has zero net incidence:

∑
v∈V

φ(v, e) = 0 ∀ e ∈ E.

Then the sum of all signed degrees is zero:

∑
v∈V

degφ(v) = 0.

Proof. By definition,

∑
v∈V

degφ(v) = ∑
v∈V

∑
e∈E

φ(v, e) = ∑
e∈E

∑
v∈V

φ(v, e) = ∑
e∈E

0 = 0,

where the interchange of the summation order is justified by finiteness, and each inner sum vanishes by
hypothesis.

Definition 13 (Sign of a Simple Cycle). Let H = (V, E, φ) be a signed SuperHyperGraph and let

C = v0, e1, v1, e2, . . . , ek, vk
(
v0 = vk, k ≥ 2

)
,

be a simple cycle in the sense of Definition 3 (vertices v0, . . . , vk−1 and hyperedges e1, . . . , ek all distinct). We
define the sign of C by

sgn(C) =
k

∏
i=1

φ
(
vi−1, ei

)
φ
(
vi, ei

)
.

We call C positive if sgn(C) = +1, and negative if sgn(C) = −1.

Example 14 (Sign of a Simple Cycle in a Social Trust SuperHyperGraph). Let the base set of individuals be

H = {Ayano, Tenma, Yuya}.

For n = 1, set
V =

{
{Ayano}, {Tenma}, {Yuya}

}
⊆ P1(H),

E = { eAB, eBC, eCA} ⊆ P2(H),

where

eAB ={{Ayano}, {Tenma}},

eBC ={{Tenma}, {Yuya}},

eCA ={{Yuya}, {Ayano}}.

Define the incidence sign function φ : V × E → {−1, 0,+1} by

φ
(
{X}, eXY

)
=


+1, if X and Y trust each other,

−1, if X and Y distrust each other,

0, otherwise.

Suppose:

φ({Ayano}, eAB) =φ({Tenma}, eAB) = +1,

φ({Tenma}, eBC) =φ({Yuya}, eBC) = −1,

φ({Yuya}, eCA) =φ({Ayano}, eCA) = +1.
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Consider the simple cycle

C : {Ayano} eAB−−→ {Tenma} eBC−−→ {Yuya} eCA−−→ {Ayano}.

By Definition, its sign is

sgn(C) =
(

φ({Ayano}, eAB) φ({Tenma}, eAB)
)
×

(
φ({Tenma}, eBC) φ({Yuya}, eBC)

)
×

(
φ({Yuya}, eCA) φ({Ayano}, eCA)

)
=(+1 ·+1)× (−1 · −1)× (+1 ·+1)

= + 1.

Hence C is a positive simple cycle, indicating that the pattern of trust and distrust among Ayano, Tenma,
and Yuya is structurally balanced.

Definition 14 (Switching Equivalence). Let H = (V, E, φ) be a signed n-SuperHyperGraph. For any function
σ : V → {±1}, the switch of H by σ is the signed n-SuperHyperGraph Hσ = (V, E, φσ), where

φσ(v, e) = σ(v) φ(v, e) ∀ v ∈ V, e ∈ E.

Two signed n-SuperHyperGraphs H1 and H2 on the same (V, E) are switching equivalent if there exists σ

such that H2 = Hσ
1 .

Example 15 (Switching Equivalence in a Signed 1-SuperHyperGraph). Let the base set be

V0 = {A, B, C}.

For n = 1, set
V = {{A}, {B}, {C}} ⊆ P1(V0), E =

{
e1, e2, e3

}
⊆ P2(V0),

where
e1 = {{A}, {B}}, e2 = {{B}, {C}}, e3 = {{C}, {A}}.

Define the incidence sign function φ : V × E → {−1, 0,+1} by

φ(v, e) =


+1, v ∈ e and e = e1,

−1, v ∈ e and e ∈ {e2, e3},

0, v /∈ e.

Thus all incidences of e1 are positive, while those of e2, e3 are negative.
This signed 1-SuperHyperGraph H = (V, E, φ) is balanced, since the unique simple cycle {A} e1−→ {B} e2−→

{C} e3−→ {A} has sign (+1)× (−1)× (−1) = +1.
Now define a switching function σ : V → {±1} by

σ({A}) = +1, σ({B}) = +1, σ({C}) = −1.

The switched incidence function φσ(v, e) = σ(v) φ(v, e) then satisfies

φσ(v, e) = +1 ∀ v ∈ e, e ∈ E,

so that Hσ has all positive incidences. Hence H and Hσ are switching equivalent.

Theorem 8 (Balance Characterization). A signed n-SuperHyperGraph H = (V, E, φ) is balanced—i.e. every simple
cycle has sign +1—if and only if it is switching equivalent to one whose incidence function satisfies

φσ(v, e) = +1 whenever φ(v, e) ̸= 0.
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Proof. Fix a vertex v0 in each connected component. For any v ∈ V, choose a simple path P from v0 to v.
Define

σ(v) = ∏
(u,e)∈P

φ(u, e),

the product of the two incidences for each edge along P. Balance (positivity of all cycle signs) guarantees σ(v)
is path-independent. One then checks that in the switched graph Hσ, every nonzero incidence is +1.

If Hσ has φσ(v, e) = +1 for all v ∈ e, then the sign of any simple cycle—being the product of the switched
incidences—equals +1, so H is balanced.

Definition 15 (Signed Incidence Matrix). Order the vertices V = {v1, . . . , vp} and hyperedges E = {e1, . . . , eq}.
The signed incidence matrix B ∈ {−1, 0,+1}p×q is

Bi,j = φ(vi, ej), 1 ≤ i ≤ p, 1 ≤ j ≤ q.

Example 16 (Signed Incidence Matrix in a Board Committee Network). Consider a board of four directors:

V = {Hiroshi, Yuki, Sakura, Takashi}.

They serve on three committees:

e1 ={Hiroshi, Yuki},

e2 ={Yuki, Sakura, Takashi},

e3 ={Hiroshi, Takashi}.

Define the incidence sign function φ : V × E → {−1, 0,+1} by

φ(v, e) =


+1, if director v supports committee e,

−1, if director v opposes committee e,

0, if v is not on e.

Suppose their positions are:

φ(Hiroshi, e1) = +1, φ(Yuki, e1) = −1,

φ(Yuki, e2) = +1, φ(Sakura, e2) = +1, φ(Takashi, e2) = −1,

φ(Hiroshi, e3) = −1, φ(Takashi, e3) = +1.

Ordering V = (Hiroshi, Yuki, Sakura, Takashi) and E = (e1, e2, e3), the signed incidence matrix B ∈
{−1, 0,+1}4×3 is

B =
[
φ(vi, ej)

]
=


+1 0 −1
−1 +1 0
0 +1 0
0 −1 +1

 .

Theorem 9 (Rank of the Incidence Matrix). Let H = (V, E, φ) be a signed n-SuperHyperGraph with incidence
matrix B. If H has b balanced connected components (up to switching), then over R,

rank(B) = |V| − b.

Proof. Decompose H into its connected components. In each balanced component, the all-ones row vector lies
in the left nullspace of the corresponding submatrix of B, yielding exactly one linear dependency among its
rows. Unbalanced components have full row rank. Summing these contributions gives rank(B) = |V| − b.
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Theorem 10 (Cycle Sign Invariance under Switching). Let H = (V, E, φ) be a signed n-SuperHyperGraph, and let
σ : V → {±1} define the switched incidence φσ(v, e) = σ(v) φ(v, e). Then for every simple cycle

C : v0, e1, v1, . . . , ek, vk (v0 = vk),

we have
sgnφσ (C) = sgnφ(C).

Proof. By definition,

sgnφσ (C) =
k

∏
i=1

φσ(vi−1, ei) φσ(vi, ei) =
k

∏
i=1

(
σ(vi−1)φ(vi−1, ei)

)(
σ(vi)φ(vi, ei)

)
.

Since each σ(v) appears exactly twice in this product (once for each end of each ei), all factors of σ(v)
cancel in pairs, leaving sgnφσ (C) = sgnφ(C).

Theorem 11 (Incidence Matrix under Switching). Let H = (V, E, φ) have signed incidence matrix B with rows
indexed by V and columns by E. If σ : V → {±1} is a switching function, let D = diag(σ(v1), . . . , σ(v|V|)). Then the
switched incidence matrix Bσ satisfies

Bσ = D B.

In particular, rank(Bσ) = rank(B).

Proof. By definition, (Bσ)v,e = φσ(v, e) = σ(v) φ(v, e) =
(

D B
)

v,e. Since D is invertible over R,
left-multiplication by D preserves rank.

Theorem 12 (Two-Coloring Characterization of Balance). A signed n-SuperHyperGraph H = (V, E, φ) is balanced
if and only if there exists a function σ : V → {±1} and signs {εe ∈ {±1} : e ∈ E} such that

φ(v, e) = σ(v) εe for all v ∈ e.

Proof. (⇒) If H is balanced, choose σ as in the proof of the Balance Characterization so that φσ(v, e) = +1 for
all v ∈ e. Then φ(v, e) = σ(v) · (+1), so εe = +1.

(⇐) If such σ and εe exist, then for any simple cycle C,

sgn(C) =
k

∏
i=1

φ(vi−1, ei) φ(vi, ei) =
k

∏
i=1

σ(vi−1)εei σ(vi)εei =
k

∏
i=1

(
σ(vi−1)σ(vi)

)(
ε2

ei

)
= +1,

since each ε2
ei
= 1 and each σ(v) appears twice. Hence all cycles are positive and H is balanced.

5. Conclusion and future work

In this work, we have explored both the theoretical properties and practical applications of weighted
SuperHyperGraphs and signed SuperHyperGraphs [21]. Weighted SuperHyperGraphs enable us to assign and
analyze quantitative strengths to multi-level connections, supporting refined community detection, resource
allocation, and resilience optimization in complex hierarchical networks. Signed SuperHyperGraphs, by
contrast, allow us to model positive and negative influences within layered group interactions, facilitating
rigorous study of cooperative versus adversarial dynamics, balance analysis, and conflict resolution.

Looking ahead, we plan to extend this framework to other variants of SuperHyperGraphs, develop
efficient algorithms for their analysis, and pursue further real-world case studies. We also intend to integrate
uncertainty and vagueness through extensions based on Fuzzy Sets [44–46], Intuitionistic Fuzzy Sets [47–49],
Lexicographic max product of picture fuzzy graph [50], Neutrosophic Sets [51,52], HyperFuzzy Sets [53–55],
Plithogenic Sets [56–58], and related formalisms.
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