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COEFFICIENT ESTIMATES OF SOME CLASSES OF

RATIONAL FUNCTIONS
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Abstract. Let A be the class of analytic and univalent functions in the

open unit disc ∆ normalized such that f(0) = 0 = f ′(0)− 1. In this paper,

for ψ ∈ A of the form z
f(z)

, f(z) = 1 +
∞∑
n=1

anz
n and 0 ≤ α ≤ 1, we in-

troduce and investigate interesting subclasses Hσ(φ), Sσ(α, φ), Mσ(α, φ),
=α(α, φ) and βα(λ, φ) (λ ≥ 0) of analytic and bi-univalent Ma-Minda star-

like and convex functions. Furthermore, we find estimates on the coeffi-

cients |a1| and |a2| for functions in these classess. Several related classes
of functions are also considered.

Mathematics Subject Classification: 30C45.

Key words and phrases: Rational functions; bi-starlike functions; bi-convex

functions; subordination.

1. Introduction

Let A be the class of all analytic functions f in the open unit disk ∆ = {z ∈ C :
|z| < 1} and normalized by the conditions f(0) = 0 and f ′(0) = 1. Also, by ℘
we shall denote the subclass of all functions in A which are univalent in ∆. Let
P denote the class of functions p(z) of the form

p(z) = 1 +

∞∑
n=1

c
n
zn
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which are analytic in ∆ such that

p(0) = 1 and Re {p(z)} > 0 (z ∈ ∆) .

If the functions f and g are analytic in ∆, then f is said to be subordinate to
g, written f(z) ≺ g(z), provided there is an analytic function w(z) defined on
∆ with w(0) = 0 and |w(z)| < 1 so that f(z) = g(w(z)). Furthermore, if the
function g(z) is univalent in 4 then we have the following equivalence (see for
details, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]):

f(z) ≺ g(z)⇔ f(0) = g(0) and f(4) ⊂ g(4).

Some of the important and well-investigated subclasses of the univalent function
class ℘ include (for example) the class S(α) of starlike functions of order α in ∆
and the class C(α) of convex functions of order α in ∆. By definition, we have

S(α) =

{
f : f ∈ ℘ and Re

zf ′(z)

f(z)
> α (z ∈ ∆, 0 ≤ α < 1)

}
(1)

and

C(α) =

{
f : f ∈ ℘ and Re

(
1 +

zf ′′(z)

f ′(z)

)
> α (z ∈ ∆, 0 ≤ α < 1)

}
. (2)

It readily follows from the definitions (1) and (2) that

f(z) ∈ C(α) ⇐⇒ zf ′(z) ∈ S(α). (3)

It is well known that for each f ∈ ℘, the koebe one-quarter theorem [13] ensures
the image of ∆ under f contains a disk of radius 1/4. Thus every univalent
function f ∈ ℘ has an inverse f−1 which satisfies

f−1(f(z)) = z (|z| < 1)

and

f(f−1(w)) = w, (|w| < r0(f), r0(f) ≥ 1/4).

In fact, the inverse function g = f−1 is defined by

g(w) = f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a2
2 − 5a2a3 + a4)w4 + ....

A function f ∈ A is said to bi-univalent in ∆ if both f and f−1 are univalent
in ∆. Let σ denote the class of bi-univalent functions defined in the unit disk
∆ and let φ ∈ P and φ(∆) is symmetric with respect to the the real axis, such
a function has a Taylor series of the form:

φ(z) = 1 +B1z +B2z
2 +B3z

3 + ... (B1 > 0) . (4)

In [14], the authors introduced the class S(φ) of the so-called Ma and Minda
starlike functions and the class C(φ) of Ma and Minda convex functions, uni-
fying several previously studied classes related to those of starlike and convex
functions. The class S(φ) consists of all the functions f ∈ A satisfying subordi-

nation
zf ′(z)

f(z)
≺ φ(z), whereas C(φ) is formed with functions f ∈ A for which
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the subordination 1+
zf ′′(z)

f ′(z)
≺ φ(z) holds. Lewin [15] investigated the class

σ and showed that |a2| < 1.51 for function f(z) = z +
∞∑
n=2

a
n
zn ∈ σ. Subse-

quently, Brannan and Clunie [16] conjectured that |a2| <
√

2. Netanyahu [17],
on the other hand, showed that max |a2| = 4/3 if f(z) ∈ σ. Brannan and Taha
[18] and Taha [19] introduced certain subclasses of bi-univalent functions, similar
to the familiar subclasses of univalent functions consisting of strongly starlike and
convex functions, they introduced bi-starlike functions and bi-convex functions
and found non-sharp estimates on the first two Taylor-Maclaurin coefficients
|a2| and |a3| . Recently, many authors investigated bounds for various subclasses
of bi-univalent functions (see [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33].
In [34], Mitrinovic essentially investigated certain geometric properties of func-
tions ψ of the form

ψ(z) =
z

f(z)
, f(z) = 1 +

∞∑
n=1

anz
n. (5)

In [35], Reade et al. derived coefficient conditions that guarantee the univalence,
starlikeness or convexity of rational functions of the form (5), these results have
been improved and generalized in [36]. In this paper, estimates on the initial
coefficients for bi-starlike of Ma-Minda type and bi-convex of Ma-Minda type of
rational form (5) are obtained. Several related classes are also considered.
In order to derive our main results, we require the following lemma.

Lemma 1.1. (see [37]) If p(z) ∈ P , then

|cn| ≤ 2 (n ∈ N = {1, 2, ...}) . (6)

2. Coefficients estimates

A function ψ(z) ∈ A with Re (ψ′(z)) > 0 is known to be univalent. This
motivates the following class of functions.

Definition 2.1. A function ψ ∈ σgiven by (5) is said to be in the class Hσ(φ)
if the following conditions are satisfied:

ψ′(z) ≺ φ(z) (z ∈ ∆) and g′(w) ≺ φ(w) (w ∈ ∆) ,

where g(w) := ψ−1(w).

If we set

φ(z) =

(
1 + z

1− z

)γ
= 1 + 2γz + 2γ2z2 + ... (0 < γ ≤ 1, z ∈ ∆)

in Definition 2.1 of the bi-univalent function class Hσ(φ) we obtain a new class
Hσ(γ) given by Definition 2.2 below.



Coefficient estimates of some classes of rational functions 117

Definition 2.2. For 0 < γ ≤ 1, a function ψ ∈ σ given by (5) is said to be in
the class Hσ(γ) if the following conditions are satisfied:

ψ′(z) ≺
(

1 + z

1− z

)γ
(z ∈ ∆) and g′(w) ≺

(
1 + w

1− w

)γ
(w ∈ ∆) ,

where g(w) := ψ−1(w).

If we set

φ(z) =
1 + (1− 2ν)z

1− z
= 1 + 2(1− ν)z + 2(1− ν)z2 + ... (0 < ν ≤ 1, z ∈ ∆)

in Definition 2.1 of the bi-univalent function class Hσ(φ) we obtain, a new class
Hσ(ν) given by Definition 2.3 below.

Definition 2.3. For 0 < ν ≤ 1, a function ψ ∈ σ given by ( 5) is said to be in
the class Hσ(ν) if the following conditions hold true:

ψ′(z) ≺ 1 + (1− 2ν)z

1− z
(z ∈ ∆) and g′(w) ≺ 1 + (1− 2ν)w

1− w
(w ∈ ∆) ,

where g(w) := ψ−1(w).

Theorem 2.4. Let ψ(z) ∈ Hσ(φ) be of the form ( 5). Then

|a1| ≤
B1

√
B1√

|3B2
1 − 4B2 + 4B1|

and |a2| ≤
1

3
B1. (7)

Proof. Let ψ(z) ∈ Hσ(φ) and g = ψ−1. Then there exist two functions u and v,
analytic in ∆, with u(0) = v(0) = 0, |u(z)| < 1 and |v(w)| < 1, z, w ∈ ∆, such
that

ψ′(z) = φ(u(z)) and g′(w) = φ(v(w)). (8)

Next, define the functions p1 and p2 by

p1(z) =
1 + u(z)

1− u(z)
= 1+c1z+c2z

2+... and p2(w) =
1 + v(w)

1− v(w)
= 1+b1w+b22w

2+...,

or, equivalently,

u(z) =
p1(z)− 1

p1(z) + 1
=

1

2

[
c1z +

(
c2 −

c21
2

)
z2 + ...

]
, (9)

and

v(w) =
p2(w)− 1

p2(w) + 1
=

1

2

[
b1w +

(
b2 −

b21
2

)
w2 + ...

]
. (10)

Then p1 and p2 analytic in ∆ with p1(0) = 1 = p2(0). Since u, v : ∆ −→ ∆,
the functions p1 and p2 have a positive real part in ∆, and |bi| ≤ 2 and |ci| ≤
2. Clearly, upon substituting from (9) and (10) into (8), if we make use of (4),
we find that

ψ′(z) = φ(
p1(z)− 1

p1(z) + 1
) = 1 +

1

2
B1c1z+

[
1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1

]
z2 + ..., (11)
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and

g′(w) = φ(
p2(w)− 1

p2(w) + 1
) = 1 +

1

2
B1b1w +

[
1

2
B1

(
b2 −

b21
2

)
+

1

4
B2b

2
1

]
w2 + ... ..

(12)
Since ψ ∈ σ has the Maclaurin’s series given by

ψ(z) = z − a1z
2 + (a2

1 − a2)z3 + ..., (13)

a computation shows that its inverse g = ψ−1 has the expansion

g(w) = ψ−1(w) = w + a1w
2 + (a2

1 + a2)w3 + ... . (14)

Using (13) and (14) in (11) and (12) respectively, we get

− 2a1 =
1

2
B1c1 (15)

3(a2
1 − a2) =

1

2
B1(c2 −

c21
2

) +
1

4
B2c

2
1, (16)

2a1 =
1

2
B1b1 (17)

and

3(a2
1 + a2) =

1

2
B1(b2 −

b21
2

) +
1

4
B2b

2
1. (18)

From (15) and (17), we have

c1 = −b1. (19)

Adding (16) and (18) and then using (15) and (19), we get

a2
1 =

B3
1(c2 + b2)

4(3B2
1 − 4B2 + 4B1)

,

and now, by applying Lemma 1.1 for the coefficients b2 and c2, the last equa-
tion gives the bound of |a1| from (7). By subtracting (18) from (16), further
computations using (19) lead to

a2 =
1

12
B1(b2 − c2).

The bound of |a2| , as asserted in (7), is now a consequence of Lemma 1.1, and
this completes our proof. �

Using the parameter setting of Definition 2.2 in Theorem 2.4, we get the following
corollary.

Corollary 2.5. For 0 < γ ≤ 1, let the function ψ ∈ Hσ(γ) be of the form (5).
Then

|a1| ≤
√

2γ√
γ + 2

and |a2| ≤
2

3
γ.

Using the parameter setting of Definition 2.3 in Theorem 2.4, we get the following
corollary.
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Corollary 2.6. For 0 < ν ≤ 1, let the function ψ ∈ Hσ(ν) be given by (5).
Then

|a1| ≤
√

2

3
(1− ν) and |a2| ≤

2

3
(1− ν) .

Definition 2.7. A function ψ ∈ σ is given by (5) is said to be in the class
Sσ(α, φ) if the following subordinations hold:

zψ′(z)

ψ(z)
+
αz2ψ′′(z)

ψ(z)
≺ φ(z) (z ∈ ∆) and

wg′(w)

g(w)
+
αw2g′′(w)

g(w)
≺ φ(w) (w ∈ ∆) ,

where g(w) := ψ−1(w).

If we set

φ(z) =

(
1 + z

1− z

)γ
= 1 + 2γz + 2γ2z2 + ... (0 < γ ≤ 1, z ∈ ∆)

in Definition 2.7 of the bi-univalent function class Sσ(α, φ), we obtain a new
class Sσ(α, γ) given by Definition 2.8 below.

Definition 2.8. For 0 ≤ α ≤ 1 and 0 < γ ≤ 1, a function ψ ∈ σ given by (5) is
said to be in the class Sσ(α, γ) if the following subordinations hold:

zψ′(z)

ψ(z)
+
αz2ψ′′(z)

ψ(z)
≺
(

1 + z

1− z

)γ
(z ∈ ∆) ,

and
wg′(w)

g(w)
+
αw2g′′(w)

g(w)
≺
(

1 + w

1− w

)γ
(w ∈ ∆) ,

where g(w) := ψ−1(w).

If we set

φ(z) =
1 + (1− 2ν)z

1− z
= 1 + 2(1− ν)z + 2(1− ν)z2 + ... (0 < ν ≤ 1, z ∈ ∆)

in Definition 2.7 of the bi-univalent function class Sσ(α, φ) we obtain a new class
Sσ(α, ν) given by Definition 2.9 below.

Definition 2.9. For 0 ≤ α ≤ 1 and 0 < ν ≤ 1, a function ψ ∈ σ given by (5) is
said to be in the class Sσ(α, ν) if the following subordinations hold:

zψ′(z)

ψ(z)
+
αz2ψ′′(z)

ψ(z)
≺ 1 + (1− 2ν)z

1− z
(z ∈ ∆)

and
wg′(w)

g(w)
+
αw2g′′(w)

g(w)
≺ 1 + (1− 2ν)w

1− w
(w ∈ ∆) ,

where g(w) = ψ−1(w).

Note that S(φ) = Sσ(0, φ). For functions in the class Sσ(α, φ), the following
coefficient estimates are obtained,
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Theorem 2.10. Let ψ(z) ∈ Sσ(α, φ) be of the form (5). Then

|a1| ≤
B1

√
B1√

|B2
1(1 + 4α) + (B1 −B2)(1 + 2α)2|

, (20)

and

|a2| ≤
B1

1 + 3α
. (21)

Proof. Let ψ ∈ Sσ(α, φ), there are two Schwarz functions u and v defined by (9)
and (10) respectively, such that

zψ′(z)

ψ(z)
+
αz2ψ′′(z)

ψ(z)
= φ(u(z)) and

wg′(w)

g(w)
+
αw2g′′(w)

g(w)
= φ(v(w)),

(
g = ψ−1

)
.

(22)
Since

zψ′(z)

ψ(z)
+
αz2ψ′′(z)

ψ(z)
= 1− (1 + 2α) a1z +

[
(1 + 4α) a2

1 − 2 (1 + 3α) a2

]
z2 + ...

and

wg′(w)

g(w)
+
αw2g′′(w)

g(w)
= 1 + (1 + 2α) a1w+

[
(1 + 4α) a2

1 + 2 (1 + 3α) a2

]
w2 + ...,

then (11), (12) and (22) yields

− (1 + 2α)a1 =
1

2
B1c1 (23)

(1 + 4α)a2
1 − 2(1 + 3α)a2 =

1

2
B1(c2 −

c21
2

) +
1

4
B2c

2
1, (24)

(1 + 2α)a1 =
1

2
B1b1 (25)

and

(1 + 4α)a2
1 + 2(1 + 3α)a2 =

1

2
B1(b2 −

b21
2

) +
1

4
B2b

2
1. (26)

From (23) and (25), we get
c1 = −b1, (27)

and after some further calculations using (24)-(27) we find

a2
1 =

B3
1(c2 + b2)

4 [B2
1(1 + 4α) + (B1 −B2)(1 + 2α)2]

,

and

a2 =
B1(b2 − c2)

4(1 + 3α)
.

Applying Lemma 1.1, the estimates in (20) and (21) follow. �

For α = 0, Theorem 2.10 readily yields the following coefficient estimates for
Ma-Minda bi-starlike functions.
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Corollary 2.11. Let ψ given by (5) be in the class S(φ).Then

|a1| ≤
B1

√
B1√

|B2
1 +B1 −B2|

, and |a2| ≤ B1.

Using the parameter setting of Definition 2.8 in Theorem 2.10, we get the fol-
lowing corollary.

Corollary 2.12. For 0 ≤ α ≤ 1 and 0 < γ ≤ 1, let the function ψ ∈ Sσ(α, γ)
be of the form (5). Then

|a1| ≤
2γ√

(1 + 2α)
2

+ γ [1 + 4α− 4α2]
and |a2| ≤

2γ

1 + 3α
.

Using the parameter setting of Definition 2.9 in Theorem 2.10 we get the follow-
ing corollary.

Corollary 2.13. For 0 ≤ α ≤ 1 and 0 < ν ≤ 1, let the function ψ ∈ Sσ(α, ν)
be of the form (5). Then

|a1| ≤
√

2 (1− ν)

1 + 4α
and |a2| ≤

2 (1− ν)

1 + 3α
.

Definition 2.14. A function ψ ∈ σ given by (5) belongs to the class Mσ(α, φ)
(0 ≤ α ≤ 1) , if the following subordinations hold:

(1− α)
zψ′(z)

ψ(z)
+ α(1 +

zψ′′(z)

ψ′(z)
) ≺ φ(z) (z ∈ ∆) ,

and

(1− α)
wg′(w)

g(w)
+ α(1 +

wg′′(w)

g′(w)
) ≺ φ(w), (w ∈ ∆) ,

where g(w) := ψ−1(w).

If we set

φ(z) =

(
1 + z

1− z

)γ
= 1 + 2γz + 2γ2z2 + ... (0 < γ ≤ 1, z ∈ ∆)

in Definition 2.14 of the bi-univalent function class Mσ(α, φ), we obtain a new
class Mσ(α, γ) given by Definition 2.15 below.

Definition 2.15. For 0 ≤ α ≤ 1 and 0 < γ ≤ 1, a function ψ ∈ σ given by (5)
is said to be in the class Mσ(α, γ) if the following subordinations hold:

(1− α)
zψ′(z)

ψ(z)
+ α(1 +

zψ′′(z)

ψ′(z)
) ≺

(
1 + z

1− z

)γ
(z ∈ ∆) ,

and

(1− α)
wg′(w)

g(w)
+ α(1 +

wg′′(w)

g′(w)
) ≺

(
1 + w

1− w

)γ
(w ∈ ∆) ,

g(w) := ψ−1(w).
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Corollary 2.16. If we set

φ(z) =
1 + (1− 2ν)z

1− z
= 1 + 2(1− ν)z + 2(1− ν)z2 + ... (0 < ν ≤ 1, z ∈ ∆)

in Definition 2.14 of the bi-univalent function class Mσ(α, φ) we obtain a new
class Mσ(α, ν) given by Definition 2.17 below.

Definition 2.17. For 0 ≤ α ≤ 1 and 0 < ν ≤ 1, a function ψ ∈ σ given by (5)
is said to be in the class Mσ(α, ν) if the following subordinations hold:

(1− α)
zψ′(z)

ψ(z)
+ α(1 +

zψ′′(z)

ψ′(z)
) ≺ 1 + (1− 2ν)z

1− z
(z ∈ ∆) ,

and

(1− α)
wψ′(w)

ψ(w)
+ α(1 +

wψ′′(w)

ψ′(w)
) ≺ 1 + (1− 2ν)w

1− w
(w ∈ ∆) ,

where g(w) := ψ−1(w).
A function in the class Mσ(α, φ) is called bi-Mocanu-convex function of Ma-
Minda type. This class unifies the classes S(α) and C(α). For functions in the
class Mσ(α, φ), the following coefficients estimates hold.

Theorem 2.18. Let ψ(z) ∈Mσ(α, φ) be of the form (5). Then

|a1| ≤
B1

√
B1√

(1 + α) |B2
1 + (1 + α)(B1 −B2)|

, (28)

and

|a2| ≤
B1

2(1 + 2α)
. (29)

Proof. If ψ ∈ Mσ(α, φ), then there exist are two Schwarz functions u and
v defined by (9) and (10) respectively, such that

(1− α)
zψ′(z)

ψ(z)
+ α(1 +

zψ′′(z)

ψ′(z)
) = φ(u(z)), (30)

and

(1− α)
wg′(w)

g(w)
+ α(1 +

wg′′(w)

g′(w)
) = φ(v(w)). (31)

Since

(1−α)
zψ′(z)

ψ(z)
+α(1+

zψ′′(z)

ψ′(z)
) = 1−(1 + α) a1z+

[
(1 + α) a2

1 − 2 (1 + 2α) a2

]
z2+...

and

(1−α)
wg′(w)

g(w)
+α(1+

wg′′(w)

g′(w)
) = 1+(1 + α) a1w+

[
(1 + α) a2

1 + 2 (1 + 2α) a2

]
w2+...,

from (11), (12), (30) and (31), it follows that

− (1 + α)a1 =
1

2
B1c1, (32)
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(1 + α)a2
1 − 2(1 + 2α)a2 =

1

2
B1(c2 −

c21
2

) +
1

4
B2c

2
1, (33)

(1 + α)a1 =
1

2
B1b1, (34)

and

(1 + α)a2
1 + 2(1 + 2α)a2 =

1

2
B1(b2 −

b21
2

) +
1

4
B2b

2
1, (35)

Eqs. (32) and (34) yields

c1 = −b1, (36)

and after some further calculations using (33)-(35) we find

a2
1 =

B3
1(c2 + b2)

4(1 + α) [B2
1 + (1 + α)(B1 −B2)]

,

and

a2 =
B1 (b2 − c2)

8(1 + 2α)
,

Applying Lemma 1.1, the estimates in (28) and (29) follow. �

For α = 0, Theorem 2.18 gives the coefficient estimates for Ma-Minda bi-starlike
functions, while for α = 1, it gives the following estimates for Ma-Minda bi-
convex functions.

Corollary 2.19. Let ψ given by (5) be in the class C(φ). Then

|a1| ≤
B1

√
B1

2 |B2
1 + 2(B1 −B2)|

, and |a2| ≤
B1

6
.

Using the parameter setting of Definition 2.15 in Theorem 2.18 we get the fol-
lowing corollary.

Corollary 2.20. For 0 ≤ α ≤ 1 and 0 < γ ≤ 1, let the function ψ ∈Mσ(α, γ) be
of the form (5). Then

|a1| ≤
2γ√

(1 + α) [(1 + α) + γ (1− α)]
and |a2| ≤

γ

1 + 2α
.

Using the parameter setting of Definition 2.17 in Theorem 2.18 we get the fol-
lowing corollary.

Corollary 2.21. For 0 ≤ α ≤ 1 and 0 < ν ≤ 1, let the function ψ ∈Mσ(α, ν) be
of the form (5). Then

|a1| ≤
√

2 (1− ν)

1 + α
and |a2| ≤

(1− ν)

1 + 2α
.
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Definition 2.22. A function ψ ∈ σ given by (5) is said to be in the class
=α(α, φ) (0 ≤ α ≤ 1) , if the following subordinations hold:(

zψ′(z)

ψ(z)

)α(
1 +

zψ′′(z)

ψ′(z)

)1−α

≺ φ(z) (z ∈ ∆) ,

and (
wg′(w)

g(w)

)α(
1 +

wg′′(w

g′(w)

)1−α

≺ φ(w) (w ∈ ∆) ,

g(w) := ψ−1(w). This class also reduces to classes of Ma-Minda bi-starlike and
bi-convex functions. For functions in this class, the following coefficient estimates
are obtained.

Theorem 2.23. Let ψ(z) ∈ =α(α, φ) be of the form (5). Then

|a1| ≤
2B1

√
B1√

|2 (α2 − 3α+ 4)B2
1 + 4(α− 2)2(B1 −B2)|

, (37)

and

|a2| ≤
B1

2 |3− 2α|
. (38)

Proof. Let ψ ∈ =α(α, φ), then there exist are two Schwarz functions u and v
defined by (9) and (10) respectively, such that(

zψ′(z)

ψ(z)

)α(
1 +

zψ′′(z)

ψ′(z)

)1−α

= φ(u(z)) (39)

and (
wg′(w)

g(w)

)α(
1 +

wg′′(w

g′(w)

)1−α

= φ(v(w)). (40)

Since (
zψ′(z)

ψ(z)

)α(
1 +

zψ′′(z)

ψ′(z)

)1−α

= 1− (2− α) a1z

+

[
α2 − 3α+ 4

2
a2

1 − 2 (3− 2α) a2

]
z2 + ... .

Also (
wg′(w)

g(w)

)α(
1 +

wg′′(w

g′(w)

)1−α

= 1 + (2− α) a1w

+

[
α2 − 3α+ 4

2
a2

1 + 2 (3− 2α) a2

]
w2 + ...,

from (11), (12), (39) and (40), it follows that

− (2− α)a1 =
1

2
B1c1, (41)

α2 − 3α+ 4

2
a2

1 − 2 (3− 2α) a2 =
1

2
B1(c2 −

c21
2

) +
1

4
B2c

2
1, (42)
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(2− α)a1 =
1

2
B1b1 (43)

and
α2 − 3α+ 4

2
a2

1 + 2 (3− 2α) a2 =
1

2
B1(b2 −

b21
2

) +
1

4
B2b

2
1. (44)

Eqs. (41) and (43) obviously yield

c1 = −b1. (45)

Eqs. (42)-(44) and (45) lead to

a2
1 =

B3
1(c2 + b2)

2 (α2 − 3α+ 4)B2
1 + 4(α− 2)2(B1 −B2)

.

By applying Lemma 1.1, we get the desired estimate of |a1| as asserted in (37).
Proceeding similarly as in the earlier proof, using (42)-(45), it follows that

a2 =
B1(b2 − c2)

8(3− 2α)
,

which, in view of Lemma 1.1, yields the estimate (38). �

Definition 2.24. A function ψ ∈ σ given by (5) is said to be in the class
βα(λ, φ), λ ≥ 0, if the following subordinations hold:

(1− λ)
ψ(z)

z
+ λψ′(z) ≺ φ(z) (z ∈ ∆) ,

and

(1− λ)
g(w)

w
+ λg′(w) ≺ φ(w) (w ∈ ∆) ,

where g(w) := ψ−1(w).

Theorem 2.25. Let ψ(z) ∈ βα(λ, φ), λ ≥ 0 be of the form (5). Then

|a1| ≤
B1

√
B1√

|(1 + 2λ)B2
1 + (1 + λ)2(B1 −B2)|

, (46)

and

|a2| ≤
B1

1 + 2λ
. (47)

Proof. Let ψ ∈ βα(λ, φ), then there exist are two Schwarz functions u and
v defined by (9) and (10) respectively, such that

(1− λ)
ψ(z)

z
+ λψ′(z) = φ(u(z)) (48)

and

(1− λ)
g(w)

w
+ λg′(w) = φ(v(w)). (49)

Since

(1− λ)
ψ(z)

z
+ λψ′(z) = 1− (1 + λ) a1z +

[
(1 + 2λ)

(
a2

1 − a2

)]
z2 + ...,
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and

(1− λ)
g(w)

w
+ λg′(w) = 1 + (1 + λ) a1w +

[
(1 + 2λ)

(
a2

1 + a2

)]
w2 + ...,

from (11), (12), (48) and (49), it follows that

− (1 + λ)a1 =
1

2
B1c1, (50)

(1 + 2λ)(a2
1 − a2) =

1

2
B1(c2 −

c21
2

) +
1

4
B2c

2
1, (51)

(1 + λ)a1 =
1

2
B1b1 (52)

and

(1 + 2λ)(a2
1 + a2) =

1

2
B1(b2 −

b21
2

) +
1

4
B2b

2
1. (53)

Now (50) and (52) clearly yield

c1 = −b1. (54)

Eqs. (51), (53) and (54) lead to

a2
1 =

B3
1(c2 + b2)

4
[
(1 + 2λ)B2

1 + (1 + λ)
2

(B1 −B2)
] ,

By applying Lemma 1.1, we get the desired estimate of |a1| as asserted in (46).
Proceeding similarly as in the earlier proof, using (51)-(54), it follows that

a2 =
B1(b2 − c2)

4(1 + 2λ)
,

which, in view of Lemma 1.1, yields the estimate (47). �
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