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ZAGREB POLYNOMIALS AND REDEFINED ZAGREB

INDICES OF LINE GRAPH OF HAC5C6C7[p, q] NANOTUBE

AZIZ UR REHMAN1, WASEEM KHALID

Abstract. The application of graph theory in chemical and molecular
structure research far exceeds people’s expectations, and it has recently
grown exponentially. In the molecular graph, atoms are represented by ver-
tices and bonded by edges. In this report, we study the Zagreb-polynomials
of line graph of HAC5C6C7[p, q] and compute some degree-based topolog-
ical indices from it.

Key words and phrases: Zagreb index; Zagreb polynomial, Chemical graph the-
ory; Nanotube.

1. Introduction

Graph theory provides chemists with a variety of useful tools, such as topological
indices. Molecular compounds are often modeled using molecular graphs. The
molecular graph represents the structural formula of the compound in the form
of graph theory, the vertices of which correspond to the atoms of the compound
and the edges correspond to the chemical bonds [1].
Cheminformatics is a new area of research that integrates chemistry, mathe-
matics, and information science. It studies the quantitative structure-activity
(QSAR) and structure-property (QSPR) relationships [2-5] used to predict the
biological activity and properties of compounds. In the QSAR/QSPR study, the
physical and chemical properties and topological indices such as Szeged index,
Wiener index, Randić index, ABC index and Zagreb index etc were used to pre-
dict the biological activity of compounds. A molecular graph can be identified
by topological index, polynomials, sequences or matrices [6].
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The topological index is a number associated with the graph [7]. It represents the
topological structure of the graph and is invariant under the automorphism of the
graph. There are some major topological index categories, such as distance-based
topological indices [8,9], degree-based topological indices [10.11], and counting-
related polynomial and graph indices [7]. In these categories, the degree-based
topological index is very important and plays a crucial role in chemical graph
theory, especially in chemistry [12-15]. More precisely, the topological index
Top(G) of the graph is a number with the following characteristics: If a graph
H is isomorphic to G, then Top(H)=Top(G). The concept of topological index
comes from Wiener [16], when he studied the boiling point of paraffin. He named
this index as the path number. Later, the path number was renamed Wiener
index.
Carbon nanotubes form an interesting class of non-carbon materials [17]. There
are three types of nanotubes, namely chiral, zigzag and armchairs nanotubes
[18]. These carbon nanotubes show significant mechanical properties [17]. Ex-
perimental studies have shown that they belong to the most rigid and elastic
known materials [19]. Diudea [20] was the first chemist to consider the topol-
ogy of nanostructures. HAC5C6C7[p, q] [21]shown in Figure 1, is constructed
by alternating C5, C6 and C7 carbon cycles. It is tube shaped material but we
consider it in the form of sheet shown in Figure 2. The two dimensional lattice of
HAC5C6C7[p, q] consists of p rows and q periods. Here p denotes the number of
pentagons in one row and q is the number of periods in whole lattice. A period
consist of three rows (see references [22,23]). Figures are taken from [24]. Figure
3 is 2D graph of HAC5C6C7[p, q] and figure 4 is line graph of HAC5C6C7[p, q].

Figure 1. HAC5C6C7[p, q] Nanotube

Figure 2. 2D graph of HAC5C6C7[p, q]
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Figure 3. HAC5C6C7

Figure 4. L(HAC5C6C7)

The aim of this paper is to compute Zagreb polynomials of the line graph of
HAC5C6C7[p, q] nanotube. We also compute some degree-based topological
indices of the line graph of HAC5C6C7[p, q] nanotube. A line graph has many
useful applications in physical chemistry [25,26] and is defined as: the line graph
L(G) of a graph G is the graph each of whose vertex represents an edge of G
and two of its vertices are adjacent if their corresponding edges are adjacent in
G.

2. Basic definitions and Literature Review

Throughout this article, we take G as a connected graph, V (G) is the vertex set
and E(G) is the edge set. The degree of a vertex v is denoted by dv, and is equal
to number of vertices attached to v.
In the past two decades, a large number of topological indices have been defined
and used for correlation analysis in theoretical chemistry, pharmacology, toxi-
cology and environmental chemistry.
The first and second Zagreb indices are one of the oldest and most well-known
topological indices defined by Gutman in 1972 and are given different names in
the literature, such as the Zagreb group index, Sag. Loeb group parameters and
the most common Zagreb index. The Zagreb index is one of the first indices in-
troduced and has been used to study molecular complexity, chirality, ZE isomers
and heterogeneous systems. The Zagreb index shows the potential applicability
of deriving multiple linear regression models.
The first and the second Zagreb indices [27] are defined as

M1(G) =
∏

u∈V (G)

(du + dv),
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M2(G) =
∏

uv∈E(G)

du × du,

For details see [28]. Considering the Zagreb indices, Fath-Tabar ([29]) defined
first and the second Zagreb polynomials as

M1(G, x) =
∑

uv∈E(G)

xdu+dv ,

and

M2(G, x) =
∑

uv∈E(G)

xdu.dv .

The properties ofM1(G, x) and M2(G, x) for some chemical structures have been
studied in the literature [30,31].
After that, in [32], the authors defined the third Zagreb index

M3(G) =
∑

uv∈E(G)

(du − dv),

and the polynomial

M3(G, x) =
∑

uv∈E(G)

xdu−dv .

In the year 2016, [33] following Zagreb type polynomials were defined

M4(G, x) =
∑

uv∈E(G)

xdu(du+dv),

M5(G, x) =
∑

uv∈E(G)

xdv(du+dv),

Ma,b(G, x) =
∑

uv∈E(G)

xadu+bdv ,

M ′
a,b(G, x) =

∑

uv∈E(G)

x(du+a)(dv+b).

Ranjini et al. [34] redefined the Zagreb index, i.e, the redefined first, second and
third Zagreb indices of graph G. These indicators appear as

ReZG1(G) =
∑

uv∈E(G)

du + dv

dudv
,

ReZG2(G) =
∑

uv∈E(G)

du.dv

du + dv
,

and

ReZG3(G) =
∑

uv∈E(G)

(du + dv)(du.dv).

For details about topological indices and its applications we refer [35-44].
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3. Main Results

In this section, we present our computational results.

Theorem 3.1. Let G be the line graph of HAC5C6C7 nanotube. Then

(1) M3(G, x) = 2(38p− 17) + 2(6p+ 11)x,
(2) M4(G, x) = 2x8 + 12x12 + (6p+ 1)x18 + (12p+ 10)x21 + (70p− 37)x32,

(3) M5(G, x) = 2x8 + 12x15 + (6p+ 1)x18 + (12p+ 10)x28 + (70p− 37)x32,

(4) Ma,b(G, x) = 2x2(a+b) + 12x2a+3b + (6p+ 1)x3(a+b) + (12p+ 10)x3a+4b

+ (70p− 37)x4(a+b),

(5) M ′
a,b(G, x) = 2x(a+2)(b+2) + 12x(a+2)(b+3) + (6p+ 1)x(a+3)(b+3)

+ (12p+ 10)x(a+3)(b+4) + (70p− 37)x(a+4)(b+4).

Proof. Let G be the line graph of HAC5C6C7[p, q] nanotube where p denotes
the number of pentagons in one row and q denotes the number of periods in
whole lattice. The edge set of line graph of HAC5C6C7[p, q] with p ≥ 1 and
q = 2 has following five partitions,

E1 = E2,2 = {e = uv ∈ E(HAC5C6C7[p, q]) : du = 2, dv = 2},

E2 = E2,3 = {e = uv ∈ E(HAC5C6C7[p, q]) : du = 2, dv = 3},

E3 = E3,3 = {e = uv ∈ E(HAC5C6C7[p, q]) : du = 3, dv = 3},

E4 = E3,4 = {e = uv ∈ E(HAC5C6C7[p, q]) : du = 3, dv = 4},

and

E5 = E4,4 = {e = uv ∈ E(HAC5C6C7[p, q]) : du = 4, dv = 4}.

Such that

| E1(G) |= 2,

| E2(G) |= 12,

| E3(G) |= 6p+ 1,

| E4(G) |= 12p+ 10,

| E5(G) |= 70p+ 37.

(1)

M3(G, x) =
∑

uv∈E(G)

xdu−dv

=
∑

uv∈E1(G)

x2−2 +
∑

uv∈E2(G)

x3−2 +
∑

uv∈E3(G)

x3−3 +
∑

uv∈E4(G)

x4−3

+
∑

uv∈E5(G)

x4−4

= | E1(G) | + | E2(G) | x+ | E3(G) | + | E4(G) | x+ | E5(G) |

= 2 + 12x+ (6p+ 1) + (12p+ 10)x+ (70p− 37)

= 2(38p− 17) + 2(6p+ 11)x.
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(2)

M4(G, x) =
∑

uv∈E(G)

xdu(du+dv)

=
∑

uv∈E1(G)

x2(2+2) +
∑

uv∈E2(G)

x2(2+3) +
∑

uv∈E3(G)

x3(3+3)

+
∑

uv∈E4(G)

x3(3+4) +
∑

uv∈E5(G)

x4(4+4)

= | E1(G) | x8+ | E2(G) | x10+ | E3(G) | x18+ | E4(G) | x28

+ | E5(G) | x32

= 2x8 + 12x12 + (6p+ 1)x18 + (12p+ 10)x21 + (70p− 37)x32.

(3)

M5(G, x) =
∑

uv∈E(G)

xdv(du+dv)

=
∑

uv∈E1(G)

x2(2+2) +
∑

uv∈E2(G)

x3(3+2) +
∑

uv∈E3(G)

x3(3+3)

+
∑

uv∈E4(G)

x4(4+3) +
∑

uv∈E5(G)

x4(4+4)

= | E1(G) | x8+ | E2(G) | x15+ | E3(G) | x18+ | E4(G) | x28

+ | E5(G) | x32

= 2x8 + 12x15 + (6p+ 1)x18 + (12p+ 10)x28 + (70p− 37)x32.

(4)

Ma,b(G, x) =
∑

uv∈E(G)

xadu+bdv

=
∑

uv∈E1(G)

x2a+2b +
∑

uv∈E2(G)

x2a+3b +
∑

uv∈E3(G)

x3a+3b

+
∑

uv∈E4(G)

x3a+4b +
∑

uv∈E5(G)

x4a+4b

= | E1(G) | x2(a+b)+ | E2(G) | x2a+3b+ | E3(G) |3(a+b)

+ | E4(G) | x3a+4b+ | E5(G) | x4(a+b)

= 2x2(a+b) + 12x2a+3b + (6p+ 1)x3(a+b) + (12p+ 10)x3a+4b

+(70p− 37)x4(a+b).

(5)

M ′
a,b(G, x) =

∑

uv∈E(G)

x(du+a)(dv+b)
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= | E1(G) | x(a+2)(b+2)+ | E2(G) | x(a+2)(b+3)

+ | E3(G) | x(a+3)(b+3)+ | E4(G) | x(a+3)(b+4)

+ | E5(G) | x(a+4)(b+4)

= 2x(a+2)(b+2) + 12x(a+2)(b+3) + (6p+ 1)x(a+3)(b+3)

+(12p+ 10)x(a+3)(b+4) + (70p− 37)x(a+4)(b+4).

�

Theorem 3.2. For every p ≥ 1 and q = 2 consider G be the the graph of

HAC5C6C7[p, q] nanotube. Then

(1) ReZG1(G) = 46p,
(2) ReZG1(G) = 1187

7 p+ 2727
70 ,

(3) ReZG1(G) = 2(5146p− 1725).

Proof. From the edge partition of line graph of HAC5C6C7[p, q] nanotube given
in Theorem 3.1, we have

(1)

ReZG1(G) =
∑

uv∈E(G)

du + dv

dudv

=
∑

uv∈E1(G)

du + dv

dudv
+

∑

uv∈E2(G)

du + dv

dudv
+

∑

uv∈E3(G)

du + dv

dudv

+
∑

uv∈E4(G)

du + dv

dudv
+

∑

uv∈E5(G)

du + dv

dudv

= | E1(G) | + | E2(G) |
5

6
+ | E3(G) |

6

9
+ | E4(G) |

7

12

+ | E5(G) |
8

16

= 2 + (12)
5

6
+ (6p+ 1)

6

9
+ (12p+ 10)

7

12
+ (70p+ 37)

8

16
= 46p.

(2)

ReZG2(G) =
∑

uv∈E(G)

du.dv

du + dv

=
∑

uv∈E1(G)

du.dv

du + dv
+

∑

uv∈E2(G)

du.dv

du + dv
+

∑

uv∈E3(G)

du.dv

du + dv

+
∑

uv∈E4(G)

du.dv

du + dv
+

∑

uv∈E5(G)

du.dv

du + dv

= | E1(G) | + | E2(G) |
6

5
+ | E3(G) |

9

6
+ | E4(G) |

12

7
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+ | E5(G) |
16

8

= 2 + (12)
6

5
+ (6p+ 1)

9

6
+ (12p+ 10)

12

7
+ (70p+ 37)

16

8

=
1187

7
p+

2727

70
.

(3)

ReZG2(G) =
∑

uv∈E(G)

(du.dv)(du + dv)

=
∑

uv∈E1(G)

(du.dv)(du + dv) +
∑

uv∈E2(G)

(du.dv)(du + dv)

+
∑

uv∈E3(G)

(du.dv)(du + dv) +
∑

uv∈E4(G)

(du.dv)(du + dv)

+
∑

uv∈E5(G)

(du.dv)(du + dv)

= 16 | E1(G) | +30 | E2(G) | +54 | E3(G) | +84 | E4(G) |

+128 | E5(G) |

= 32 + 30(12) + 54(6p+ 1) + 84(12p+ 10) + 128(70p+ 37)

= 2(5146p− 1725).

�
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