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Abstract. Let G be connected graph with vertex V (G) and edge set
E(G). The first and second K-Banhatti indices of G are defined as B1(G) =∑

ue

[dG(u) + dG(e)] and B2(G) =
∑

ue

[dG(u)dG(e)] ,where ue means that the

vertex u and edge e are incident in G. The first and second K-hyper

Banhatti indices of G are defined as HB1(G) =
∑

ue

[dG(u) + dG(e)]2 and

HB2(G) =
∑

ue

[dG(u)dG(e)]2. In this paper, we compute the first and

second K-Banhatti and K-hyper Banhatti indices of Dominating David
Derived networks.
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1. Introduction

Chemical graph theory is a branch of graph theory in which a chemical compound
is represented by simple graph called molecular graph in which vertices are atoms
of compound and edges are the atomic bounds. A graph is connected if there
is atleast one connection between its vertices. Throughout this paper we take
G a connected graph. If a graph does not contain any loop or multiple edges
then it is called a network. Between two vertices u and v, the distance is the
shortest path between them and is denoted by in graph G. For a vertex v of
G the degree is number of vertices attached with it. The edge connecting the
vertices u and v will be denoted by uv. Let dG(e) denote the degree of an edge e
in G, which is defined by dG(e) = dG(u)+dG(v)−2 with e = uv. The degree and
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valence in chemistry are closely related with each other. We refer the book [1]
for more details. Now a day another emerging field is Cheminformatics, which
helps to predict biological activities with the relationship of Structure-property
and quantitative structure-activity. Topological indices and physico-chemical
properties are used in prediction of bioactivity if underlined compounds are
used in these studies [2, 3].
A number that describe the topology of a graph is called topological index. In
1947, the first and most studied topological index was introduced by Weiner [4].
More details about this index can be found in [5, 6]. In 1975, Milan Randić
introduced the Randić index [7].
Bollobas et al. [8] and Amic et al. [9] in 1998, working independently defined
the generalized Randić index. This index was studied by both mathematicians
and chemists [10]. For details about topological indices, we refer [11, 12].
The first and second K-Banhatti indices of G are defined as:

B1(G) =
∑

ue

[dG(u) + dG(e)]

and

B2(G) =
∑

ue

[dG(u)× dG(e)],

where ue means that the vertex u and edge e are incident in G. The first and
second K-hyper Banhatti indices of G are defined as:

HB1(G) =
∑

ue

[dG(u) + dG(e)]
2

and

HB2(G) =
∑

ue

[dG(u)× dG(e)]
2.

We refer [13] for details about these indices.
The David derived and dominating David derived network of dimension n can
be constructed as follows [14]: consider an n dimensional star of David network,
insert a new vertex on each edge and split it into two parts, we will get David
derived network DD(n) of dimension n.

Figure 1. Dominating David derived network of the first type D1(2)

The dominating David derived network of the first type of dimension n which
can be obtained by connecting vertices of degree 2 of DDD(n) by an edge that
are not in the boundary and is denoted by D1(n) [14].
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The dominating David derived network of the second type of dimension n can be
obtained by subdividing the new edges in D1(n) [14] and is denoted by D1(2).

Figure 2. Dominating David derived network of the second type D2(2)

The dominating David derived network of the second type of dimension n de-
noted by D3(n) can be obtained from D1(n) by introducing a parallel path of
length 2 between the vertices of degree two that are not in the boundary [14, 15].

Figure 3. Dominating David derived network of the third type D3(2)

In this article, we compute first and second K-Banhatti index and first and
second hyper K-Banhatti index of Dominating David derived networks of first,
second and third type. Throughout this paper Em,n = {e = uv ∈ E(G); du =
m, dv = n} and |Em,n(G)| is the number of elements in Em,n(G).

2. Main Results

In this section, we present our main results.

Theorem 2.1. Let G = D1(n) be the dominating David derived network of 1st

type. Then the first and the second K-Banhatti indices of D1(n) are

B1[D1(n)] = 1485n2 + 1624n− 1002,

B2[D1(n)] = 3204n2 + 764n− 3292.

Proof. Let G = D1(n) be the dominating David derived network of 1st type.
From Figure 1, the edge partition of dominating David derived network of 1st

type D1(n) based on degrees of end vertices of each edge is give in Table 1. First
K-Banhatti index of D1(n) is calculated as

B1[D1(n)] =
∑

ue

[dG(u) + dG(e)]

=
∑

ue∈E2,2

[(dG(u) + dG(e)) + (dG(v) + dG(e))]
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Table 1. Edge partition of Dominating David derived network
of first type

(du, dv); e = uv ∈ E(G) Number of edges
Degree of Edges
dG(e) = dG(u) + dG(v) − 2

(2, 2) 4n 2
(2, 3) 4n− 4 3
(2, 4) 28n− 16 4
(3, 3) 9n2 − 13n+ 24 4
(3, 4) 36n2 − 56n+ 24 5
(4, 4) 36n2 − 56n+ 20 6

+
∑

ue∈E2,3

[(dG(u) + dG(e)) + (dG(v) + dG(e))]

+
∑

ue∈E2,4

[(dG(u) + dG(e)) + (dG(v) + dG(e))]

+
∑

ue∈E3,3

[(dG(u) + dG(e)) + (dG(v) + dG(e))]

+
∑

ue∈E3,4

[(dG(u) + dG(e)) + (dG(v) + dG(e))]

+
∑

ue∈E4,4

[(dG(u) + dG(e)) + (dG(v) + dG(e))]

= 4n[(2 + 2) + (2 + 2)] + (4n− 4)[(2 + 3) + (3 + 3)]

+(28n− 16)[(2 + 4) + (4 + 4)]

+(9n2 − 13n+ 24)[(3 + 4) + (3 + 4)]

+(36n2 − 56n+ 24)[(3 + 5) + (4 + 5)]

+(36n2 − 56n+ 20)[(4 + 6) + (4 + 6)]

= 1458n2 + 1624n− 1002.

Second K-Banhatti index of D1(n) is calculated as

B2[D1(n)] =
∑

ue

[dG(u)dG(v)]

=
∑

ue∈E2,2

[(dG(u)dG(e)) + (dG(v)dG(e))]

+
∑

ue∈E2,3

[(dG(u)dG(e)) + (dG(v)dG(e))]

+
∑

ue∈E2,4

[(dG(u)dG(e)) + (dG(v)dG(e))]
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+
∑

ue∈E3,3

[(dG(u)dG(e)) + (dG(v)dG(e))]

+
∑

ue∈E3,4

[(dG(u)dG(e)) + (dG(v)dG(e))]

+
∑

ue∈E4,4

[(dG(u)dG(e)) + (dG(v)dG(e))]

= 4n[(2 + 2) + (2.2)] + (4n− 4)[(2 + 3) + (3.3)]

+(28n− 16)[(2.4) + (4.4)]

+(9n2 − 13n+ 24)[(3.4) + (4.4)]

+(36n2 − 56n+ 24)[(3.5) + (4.5)]

+(36n2 − 56n+ 20)[(4.6) + (4.6)]

= 3204n2 + 764n− 3292.

�

Theorem 2.2. Let G = D1(n) be the dominating David derived network of 1st

type. Then the first and the second K-hyper Banhatti indices of D1(n) are

HB1[D1(n)] = 13302n2 − 16623n+ 6146,

HB2[D1(n)] = 66564n2 − 89092n+ 33892.

Proof. Let G = D1(n) be the dominating David derived network of 1st type.
Then first K-hyper Banhatti index of D1(n) is calculated as

HB1[D1(n)] =
∑

ue

[dG(u) + dG(v)]
2

=
∑

ue∈E2,2

[(dG(u) + dG(e))
2 + (dG(v) + dG(e))

2]

+
∑

ue∈E2,3

[(dG(u) + dG(e))
2 + (dG(v) + dG(e))

2]

+
∑

ue∈E2,4

[(dG(u) + dG(e))
2 + (dG(v) + dG(e))

2]

+
∑

ue∈E3,3

[(dG(u) + dG(e))
2 + (dG(v) + dG(e))

2]

+
∑

ue∈E3,4

[(dG(u) + dG(e))
2 + (dG(v) + dG(e))

2]

+
∑

ue∈E4,4

[(dG(u) + dG(e))
2 + (dG(v) + dG(e))

2]

= 4n[(2 + 2)2 + (2 + 2)2] + (4n− 4)[(2 + 3)2 + (3 + 3)2]

+(28n− 16)[(2 + 4)2 + (4 + 4)2]
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+(9n2 − 13n+ 24)[(3 + 4)2 + (3 + 4)2]

+(36n2 − 56n+ 24)[(3 + 5)2 + (4 + 5)2]

+(36n2 − 56n+ 20)[(4 + 6)2 + (4 + 6)2]

= 13302n2 − 16623n+ 6146.

Second K-hyper Banhatti index of D1(n) is calculated as

HB2[D1(n)] =
∑

ue

[dG(u)dG(v)]
2

=
∑

ue∈E2,2

[(dG(u)dG(e))
2 + (dG(v)dG(e))

2]

+
∑

ue∈E2,3

[(dG(u)dG(e))
2 + (dG(v)dG(e))

2]

+
∑

ue∈E2,4

[(dG(u)dG(e))
2 + (dG(v)dG(e))

2]

+
∑

ue∈E3,3

[(dG(u)dG(e))
2 + (dG(v)dG(e))

2]

+
∑

ue∈E3,4

[(dG(u)dG(e))
2 + (dG(v)dG(e))

2]

+
∑

ue∈E4,4

[(dG(u)dG(e))
2 + (dG(v)dG(e))

2]

= 4n[42 + 42] + (4n− 4)[62 + 92]

+(28n− 16)[82 + 162]

+(9n2 − 13n+ 24)[122 + 122]

+(36n2 − 56n+ 24)[152 + 202]

+(36n2 − 56n+ 20)[242 + 242]

= 66564n2 − 89092n+ 33892.

�

Theorem 2.3. Let G = D2(n) be the dominating David derived network of 2nd

type. Then the first and the second K-Banhatti indices of D2(n) are

B1[D2(n)] = 1530n2 − 1810n+ 650,

B2[D2(n)] = 32584n2 − 4127n+ 1506.

Proof. Let G = D2(n) be the dominating David derived network of 2nd type.
Table 2 shows the edge partition of dominating David derived network of 2nd

type D2(n) based on degrees of end vertices of each edge
First K-Banhatti index of D2(n) is calculated as

B1[D2(n)] =
∑

ue

[dG(u) + dG(v)]



K-Banhatti and K-hyper Banhatti indices of dominating David Derived network 19

Table 2. Edge partition of Dominating David Derived Net-
work of second type

(du, dv); e = uv ∈ E(G) Number of edges
Degree of Edges
dG(e) = dG(u) + dG(v) − 2

(2, 2) 4n 2
(2, 3) 18n2 − 22n+ 6 3
(2, 4) 28n− 16 4
(3, 4) 36n6 − 56n+ 24 5
(4,4) 36n6 − 56n+ 20 6

=
∑

ue∈E2,2

[(dG(u) + dG(e)) + (dG(v) + dG(e))]

+
∑

ue∈E2,3

[(dG(u) + dG(e)) + (dG(v) + dG(e))]

+
∑

ue∈E2,4

[(dG(u) + dG(e)) + (dG(v) + dG(e))]

+
∑

ue∈E3,4

[(dG(u) + dG(e)) + (dG(v) + dG(e))]

+
∑

ue∈E4,4

[(dG(u) + dG(e)) + (dG(v) + dG(e))]

= 4n[(2 + 2) + (2 + 2)] + (18n2 − 22n+ 6)[(2 + 3) + (3 + 3)]

+(28n− 16)[(2 + 4) + (4 + 4)]

+(36n6 − 56n+ 24)[(3 + 5) + (4 + 5)]

+(36n6 − 56n+ 20)[(4 + 6) + (4 + 6)]

= 1530n2 − 1810n+ 650.

Second K-Banhatti index of D2(n) is calculated as

B1[D2(n)] =
∑

ue

[dG(u)dG(v)]

=
∑

ue∈E2,2

[(dG(u)dG(e)) + (dG(v)dG(e))]

+
∑

ue∈E2,3

[(dG(u)dG(e)) + (dG(v)dG(e))]

+
∑

ue∈E2,4

[(dG(u)dG(e)) + (dG(v)dG(e))]

+
∑

ue∈E3,4

[(dG(u)dG(e)) + (dG(v)dG(e))]
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+
∑

ue∈E4,4

[(dG(u)dG(e)) + (dG(v)dG(e))]

= 4n[(2.2) + (2.2)] + (18n2 − 22n+ 6)[(2.3) + (3.3)]

+(28n− 16)[(2.4) + (4.4)]

+(36n6 − 56n+ 24)[(3.5) + (4.5)]

+(36n6 − 56n+ 20)[(4.6) + (4.6)]

= 32584n2 − 4127n+ 1506.

�

Theorem 2.4. Let G = D2(n) be the dominating David derived network of 2nd

type. Then the first and the second K-hyper Banhatti indices of D2(n) are

HB1[D1(n)] = 1351n2 − 1693n+ 6246,

HB2[D1(n)] = 22606n2 − 28486n+ 10582.

Proof. Let G = D2(n) be the dominating David derived network of 2nd type.
First K-hyper Banhatti index of D2(n) is calculated as

HB1[D2(n)] =
∑

ue

[dG(u) + dG(v)]
2

=
∑

ue∈E2,2

[(dG(u) + dG(e))
2 + (dG(v) + dG(e))

2]

+
∑

ue∈E2,3

[(dG(u) + dG(e))
2 + (dG(v) + dG(e))

2]

+
∑

ue∈E2,4

[(dG(u) + dG(e))
2 + (dG(v) + dG(e))

2]

+
∑

ue∈E3,4

[(dG(u) + dG(e))
2 + (dG(v) + dG(e))

2]

+
∑

ue∈E4,4

[(dG(u) + dG(e))
2 + (dG(v) + dG(e))

2]

= 4n[(2 + 2)2 + (2 + 2)2] + (18n2 − 22n+ 6)[(2 + 3)2 + (3 + 3)2]

+(28n− 16)[(2 + 4)2 + (4 + 4)2]

+(36n6 − 56n+ 24)[(3 + 5)2 + (4 + 5)2]

+(36n6 − 56n+ 20)[(4 + 6)2 + (4 + 6)2]

= 1351n2 − 1693n+ 6246.

Second K-hyper Banhatti index of D2(n) is calculated as

HB2[D2(n)] =
∑

ue

[dG(u)dG(v)]
2
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=
∑

ue∈E2,2

[(dG(u)dG(e))
2 + (dG(v)dG(e))

2]

+
∑

ue∈E2,3

[(dG(u)dG(e))
2 + (dG(v)dG(e))

2]

+
∑

ue∈E2,4

[(dG(u)dG(e))
2 + (dG(v)dG(e))

2]

+
∑

ue∈E3,4

[(dG(u)dG(e))
2 + (dG(v)dG(e))

2]

+
∑

ue∈E4,4

[(dG(u)dG(e)
2) + (dG(v)dG(e))

2]

= 4n[(2.2)2 + (2.2)2] + (18n2 − 22n+ 6)[(2.3)2 + (3.3)2]

+(28n− 16)[(2.4)2 + (4.4)2]

+(36n6 − 56n+ 24)[(3.5)2 + (4.5)2]

+(36n6 − 56n+ 20)[(4.6)2 + (4.6)2]

= 22606n2 − 28486n+ 10582.

�

Theorem 2.5. Let G = D3(n) be the dominating David derived network of 3rd

type. Then the first and the second K-Banhatti indices of D3(n) are

B1[D3(n)] = 1944n2 − 2128n+ 600,

B2[D3(n)] = 4320n2 − 8224n+ 2112.

Proof. Let G = D3(n) be the dominating David derived network of 3rd type.
Table 3 shows the edge partition of dominating David derived network of 3rd

type D3(n) based on degrees of end vertices of each edge. First K-Banhatti

Table 3. Edge partition of Dominating David derived network
of third type

(du, dv); e = uv ∈ E(G) Number of edges
Degree of Edges
dG(e) = dG(u) + dG(v)− 2

(2, 2) 4n 2
(2, 4) 36n2 − 20n 4
(4, 4) 72n2 − 108n+ 44 6

index of D3(n) is calculated as

B1[D3(n)] =
∑

ue

[dG(u) + dG(v)]

=
∑

ue∈E2,2

[(dG(u) + dG(e)) + (dG(v) + dG(e))]
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+
∑

ue∈E2,4

[(dG(u) + dG(e)) + (dG(v) + dG(e))]

+
∑

ue∈E4,4

[(dG(u) + dG(e)) + (dG(v) + dG(e))]

= 4n[(2 + 2) + (2 + 2)] + (36n2 − 20n)[(2 + 4) + (4 + 4)]

+(72n2 − 108n+ 44)[(2 + 6) + (4 + 6)]

= 1944n2 − 2128n+ 600.

Second K-Banhatti index is calculated as

B2[D3(n)] =
∑

ue

[dG(u) + dG(v)]

=
∑

ue∈E2,2

[(dG(u)dG(e)) + (dG(v)dG(e))]

+
∑

ue∈E2,4

[(dG(u)dG(e)) + (dG(v)dG(e))]

+
∑

ue∈E4,4

[(dG(u)dG(e)) + (dG(v)dG(e))]

= 4n[(2.2) + (2.2)] + (36n2 − 20n)[(2.4) + (4.4)]

+(72n2 − 108n+ 44)[(2.6) + (4.6)]

= 4320n2 − 8224n+ 2112.

�

Theorem 2.6. Let G = D3(n) be the dominating David derived network of 3rd

type. Then the first and the second K-hyper Banhatti indices of D3(n) are

HB1[D3(n)] = 18000n2 − 23472n+ 8800,

HB2[D3(n)] = 94464n2 − 130688n+ 50688.

Proof. Let G = D3(n) be the dominating David derived network of 3rd type.
Then the first K-hyper Banhatti index is calculated as

HB1[D3(n)] =
∑

ue

[dG(u) + dG(v)]
2

=
∑

ue∈E2,2

[(dG(u) + dG(e))
2 + (dG(v) + dG(e))

2]

+
∑

ue∈E2,4

[(dG(u) + dG(e))
2 + (dG(v) + dG(e))

2]

+
∑

ue∈E4,4

[(dG(u) + dG(e))
2 + (dG(v) + dG(e))

2]

= 4n[(2 + 2)2 + (2 + 2)2] + (36n2 − 20n)[(2 + 4)2 + (4 + 4)2]

+(72n2 − 108n+ 44)[(2 + 6)2 + (4 + 6)2]
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= 18000n2 − 23472n+ 8800.

Second K-hyper Banhatti index of D3(n) is calculated as

HB1[D3(n)] =
∑

ue

[dG(u) + dG(v)]
2

=
∑

ue∈E2,2

[(dG(u)dG(e))
2 + (dG(v)dG(e))

2]

+
∑

ue∈E2,4

[(dG(u)dG(e))
2 + (dG(v)dG(e))

2]

+
∑

ue∈E4,4

[(dG(u)dG(e))
2 + (dG(v)dG(e))

2]

= 4n[(2.2)2 + (2.2)2] + (36n2 − 20n)[(2.4)2 + (4.4)2]

+(72n2 − 108n+ 44)[(2.6)2 + (4.6)2]

= 94464n2 − 130688n+ 50688.

�

3. Conclusion

In the present report, we have computed first and second K-Banhatti and K-
hyer Banhatti indices of Dominating David derived networks of first, second and
third type.
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