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MHD COUETTE AND POISEUILLE FLOW OF A THIRD

GRADE FLUID

MUHAMMAD MOHSIN KAMRAN1, IMRAN SIDDIQUE

Abstract. The main theme of this work is to apply the Adomian de-
composition method (ADM) to solve the non-linear differential equations
which arise in fluid mechanics. we study some steady unidirectional mag-

netohydrodynamics (MHD) flow problems namely, Couette flow, Poiseuille
flow and Generalized-Couette flow of a third grade non-Newtonian fluid be-
tween two horizontal infinite parallel plates in the presence of a transversal
magnetic field. Moreover, the MHD solutions for a Newtonian fluid, as well

as those corresponding to a third grade fluid are obtained by the limiting
cases of our solutions. Finally, the influence of the pertinent parameters
on the velocity of fluids is also analyzed by graphical illustrations.
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1. Introduction

Due to diversity of fluids in nature, a lot of models have been proposed to de-
scribe their flow behavior in different circumstances. A wide range of commonly
encountered fluids includes Newtonian fluids. But a large number of fluids ap-
pearing in industry differ greatly from Newtonian fluids in their rheology. New-
tonian fluids are recognized by the linear relationship between stress and the rate
of strain. In many existing fluids with complex molecular structure, the relation
between stress and strain is found to be non-linear. Therefore, the Newtonian
fluids model can not be used to predict, analyze and stimulate the behavior

Received 12 October 2017. Revised 12 December 2017.
1 Corresponding Muhammad Mohsin Kamran

c⃝ 2017 Muhammad Mohsin Kamran, Imran Siddique. This is an open access article distributed

under the Creative Commons Attribution License, which permits unrestricted use, distribution, and

reproduction in any medium, provided the original work is properly cited.

1



2 M. M. Kamran, I. Siddique

of many viscoelastic fluids. Hence, in practical situations and applications in
industry, it is necessary to study of the flow behavior of non-Newtonian fluids.
The inadequacy of the classical Navier-Stokes theory to describes the behavior of
the rheologically complex fluids such as polymer solutions, heavy oils, blood and
many emulsions, has led to the development of models of non-Newtonian fluids.
In particular, many pastes, slurries, synovial, polymer solutions and suspensions
exhibit shear thinning behavior. The non-newtonian fluids are widely used in
chemical engineering, food industry, biological analysis, petroleum industry, and
many other fields. The academic workers and engineers are very much interested
in the geometry of flows of such types of fluids. As compared to Newtonian
fluids, the analysis of the behavior of the motion of such fluids is much more
complicated and not easy to handle because of non-linear relationship between
stress and rate of strain.
In recent years many non-Newtonian models have been proposed. Among these
models, model of ”fluids of differential type,” [1] have received considerable at-
tention. ”Fluid of third grade” is a subclass of of fluids of differential type,
which has been studied successfully in various types of flow situations [2, 3, 4]
and is known to capture the non-Newtonian affects such as shear thinning, shear
thickening as well as normal stress.
Most of the nonlinear differential equations do not have analytical solution. How-
ever researchers used many numerical methods, but these methods require much
time and more efficient computing devices. Semi analytical methods are more
suitable than numerical methods to solve nonlinear non-homogenous partial dif-
ferential equations. The most powerful tool for the calculation of analytical
solutions of the linear or nonlinear partial differential equation is Adomian’s
decomposition method (ADM), a method introduced by Adomian [5, 6]. The
ADM provides analytical solution in the form of an infinite convergent power
series in which each term can be easily determined. The ADM has been suc-
cessfully applied to solve nonlinear differential equations in studying interesting
problems arising in applied sciences and engineering [6, 7]. In 2009 Siddiqui,
et al. [8] studied parallel plate flow of a third grade fluid by means of ADM
and compare the results with num erical schemes. Recently, Siddiquie et al. [9]
compare the ADM and HPM in solving the problem of squeezing flow between
two circular plates. Their comparison shows that the ADM requires more com-
putational efforts than the HPM, but it yields more accurate results than the
HPM.
In the past few years, magnetohydrodynamics (MHD) has gained considerable
importance because of its diverse applications in physics and engineering. In
astrophysical and geophysical applications it is useful to study the stellar and
solar structures solar storms and flares, radio propagation through the ionosphere
etc. In engineering its applications are in MHD generators, MHD pumps and
MHD bearings. The use of a MHD fluid as lubricant is of interest in industrial
applications, because it prevents the unexpected variation of lubricant viscosity
with temperature under certain extreme operating conditions.
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Historically Rossow [10] initiated the boundary layer flow on a semi infinite flat
plate. Since then large amount of literature is developed on this subject. The
recent attempts in this directions are made by Hayat et al. [11, 12, 13], Khan
et al. [14]. S. Islam et al. [15], obtained series solutions for MHD flow between
infinite parallel plates.
The main aim of this work is to study the steady MHD flow of incompressible
third grade non-Newtonian fluid between two parallel plates separated by a finite
gap in the presence of a transversal magnetic field and to study the steady flow of
incompressible third grade non-Newtonian fluid between two coaxial cylinders
of infinite length [16], using the ADM. Siddiqui, et al. [8] solved the three
fundamental problems of plane Couette flow, fully developed plane Poiseuille
flow and plane Couette-Poiseuille flow by using the ADM. We extend the work
of Siddiqui [8] to the case of a MHD fluid. We apply the ADM to solve the
problems modeling the MHD flow of a third grade fluid between two parallel
plats separated by a finite gab in the presence of a transversal magnetic field.
Specially, we study the three fundamental problems namely, plane Couette flow
(flow due to motion of either of the plates), Poiseulle flow (flow due to application
of external pressure gradient, while both plates are stationary), and Generalized-
Couette flow (flow due to motion of one plate as well as applied external pressure
gradient). Also, the solution of ordinary third grade fluid are recovered [8] as
limiting cases of our obtained solutions. At the end of this chapter, the influences
of the parameters and other material constants on the velocity field are analyzed
graphically.

2. Mathematical formulation of the problem

The basic equations which govern the incompressible unidirectional magnetohy-
drodynamic flow are:

∇ ·V = 0, (1)

ρ

[
∂V

∂t
+ (V · ∇)V

]
= ρf+∇ ·T+ J×B, (2)

where, J is electric current density and B is the total magnetic field, B = B0+b,
B0 represents the imposed magnetic field and b denotes the induced magnetic
field. In the absence of displacement currents, the Ohm’s Law and Maxwell’s
equation [4] are

J = σ[E+V×B],

divB = 0, ∇×B = µmJ, curlE = −∂B

∂t
,

in which σ is the electrical conductivity, µm is the magnetic permeability.
The following assumptions are made in order to lead our discussion,

(1) The density ρ, magnetic permeability µm and electrical conductivity σ
are assumed to be constant throughout the flow field region.

(2) The electrical conductivity σ of the fluid considers being finite.
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(3) The total magnetic field B is perpendicular to the velocity field V and
the induced magnetic field b is negligible compared with the applied
magnetic field B0 so that the magnetic Reynolds number is small [6].

(4) We assume a situation where no energy is added or extracted from the
fluid by the electric field, which implies that there is no electric field
present in the fluid flow region.

Under these assumptions, the magnetohydrodynamic force involved in (2) takes
the following form

J×B = σ[B0(V ·B0)−V(B0 ·B0)] = −σB2
0V. (3)

For incompressible third grade fluid, the constitutive equation for extra stress
tensor is given in [17]
For the problem under consideration we assume a velocity field for one dimen-
sional flow and stress tensor of the form

V = (u(y), 0, 0), S = S(y), (4)

By using Eq. (4), the continuity equation (1) is identically satisfied and the
equation of motion (2), in the absence of gravitational effect becomes

− ∂p

∂x
+ µ

∂2u

∂y2
+ 6(β2 + β3)

(
∂u

∂y

)2
∂2u

∂y2
− σB2

0u = 0, (5)

− ∂p

∂y
+

∂

∂y

{
(2α1 + α2)

(
∂u

∂y

)2}
= 0. (6)

∂p

∂z
= 0. (7)

Introducing the generalized pressure p̂

p̂ = −p(x, y) + (2α1 + α2)

(
∂u

∂y

)2

(8)

and substituting p̂ in Eq. (ref6), we find that

dp̂

dy
= 0, (9)

showing that p̂ = p̂(x). Consequently, Eq.(5) reduces to the single equation

− dp̂

dx
+ µ

d2u

dy2
+ 6β

(
du

dy

)2
d2u

dy2
− σB2

0u = 0, (10)

where for simplicity we have introduced β = β2 + β3.
Eq. (10) is a second-order nonlinear ordinary differential equation. This equa-
tions governs the unidirectional flow of a non-Newtonian third grade fluid be-
tween two infinite parallel plates.
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3. Solution of the problem using Adomian Decomposition Method

In this section, we use the ADM to solve Eq. (10) with boundary conditions
corresponding to different problems of Couette flow.

3.1. Plane Couette Flow. We consider the steady laminar flow of an in-
compressible third grade fluid between two infinite parallel plate at y = 0, and
y = h. The plates are separated by distance h. The upper plate moves parallel to
itself with uniform velocity U, while the lower one is at rest. The plates are non
conducting and a transversal magmatic field is applied in the vertical upward
direction. Let x-axis be taken along the direction of flow and y in the direction
normal to the flow. The pressure p is constant and fluid properties vary along
y-axis only. Thus, governing equation (10) for such a flow, in the absence of
pressure gradient, reduces to

d2u

dy2
+

6β

µ

(
du

dy

)2
d2u

dy2
−m2u = 0, (11)

where, m2 = σB2
0/µ,

subject to the boundary conditions

u(y) = 0 at y = 0,

u(y) = U at y = h. (12)

Introducing the following non-dimensional parameters

u∗ =
u

U
, y∗ =

y

h
, β∗ =

β

µh2/U2
, m∗2 =

σB2
0

µ/h2
. (13)

Dropping the ′∗′ the boundary value problem (1) becomes

d2u

dy2
+ 6β

(
du

dy

)2
d2u

dy2
−m2u = 0, (14)

with the boundary conditions

u(y) = 0 at y = 0,

u(y) = 1 at y = 1. (15)

In the operator form, Eq. (4) becomes

Lu = −6β

(
du

dy

)2
d2u

dy2
+m2u, (16)

where L = d2/dy2 and inverse operator is given by L̃−1 =
∫ ∫

(·)dydy.
Applying L̃−1 on both sides of Eq. (6), we have

L̃−1Lu = −L̃−1

[
6β

(
du

dy

)2
d2u

dy2

]
+ L̃−1[m2u], (17)

u(y) = Ay +B − 6βL̃−1

[(
du

dy

)2
d2u

dy2

]
+ L̃−1[m2u], (18)
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where A and B are constants of integration.
To solve Eq. (8) by the ADM, we let

u =
∞∑

n=0

un(y), (19)

Nu =
∞∑

n=0

An, (20)

where

Nu =

(
du

dy

)2
d2u

dy2
(21)

In view of Eqs. (9) and (10), Eq. (8) becomes

∞∑
n=0

un(y) = Ay +B − 6βL̃−1
∞∑

n=0

An +m2L̃−1
∞∑

n=0

un(y). (22)

We identify the zeroth component as

u0(y) = Ay +B, (23)

and the remaining components as the recurrence relation

un+1(y) = −6βL̃−1[An] +m2L̃−1[un(y)], n ≥ 0, (24)

where An’s are the Adomian polynomials that represent the non linear term in
(11). The first few Adomian polynomials as follows:

A0 =

(
du0

dy

)2
d2u0

dy2

A1 = 2
du0

dy

du1

dy

d2u0

dy2
+

(
du0

dy

)2
d2u1

dy2

A2 = 2
du0

dy

d2u0

dy2
du2

dy
+

(
du1

dy

)2
d2u0

dy2
+ 2

du0

dy

du1

dy

d2u1

dy2
+

(
du0

dy

)2
d2u2

dy2
(25)

...

Using expression (9) in (5), we have the following boundary conditions

u0(y) = 0 at y = 0,

u0(y) = 1 at y = 1, (26)

and

un(y) = 0 at y = 0,

un(y) = 0 at y = 1, n ≥ 1. (27)

From Eq. (23) and boundary conditions (26), we obtain the zeroth-order solution
as

u0(y) = y, (28)
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From (24), (25)1 and (27), we have the first-order problem as

u1(y) = −6βL̃−1[A0] +m2L̃−1[u0], (29)

subject to the boundary conditions

u1(y) = 0 at y = 0,

u1(y) = 0 at y = 1. (30)

Solving (29) and (30), the first-order solution is given by

u1(y) =
m2

6
[y3 − y]. (31)

In view of (24), (25)1,2 and (27), the second-order problem is

u2(y) = −6βL̃−1[A1] +m2L̃−1[u1], (32)

subject to boundary conditions

u2(y) = 0 at y = 0,

u2(y) = 0 at y = 1. (33)

The corresponding solution is

u2(y) = −βm2[y3 − y] +
m4

6

[
y5

20
− y3

6
+

7y

60

]
. (34)

Similarly, third-order problem is

u3(y) = −6βL̃−1[A2] +m2L̃−1[u2], (35)

with boundary conditions

u3(y) = 0 at y = 0,

u3(y) = 0 at y = 1. (36)

The corresponding third-order solution is given by

u3(y) = 6m2β2[y3−y]−βm4

[
2y5

5
− 2y3

3
+

4y

15

]
+

m6

6

[
y7

840
− y5

120
+

7y3

360
− 31y

2520

]
.

(37)
Inserting (18), (21), (24) and (27) in (9), the solution of differential equation (1)
takes the form

u(y) =

∞∑
n=0

un(y) = u0(y) + u1(y) + u2(y) + u3(y) + · · ·

or, equivalently

u(y) = y +
m2

6
[y3 − y]−βm2[y3 − y] + 6β2m2[y3 − y]

−βm4

[
2y5

5
− 2y3

3
+

4y

15

]
+

m4

6

[
y5

20
− y3

6
+

7y

60

]
+

m6

6

[
y7

840
− y5

120
+

7y3

360
− 31y

2520

]
.

(38)
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It represents the velocity field for the MHD flow of a non-Newtonian third grade
fluid between two parallel plates. By taking m = 0 in Eq. (38) we recover the
same solution as obtained in [8].

3.2. Fully developed plane Poiseuille Flow. For fully developed Poiseuille
Flow, we consider the steady laminar flow of third grade fluid between two
stationary infinite parallel plats under constant pressure gradient. Let the sep-
aration between two plates is 2h and the plates are at y = h and y = −h. Thus,
the governing equation (10) in the presence of the constant pressure gradient
and transversal magnetic field takes the form

d2u

dy2
+

6β

µ

(
du

dy

)2
d2u

dy2

2

−m2u =
1

µ

dp̂

dx
, (39)

with the boundary conditions

u(y) = 0 at y = h,

u(y) = 0 at y = −h, (40)

Introducing the non-dimensional parameters

u∗ =
u

U
, y∗ =

y

h
, β∗ =

βU2

µh2
, x∗ =

x

h
, p∗ =

p̂

µU/h
, m∗2 =

σB2
0

µ/h2
, (41)

Eqs. (39) and (40) after dropping ′∗′ take the following form:

d2u

dy2
+ 6β

(
du

dy

)2
d2u

dy2
−m2u =

dp

dx
, (42)

u(y) = 0 at y = 1,

u(y) = 0 at y = −1. (43)

Let us apply the ADM to solve the above boundary value problem. Accordingly,
in operator form Eq. (42) becomes

Lu =
dp

dx
− 6β

[(
du

dy

)2
d2u

dy2

]
+ [m2u], (44)

where L = d2/dy2, and Nu = (du/dy)2d2u/dy2 are linear and nonlinear terms
respectively.
Applying the inverse operator L̃−1 =

∫ ∫
(·)dydy on both sides to equation (44),

we get

L̃−1Lu = L̃−1

(
dp

dx

)
− 6βL̃−1

[(
du

dy

)2
d2u

dy2

]
+ L̃−1[m2u]. (45)

In view of Eqs. (9) and (10), Eq. (45) becomes

∞∑
n=0

un(y) = Ay +B + L̃−1

(
dp

dx

)
− 6βL̃−1

∞∑
n=0

An +m2L̃−1
∞∑

n=0

un(y). (46)
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From expression (46), we have the following recurrence relations for zeroth and
higher order solutions respectively

u0(y) = Ay +B + L̃−1

(
dp

dx

)
, (47)

un+1(y) = −6βL̃−1[An] +m2L̃−1[un(y)], n ≥ 0, (48)

Using expression (9), the boundary conditions (43) becomes

un(y) = 0 at y = 1,

un(y) = 0 at y = −1. (49)

From equation (79) and (49), we have the Zeroth-order problem as

u0(y) = Ay +B + L̃−1

(
dp

dx

)
, (50)

with the boundary conditions

u0(y) = 0 at y = 1,

u0(y) = 0 at y = −1. (51)

The corresponding zeroth-order solution is given by

u0(y) =
dp

dx

[
y2

2
− 1

2

]
. (52)

In view of Eqs. (25), (48) and (49), we get following problems of different orders
with corresponding boundary conditions as:
The first-order problem is

u1(y) = −6βL̃−1[A0] +m2L̃−1[u0(y)], (53)

subject to boundary conditions

u1(y) = 0 at y = 1,

u1(y) = 0 at y = −1. (54)

The corresponding solution is

u1(y) = −2β

(
dp

dx

)3[
y4

4
− 1

4

]
+

(
dp

dx

)[
m2

2

(
y4

12
− y2

2
+

5

12

)]
. (55)

The second-order problem is

u2(y) = −6βL̃−1[A1] +m2L̃−1[u1(y)], (56)

with the boundary conditions

u2(y) = 0 at y = 1,

u2(y) = 0 at y = −1. (57)

The corresponding second-order solution is

u2(y) = 3(−2β)2
(
dp

dx

)5[
y6

6
− 1

6

]
+(−2β)

(
dp

dx

)3[
m2

(
11y6

120
− 3y4

8
− y2

8
+

49

120

)]
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+

(
dp

dx

)[
m4

2

(
y6

360
− y4

24
+

5y2

24
− 61

360

)]
. (58)

The third-order problem is

u3(y) = −6βL̃−1[A2] +m2L̃−1[u2(y)], (59)

with the boundary conditions

u3(y) = 0 at y = 1,

u3(y) = 0 at y = −1. (60)

The corresponding third-order solution is given by

u3(y) = 12(−2β)3
(
dp

dx

)7[
y8

8
− 1

8

]
+ 3(−2β)2

(
dp

dx

)5[
m2

(
127y8

1120
− 25y6

60
− y4

16

−y2

12
+

503

1120

)]
+ (−2β)

(
dp

dx

)3[
m4

(
17y8

1120
− 11y6

80
+

y4

3
+

49y2

240
− 93

224

)]

+

(
dp

dx

)[
m6

2

(
y8

20160
− y6

720
+

5y4

288
− 61y2

720
+

277

4032

)]
. (61)

Inserting (52), (55), (58) and (61) in (9) we obtain the fourth order approximate
solution for a fully developed plan poiseuille MHD flow of a non-Newtonian third
grade fluid.

u(y) =
dp

dx

[
y2

2
− 1

2

]
−2β

(
dp

dx

)3[
y4

4
− 1

4

]
+ 3(−2β)2

(
dp

dx

)5[
y6

6
− 1

6

]
+12(−2β)3

(
dp

dx

)7

[
y8

8
− 1

8

]
+

(
dp

dx

)[
m2

2

(
y4

12
− y2

2
+

5

12

)]
+ (−2β)

(
dp

dx

)3[
m2

(
11y6

120
− 3y4

8

−y2

8
+

49

120

)]
+ 3(−2β)2

(
dp

dx

)5[
m2

(
127y8

1120
− 25y6

60
− y4

16
− y2

12
+

503

1120

)]

+

(
dp

dx

)[
m4

2

(
y6

360
− y4

24
+

5y2

24
− 61

360

)]
+ (−2β)

(
dp

dx

)3[
m4

(
17y8

1120
− 11y6

80

+
y4

3
+
49y2

240
− 93

224

)]
+

(
dp

dx

)[
m6

2

(
y8

20160
− y6

720
+
5y4

288
− 61y2

720
+

277

4032

)]
. (62)

By taking m = 0 in the above expression we recover the same solution as in [Eq.
2.2.52, 8]. When we take β = 0 and m = 0 we have the exact solution for the
viscous Newtonian fluid.
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3.3. MHD Generalized-Couette Flow. We now again consider the steady
laminar fully developed flow of a third grade fluid between two infinite horizon-
tal parallel plates at a distance h apart. The plates are non conducting and
a transversal magmatic field is applied in the vertical upward direction. The
motion of the fluid is due to the motion of upper plate of uniform velocity U and
constant pressure gradient along x direction, while the lower plate is at rest. The
resulting differential equation (39) and the corresponding boundary conditions
for this flow are given as respectively

d2u

dy2
+

6β

µ

(
du

dy

)2
d2u

dy2

2

−m2u =
1

µ

dp̂

dx
, (63)

u(y) = 0 at y = 0,

u(y) = U at y = h. (64)

Introducing the non-dimensional parameters (41), Eqs. (63) and (54) becomes

d2u

dy2
+ 6β

(
du

dy

)2
d2u

dy2
−m2u =

dp

dx
, (65)

u(y) = 0 at y = 0,

u(y) = 1 at y = 1. (66)

Follow the same procedure as in previous section, we define linear operator
L = d2/dy2 for Eq. (65) and apply the inverse operator L̃−1 =

∫ ∫
(·)dydy on

both sides to equation (55) we get

u(y) = Ay +B + L̃−1

(
dp

dx

)
− 6βL̃−1

[(
du

dy

)2
d2u

dy2

]
+ L̃−1[m2u], (67)

where A and B are constants of integration.
In view of decomposition series (9) and (10), Eq. (67) gives

∞∑
n=0

un(y) = Ay +B + L̃−1

(
dp

dx

)
− 6βL̃−1

∞∑
n=0

An +m2L̃−1
∞∑

n=0

un(y), (68)

From (68) one obtains the recurrence relations

u0(y) = Ay +B + L̃−1

(
dp

dx

)
, (69)

un+1(y) = −6βL̃−1[An] +m2L̃−1[un(y)], n ≥ 0. (70)

Using decomposition series (9) into (66), we have the following boundary condi-
tions

u0(y) = 0 at y = 0,

u0(y) = 1 at y = 1. (71)

and

un(y) = 0 at y = 0,

un(y) = 0 at y = 1, n ≥ 1. (72)
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From Eq. (69) and boundary conditions (71), we obtain the zeroth-order solution
as

u0(y) = y + α[y2 − y]. (73)

In view of recurrence relations (70) along with the Adomian polynomials (25),
we get the following problems of different orders with corresponding boundary
conditions (72) as:
The first-order problem is

u1(y) = −6βL̃−1[A0] +m2L̃−1[u0], (74)

subject to the boundary conditions

u1(y) = 0 at y = 0,

u1(y) = 0 at y = 1. (75)

Solving (74) and (80), the first-order solution is given by

u1(y) =
−β

4α

[
1 + α(2y − 1)

]4
+ y

[
β

4α
(Ā− B̄)

]
+

(
β

4α
B̄

)
+m2

[
α

(
y4

12
− y3

6
+

y

12

)
+

y3

3
− y

3

]
, (76)

The second-order problem is

u2(y) = −6βL̃−1[A1] +m2L̃−1[u1(y)], (77)

subject to

u2(y) = 0 at y = 0,

u2(y) = 0 at y = 1. (78)

The second-order solution is

u2(y) =
β2

α
[1 + α(2y − 1)]6 −

(
β

2α

)2

(Ā− B̄)[1 + α(2y − 1)]3 −
(

m2β

480α3

)
[1 + α(2y − 1)]6 +

(
m2β

24α

)
[(Ā− B̄)y3] +

(
m2β

8α

)
[B̄y2] + 6m2(−β)

[
y3

6

+
5αy4

12
− αy3

2
+

2α2y5

5
+

2α3y6

15
− 2α3y5

5
+

α2y3

2
+

5α3y4

12
− α3y3

6
− 5α2y4

6

]
+24m2(−αβ)

[
y4

24
+

αy5

15
− αy4

12
− y2

12
+

αy2

8
+

α2y6

45
− α2y5

15
− αy3

18
+

α2y3

36

+
α2y4

24
− α2y2

24

]
+m4

[
y5

120
+

αy6

360
− αy5

120
− y3

36
+

αy3

72

]
+

β2

α
y[(1− α)6 − (1

+α)6] +

(
β

2α

)2

y(Ā− B̄)[(1 + α)3 − (1− α)3] +

(
m2β

480α3

)
y[(1 + α)6

−(1− α)6]− 6m2(−β)y

[
1

6
− α

12
+

9α2

10
− 5α2

6
− α3

60

]
− 24m2(−αβ)
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y

[
−1

24
+

19α

360
− α2

60

]
−m4y

[
−7

360
+

α

120

]
−
(
m2β

8α

)
[B̄y]−

(
m2β

24α

)
y(Ā− B̄)

−
(
β2

α

)
[(1− α)6] +

(
β

2α

)2

(Ā− B̄)(1− α)3 +

(
m2β

480α3

)
(1− α)6. (79)

Summarizing these solutions, we get final form of solution as

u(y) = y + α[y2 − y] +
−β

4α
[1 + α(2y − 1)]4 + y

[
β

4α
(Ā− B̄)

]
+

(
β

4α
B̄

)
+m2

[
α

(
y4

12
− y3

6
+

y

12

)
+

y3

3
− y

3

]
+

β2

α
[1 + α(2y − 1)]6

−
(

β

2α

)2

(Ā−B̄)[1+α(2y−1)]3−
(

m2β

480α3

)
[1+α(2y−1)]6+

(
m2β

24α

)
[(Ā−B̄)y3]

+

(
m2β

8α

)
[B̄y2] + 6m2(−β)[

y3

6
+

5αy4

12
− αy3

2
+

2α2y5

5
+

2α3y6

15
− 2α3y5

5
+

α2y3

2
+

5α3y4

12
− α3y3

6
− 5α2y4

6

]
+24m2(−αβ)[

y4

24
+

αy5

15
− αy4

12
− y2

12
+

αy2

8
+

α2y6

45
− α2y5

15
− αy3

18
+

α2y3

36
+

α2y4

24
− α2y2

24

]
+m4

[
y5

120
+

αy6

360
− αy5

120
− y3

36
+

αy3

72

]
+
β2

α
y[(1− α)6 − (1 + α)6] +

(
β

2α

)2

y(Ā− B̄)[(1 + α)3 − (1− α)3]

+

(
m2β

480α3

)
y[(1+α)6−(1−α)6]−6m2(−β)y

[
1

6
− α

12
+
9α2

10
−5α2

6
−α3

60

]
−24m2(−αβ)

y

[
−1

24
+

19α

360
− α2

60

]
−m4y

[
−7

360
+

α

120

]
−
(
m2β

8α

)
[B̄y]−

(
m2β

24α

)
y(Ā− B̄)

− β2

α
(1− α)6 +

(
β

2α

)2

(Ā− B̄)(1− α)3 +

(
m2β

480α3

)
(1− α)6. (80)

where, α =

(
1
2
dp
dx

)
,

and

Ā =

(
1 + 1

2
dp
dx

)4

, B̄ =

(
1− 1

2
dp
dx

)4

.

By taking m = 0 in the above expression we recover the same solution as ob-
tained in [Eq. 2.2.52, 8]. When we take β = 0 and m = 0 we have the exact
solution for the viscous Newtonian fluid.
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4. Conclusion

This work is mainly concerned with the flows of third grade fluid in Cartesian
and Cylindrical frame. We have discussed the velocity field corresponding to
the steady, incompressible unidirectional flow of the third grade fluid between
to infinite parallel plates under the influence of MHD force term have been
determined by mean of Adomain decomposition method.
After lengthy computations the solution obtained in series form satisfy all the
imposed initial and boundary conditions. Graphically, results shown that by
increasing the strength of magnitude field. Fluid velocity gradually decreases
and by varying values of parameters velocity also varies. By taking m = 0, we
get the similar results as obtained in [7].

5. Graphical Explanation

5.1. Couette Flow.

Figure 1. Profile of the dimensionless velocity for plan Couette flow with
various values of non-Newtonian parameter β and for fixed m = 1.

Figure 2. Profile of the dimensionless velocity for plan Couette flow with
various values of the magnetic parameter for fixed value of β = 2.

Figure 3. Comparison of PM and ADM at β = 2, m = 0.1 and ϵ = 0.001
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Table 1. Comparison of PM and ADM

Y PM ADM
0 −1.0829× 10− 16 0.
0.1 0.0999339 0.07805
0.2 0.199872 0.157431
0.3 0.299818 0.239473
0.4 0.399776 0.325507
0.5 0.49975 0.416863
0.6 0.599744 0.514871
0.7 0.699762 0.62086
0.8 0.799808 0.73616
0.9 0.899886 0.862097
1 1 1

5.2. Fully developed plane Poiseuille Flow.

Figure 4. Profile of the dimensionless velocity u(y) for fully developed
plan-Poiseuille flow with various values of non-Newtonian parameter , for

fixed values of m = 1 and p = 0.1

Figure 5. Profile of the dimensionless velocity u(y) for fully developed
plan-Poiseuille flow with various values of p = 0.1 and for fixed values of

m = 1 and p = 2
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Figure 6. Profile of the dimensionless velocity u(y) for fully developed
plan-Poiseuille flow with various values of the magnetic parameter m for fixed

values β = 2 and p = 0.1

Table 2. Comparison of PM and ADM

Y PM ADM
0 0.049792 0.0488888
0.1 0.0492945 0.0483914
0.2 0.0478019 0.0469001
0.3 0.0453141 0.0444184
0.4 0.0418308 0.0409517
0.5 0.0373517 0.0365076
0.6 0.0318763 0.0310954
0.7 0.0254042 0.0247259
0.8 0.0179346 0.0174114
0.9 0.00946679 0.00916494
1 0 0

Figure 7. Comparison of PM and ADM at β = 2, m = 0.1 and ϵ = 0.001,
p = 0.1
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5.3. MHD Generalized-Couette Flow:

Figure 8. Profile of the dimensionless velocity u(y) for fully developed
plan-Poiseuille flow with various values of the magnetic parameter β for fixed

values m = 0.1 and p = 0.1

Figure 9. Profile of the dimensionless velocity u(y) for generalized Couette
flow with various values of p and for fixed values of m = 1 and p = 2

Figure 10. Profile of the dimensionless velocity u(y) for generalized Couette
flow with various values of the magnetic parameter m , for fixed values of

β = 2 and p = 0.1

Figure 11.Comparison of PM and ADM at β = 2, m = 0.1 and ϵ = 0.001,
p = 0.1
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Table 3. Comparison of PM and ADM

Y PM ADM
0 −1.73599× 10−14 0.
0.1 0.104304 0.048854
0.2 0.207626 0.109698
0.3 0.309974 0.182294
0.4 0.411359 0.266405
0.5 0.511791 0.361799
0.6 0.611281 0.468245
0.7 0.709836 0.585514
0.8 0.807468 0.713378
0.9 0.904186 0.851614
1 1 1
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