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HIGHER ORDER NONLINEAR EQUATION SOLVERS AND

THEIR DYNAMICAL BEHAVIOR

SABIR YASIN1, AMIR NASEEM

Abstract. In this report we present new sixth order iterative methods
for solving non-linear equations. The derivation of these methods is purely
based on variational iteration technique. To check the validity and effi-

ciency we compare of methods with Newton’s method, Ostrowski’s method,
Traub’s method and modified Halleys’s method by solving some test ex-
amples. Numerical results shows that our developed methods are more
effective. Finally, we compare polynomigraphs of our developed methods
with Newton’s method, Ostrowski’s method, Traub’s method and modified
Halleys’s method.
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1. Introduction

One of the most important problems is to find the values of x which satisfy the
equation

f(x) = 0.

The solution of these problems has many applications in applied sciences. In
order to solve these problems, various numerical methods have been devel-
oped using different techniques such as adomian decomposition, Taylor’s series,
perturbation method, quadrature formulas and variational iteration techniques
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[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] and the
references therein.
One of the most famous and oldest method for solving non linear equations is
classical Newton’s method which can be written as:

xn+1 = xn −
f(xn)

f ′(xn)
, n = 0, 1, 2, ... (1)

This is an important and basic method, which converges quadratically [12].
Modifications of Newton’s method gave various iterative methods with better
convergence order. Some of them are given in [3, 8, 9, 10, 11, 18, 19] and the
references therein.
In [23], Traub developed following Double Newton’s method:

yn = xn −
f(xn)

f ′(xn)
,

xn+1 = yn −
f(yn)

f ′(yn)
, n = 0, 1, 2, 3, ...

This method is also known as Traub’s Method.
Ostrowsk’ method (see [24, 25, 26]) is also a well known iterative method which
has forth order convergence.

yn = xn −
f(xn)

f ′(xn)
,

xn+1 = yn −
f(xn)f(yn)

f ′(xn)f(xn)− 2f(yn)
, n = 0, 1, 2, 3, ...

Noor et al. [27] developed modified Halleys’s method which has fifth-order con-
vergence

yn = xn −
f(xn)

f ′(xn)
,

xn+1 = yn−
f(xn)f(yn)f

′(yn)

2f(xn)f ′2(yn)− f ′2(xn)f(yn) + f ′(xn)f ′(yn)f(yn)
, n = 0, 1, 2, 3, ...

In this paper, we develop three new iterative methods using variational iteration
technique. The variational iteration technique was developed by He [14]. Using
this technique, Noor and Shah [17] has suggested and analyzed some iterative
methods for solving the nonlinear equations. The purpose of this technique was
to solve a variety of diverse problems [14, 15] . Now we have applied the described
technique to obtain higher-order iterative methods. We also discuss the conver-
gence criteria of these new iterative methods. Several examples are given to show
the performance of our proposed methods as compare to the other similar exist-
ing methods. We also compare polynomigraphs of our developed methods with
Newton’s method, Ostrowski’s method, Traub’s method and modified Halleys’s
method.
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2. Construction OF Iterative Methods using Variational Technique

In this section, we develop some new sixth order iterative methods for solving
non linear equations. By using variational iteration technique, we develop the
main recurrence relation from which we derive the new iterative methods for
solving non linear equations by considering some special cases of the auxiliary
functions g. These are multi-step methods consisting of predictor and corrector
steps. The convergence of our methods is better than the one-step methods.
Now consider the non-linear equation of the form

f(x) = 0. (2)

Suppose that α is the simple root and γ is the initial guess sufficiently close to
α. Let g(x) be any arbitrary function and λ be a parameter which is usually
called the Lagranges multiplier and can be identified by the optimality condition.
Consider the auxiliary function

H(x) = ψ(x) + λ[f(ψ(x)g(ψ(x)], (3)

where ψ(x) is the arbitrary auxiliary function of order p with p ≥ 1.
Using the optimality criteria, we can obtain the value of λ from (3) as:

λ = −
ψ(x)

g′(ψ(x))f(ψ(x)) + g(ψ(x))f ′(ψ(x))
. (4)

From (3) and (4), we get

H(x) = ψ(x)−
f(ψ(x))g(ψ(x))

[f ′(ψ(x))g(ψ(x)) + f(ψ(x))g′(ψ(x))]
. (5)

Now we are going to apply (5) for constructing a general iterative scheme for
iterative methods. For this, suppose that

ψ(x) = y = x−
f(x)

f ′(x)
−
f2(x)f ′′(x)

2f ′3(x)
−
f3(x)f ′′′(x)

6f ′4(x)
. (6)

Which is well known Abbasbanday’s method of 3rd order of convergence. With
the help of (5) and (6), we can write

H(x) = y −
f(y)g(y)

[f ′(y)g(y) + f(y)g′(y)]
, (7)

if α is the root of f(x), then for x = α, we can write:

g(y)

g′(y)
= α−

f(α)

f ′(α)
−
f2(α)f ′′(α)

2f ′3(α)
−
f3(α)f ′′′(α)

6f ′4(α)
=

g(α)

g′(α)
. (8)

Also,
g(x)

g′(x)
=

g(α)

g′(α)
. (9)

With the help of (8) and (9), we get

g(y)

g′(y)
=

g(x)

g′(x)
. (10)
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Using (10) in (7), we obtain

H(x) = y −
f(y)g(x)

[f ′(y)g(x) + f(y)g′(x)]
. (11)

Which enable us to define the following iterative scheme:

xn+1 = yn −
f(yn)g(xn)

[f ′(yn)g(xn) + f(yn)g′(xn)]
(12)

where yn = xn−
f(xn)
f ′(xn)

− f2(xn)f
′′(xn)

2f ′3(xn)
− f3(xn)f

′′′(xn)
6f ′4(xn)

. Relation(12) is the main and

general iterative scheme, which we use to deduce iterative methods for solving
non-linear equations by considering some special cases of the auxiliary functions
g.

2.1. Case 1. Let g(xn) = e(βxn), then g′(xn) = βg(xn). Using these values in
(12), we obtain the following algorithm.
Using these values in (12), we obtain the following algorithm.

Algorithm 2.1. For a given x0, compute the approximate solution xn+1 by the
following iterative schemes:

yn = xn −
f(xn)

f ′(xn)
−
f2(xn)f

′′(xn)

2f ′3(xn)
−
f3(xn)f

′′′(xn)

6f ′4(xn)
, n = 0, 1, 2, ...,

xn+1 = yn −
f(yn)

[f ′(yn) + βf(yn)]
.

2.2. Case 2. Let g(xn) = eβf(xn), then g′(xn) = βf ′(xn)g(xn). Using these
values in (12), we obtain the following algorithm.

Algorithm 2.2. For a given x0, compute the approximate solution xn+1 by the
following iterative schemes:

yn = xn −
f(xn)

f ′(xn)
−
f2(xn)f

′′(xn)

2f ′3(xn)
−
f3(xn)f

′′′(xn)

6f ′4(xn)
, n = 0, 1, 2, ...,

xn+1 = yn −
f(yn)

[f ′(yn) + βf(yn)f ′(xn)]
.

2.3. Case 3. Let g(xn) = e
−

β
f(xn) , then g′(xn) = β

f ′(xn)
f2(xn)

g(xn). Using these

values in (12), we obtain the following algorithm.

Algorithm 2.3. For a given x0, compute the approximate solution xn+1 by the
following iterative schemes:

yn = xn −
f(xn)

f ′(xn)
−
f2(xn)f

′′(xn)

2f ′3(xn)
−
f3(xn)f

′′′(xn)

6f ′4(xn)
, n = 0, 1, 2, ...,

xn+1 = yn −
f2(xn)f(yn)

[f2(xn)f ′(yn) + βf ′(xn)f(yn)]
.
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By assuming different values of β, we can obtain different iterative methods. To
obtain best results in all above algorithms, choose such values of β that make
the denominator non-zero and greatest in magnitude.

3. Convergence Analysis

In this section, we discuss the convergence order of the main and general iteration
scheme (12).

Theorem 3.1. Suppose that α is a root of the equation f(x) = 0. If f(x) is
sufficiently smooth in the neighborhood of α, then the convergence order of the
main and general iteration scheme, described in relation (12) is at least six.

Proof. To analysis the convergence of the main and general iteration scheme,
described in relation (12), suppose that α is a root of the equation f(x) = 0 and
en be the error at nth iteration, then en = xn − α and by using Taylor series
expansion, we have

f(x) = f ′(α)en +
1

2!
f ′′(α)e2n +

1

3!
f ′′′(α)e3n +

1

4!
f (iv)(α)e4n +

1

5!
f (v)(α)e5n

+
1

6!
f (vi)(α)e6n +O(e7n)

f(x) = f ′(α)[en + c2e
2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n +O(e7n)] (13)

f ′(xn) = f ′(α)[1 + 2c2en + 3c3e
2
n + 4c4e

3
n + 5c5e

4
n + 6c6e

5
n + 7c7e

6
n

+ O(e7n)] (14)

f ′′(xn) = f ′(α)[2c2 + 6c3en + 12c4e
2
n + 20c5e

3
n + 30c6e

4
n

+ 42c7e
5
n + 56c8e

6
n +O(e7n)] (15)

f ′′′(xn) = f ′(α)[6c3 + 24c4en + 60c5e
2
n + 120c6e

3
n + 210c7e

4
n

+ 336c8e
5
n + 504c9e

6
n +O(e7n)]. (16)

Where

cn =
1

n!

f (n)(α)

f ′(α)
.

With the help of 13, 14 and 15, we get

yn = α+ (−2c3 + 2c22)e
3
n + (−7c4 + 17c2c3 − 9c32)e

4
n

+ (−16c5 + 44c2c4 + 24c23 − 82c3c
2
2 + 30c42)e

5
n

+ (−30c6 + 90c2c5 + 104c3c4 − 202c2c
2
3 + 314c3c

3
2 − 188c4c

2
2 − 88c52)e

6
n

+ O(e7n) (17)

f(yn) = f ′(α)[(−2c3 + 2c22)e
3
n + (−7c4 + 17c2c3 − 9c32)e

4
n

+ (−16c5 + 44c2c4 + 24c23 − 82c3c
2
2 + 30c42)e

5
n

+ (−198c2c
2
3 + 306c3c

3
2 − 84c52 − 30c6 + 90c2c5 + 104c3c4 − 188c4c

2
2)e

6
n
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+ O(e7n)] (18)

f ′(yn) = f ′(α)[1 + (−4c2c3 + 4c32)e
3
n + (34c3c

2
2 − 18c42 − 14c2c4)e

4
n

+ (−32c2c5 + 88c4c
2
2 + 48c2c

2
3 − 164c3c

3
2 + 60c52)e

5
n

+ (−60c2c6 + 180c5c
2
2 + 208c4c2c3 − 428c23c

2
2 + 640c3c

4
2 − 376c4c

3
2

− 176c62 + 12c33)e
6
n +O(e7n)] (19)

g(xn) = g(α) + g′(α)en +
g′′(α)

2!
e2n +

g′′′(α)

3!
e3n +

g(iv)(α)

4!
e4n +

g(v)(α)

5!
e5n

+
g(vi)(α)

6!
e6n +O(e7n) (20)

g′(xn) = g′(α) + g′′(α)en +
g′′′(α)

2!
e2n +

g(iv)(α)

3!
e3n +

g(v)(α)

4!
e4n +

g(vi)(α)

5!
e5n

+
g(vii)(α)

6!
e6n +O(e7n). (21)

Using equations (13− 20) in general iteration scheme(12), we get:

xn+1 = α+
4(−c3 + c22)

2[g(α)c2 + g′(α)]

g(α)
e6n +O(e7n),

which implies that

en+1 =
4(−c3 + c22)

2[g(α)c2 + g′(α)]

g(α)
e6n +O(e7n).

The above relation shows that the main and general iteration scheme(12) is of
sixth order of convergence and all iterative methods deduce from it have also
convergence of order six.

�

4. Applications

In this section we included some nonlinear functions to illustrate the efficiency of
our developed algorithms for β = 1. We compare our developed algorithms with
Newton’s method (NM)[12] , Ostrowski’si method (OM) [7], Traub’s method
(TM)[12], and modified Halley’s method (MHM) [28]. We used ε = 10−15. The
following stopping criteria is used for computer programs:

(1) |xn+1 − xn+1| < ε.

(2) |f(xn+1)| < ε.
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Table 1: Comparison of various iterative methods
f1 = x3 + 4x2 − 10, x0 = −0.7.

NM 20 40 1.056394e− 24
OM 51 153 9.750058e− 26
TM 10 30 1.056394e− 24
MHM 30 90 2.819181e− 35 1.365230013414096845760806828980

Algorithm 2.1 3 9 1.037275e− 74
Algorithm 2.2 3 9 7.962504e− 39
Algorithm 2.3 3 9 2.748246e− 39

Table 2: Comparison of various iterative methods
Method N Nf |f(xn+1)| xn+1

f2 = ln(x) + x, x0 = 2.6.
NM 8 16 6.089805e− 28
OM 4 12 3.421972e− 53
TM 4 12 6.089805e− 28
MHM 4 21 4.247135e− 28 0.567143290409783872999968662210

Algorithm 2.1 3 9 1.034564e− 21
Algorithm 2.2 3 9 1.994520e− 38
Algorithm 2.3 3 9 7.258268e− 15

Table 3: Comparison of various iterative methods
Method N Nf |f(xn+1)| xn+1

f3 = lnx+ cos(x), x0 = 0.1.
NM 6 12 2.313773e− 18
OM 3 9 5.848674e− 26
TM 3 9 2.313773e− 18
MHM 4 12 1.281868e− 60 0.397748475958746982312388340926

Algorithm 2.1 2 6 2.915840e− 34
Algorithm 2.2 2 6 3.380437e− 32
Algorithm 2.3 2 6 5.839120e− 23

Table 4: Comparison of various iterative methods
f4 = xex − 1, x0 = 1.

NM 5 10 8.478184e− 17
OM 3 9 8.984315e− 40
TM 3 9 2.130596e− 33
MHM 3 9 1.116440e− 68 0.567143290409783872999968662210

Algorithm 2.1 2 6 5.078168e− 24
Algorithm 2.2 3 9 4.315182e− 82
Algorithm 2.3 3 9 1.027667e− 46
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Table 5: Comparison of various iterative methods
Method N Nf |f(xn+1)| xn+1

f5 = x3 − 1, x0 = 2.3.
NM 7 14 9.883568e− 25
OM 4 12 2.619999e− 56
TM 4 12 3.256164e− 49
MHM 3 9 3.233029e− 46 1.000000000000000000000000000000

Algorithm 2.1 2 6 1.472038e− 16
Algorithm 2.2 3 9 1.847778e− 15
Algorithm 2.3 3 9 1.620804e− 18

Table (1-5) Shows the numerical comparisons of Newton’s method, Ostrowski’si
method, Traub’s method, modified Halley’s method and our developed methods.
The columns represent the number of iterations N and the number of functions
or derivatives evaluations Nf required to meet the stopping criteria, and the
magnitude |f(x)| of f(x) at the final estimate xn.

5. Polynomiography

Polynomials are one of the most significant objects in many fields of mathemat-
ics. Polynomial root-finding has played a key role in the history of mathematics.
It is one of the oldest and most deeply studied mathematical problems. The last
interesting contribution to the polynomials root finding history was made by
Kalantari [29], who introduced the polynomiography. As a method which gener-
ates nice looking graphics, it was patented by Kalantari in USA in 2005 [30, 31].
Polynomiography is defined to be “ the art and science of visualization in approx-
imation of the zeros of complex polynomials, via fractal and non fractal images
created using the mathematical convergence properties of iteration functions ”
[29]. An individual image is called a ”polynomiograph ”. Polynomiography
combines both art and science aspects.
Polynomiography gives a new way to solve the ancient problem by using new
algorithms and computer technology. Polynomiography is based on the use of
one or an infinite number of iteration methods formulated for the purpose of ap-
proximation of the root of polynomials e.g. Newton’s method , Halley’s method
etc. The word “ fractal ” ,which partially appeared in the definition of poly-
nomiography, was coined by the famous mathematician Benoit Mandelbrot [32].
Both fractal images and polynomiographs can be obtained via different itera-
tive schemes. Fractals are self-similar has typical structure and independent
of scale. On the other hand, polynomiographs are quite different. The “ poly-
nomiographer ” can control the shape and designed in a more predictable way by
using different iteration methods to the infinite variety of complex polynomials.
Generally, fractals and polynomiographs belong to different classes of graphical
objects. Polynomiography has diverse applications in math, science, education,
art and design. According to Fundamental Theorem of Algebra, any complex
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polynomial with complex coefficients {an, an−1, ..., a1, a0}:

p(z) = anz
n + an−1z

n−1 + ...+ a1z + a0 (22)

or by its zeros (roots) {r1, r2, ..., rn−1, rn} :

p(z) = (z − r1)(z − r2)...(z − rn) (23)

of degree n has n roots (zeros) which may or may not be distinct. The degree
of polynomial describes the number of basins of attraction and placing roots on
the complex plane manually localization of basins can be controlled.
Usually, polynomiographs are colored based on the number of iterations needed
to obtain the approximation of some polynomial root with a given accuracy and
a chosen iteration method. The description of polynomiography, its theoretical
background and artistic applications are described in [29, 30, 31].

5.1. Iteration. During the last century, the different numerical techniques for
solving nonlinear equation f(x) = 0 have been successfully applied. Now we
define our developed algorithms as:

yn = xn −
f(xn)

f ′(xn)
−
f2(xn)f

′′(xn)

2f ′3(xn)
−
f3(xn)f

′′′(xn)

6f ′4(xn)
, n = 0, 1, 2, ...,

xn+1 = yn −
f(yn)

[f ′(yn) + βf(yn)]
,

which we call algorithm (2.1) for solving nonlinear equations.

yn = xn −
f(xn)

f ′(xn)
−
f2(xn)f

′′(xn)

2f ′3(xn)
−
f3(xn)f

′′′(xn)

6f ′4(xn)
, n = 0, 1, 2, ...,

xn+1 = yn −
f(yn)

[f ′(yn) + βf(yn)f ′(xn)]

which we call algorithm (2.2) for solving nonlinear equations.

yn = xn −
f(xn)

f ′(xn)
−
f2(xn)f

′′(xn)

2f ′3(xn)
−
f3(xn)f

′′′(xn)

6f ′4(xn)
, n = 0, 1, 2, ...,

xn+1 = yn −
f2(xn)f(yn)

[f2(xn)f ′(yn) + βf ′(xn)f(yn)]

which we call algorithm (2.3) for solving nonlinear equations.
Let p(z) be the complex polynomial, then

yn = zn −
p(zn)

p′(zn)
−
p2(zn)p

′′(zn)

2p′3(zn)
−
p3(zn)p

′′′(zn)

6p′4(zn)
, n = 0, 1, 2, ...,

zn+1 = yn −
p(yn)

[p′(yn) + βp(yn)]
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which is algorithm (2.1) for solving nonlinear complex equations.

yn = zn −
p(zn)

p′(zn)
−
p2(zn)p

′′(zn)

2p′3(zn)
−
p3(zn)p

′′′(zn)

6p′4(zn)
, n = 0, 1, 2, ...,

zn+1 = yn −
p(yn)

[p′(yn) + βp(yn)p′(zn)]

which is algorithm (2.2) for solving nonlinear complex equations.

yn = zn −
p(zn)

p′(zn)
−
p2(zn)p

′′(zn)

2p′3(zn)
−
p3(zn)p

′′′(zn)

6p′4(zn)
, n = 0, 1, 2, ...,

zn+1 = yn −
p2(zn)p(yn)

[p2(zn)p′(yn) + βp′(zn)f(yn)]

Which is algorithm (2.3) for solving nonlinear complex equations.
Where zo ∈ C is a starting point. The sequence {zn}

∞
n=0 is called the orbit of

the point zo converges to a root z∗ of p then, we say that zo is attracted to z∗.
A set of all such starting points for which {zn}

∞
n=0 converges to root z∗ is called

the basin of attraction of z∗.

6. Convergence test

In the numerical algorithms that are based on iterative processes we need a stop
criterion for the process, that is, a test that tells us that the process has converged
or it is very near to the solution. This type of test is called a convergence
test. Usually, in the iterative process that use a feedback, like the root finding
methods, the standard convergence test has the following form:

|zn+1 − zn| < ε, (24)

where zn+1 and zn are two successive points in the iteration process and ε > 0
is a given accuracy. In this paper we also use the stop criterion (24).

7. Applications

In this section we present some examples of polynomiographs for different com-
plex polynomials equation p(z) = 0 and some special polynomials using our
developed algoritms.The different colors of a images depend upon number of
iterations to reach a root with given accuracy ε = 0.001. One can obtain infin-
itely many nice looking polynomiographs by changing parameter k, where k is
the upper bound of the number of iterations.

7.0.1. Polynomiographs Of Different Complex Polynomial. In this sec-
tion, we present polynomiographs of the following complex polynomials, using
our developed methods for β = 1.
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Example 7.1. Polynomiograph for z2 − 1 = 0, via Newton’s method (row one
left figure), Ostrowski’s method (row one middle figure), Traub’s method (row
one right figure), modified Halleys’s method (row two left figure), Algorithm (2.1)
(row two middle figure), Algorithm (2.2) (row two right figure) and Algorithm
(2.3) (row three) are given below

Figure 1. Polynomiographs of z2 − 1 = 0.

Example 7.2. Polynomiograph for z3−1 = 0 via Newton’s method (row one left
figure), Ostrowski’s method (row one middle figure), Traub’s method (row one
right figure), modified Halleys’s method (row two left figure), Algorithm (2.1)
(row two middle figure), Algorithm (2.2) (row two right figure) and Algorithm
(2.3) (row three) are given below
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Figure 2. Polynomiographs of z3 − 1 = 0

Example 7.3. Polynomiograph for z3−z2+1 = 0 via Newton’s method (row one
left figure), Ostrowski’s method (row one middle figure), Traub’s method (row
one right figure), modified Halleys’s method (row two left figure), Algorithm (2.1)
(row two middle figure), Algorithm (2.2) (row two right figure) and Algorithm
(2.3) (row three) are given below
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Figure 3. Polynomiographs of z3 − z2 + 1 = 0

Example 7.4. Polynomiograph for z4−1 = 0 via Newton’s method (row one left
figure), Ostrowski’s method (row one middle figure), Traub’s method (row one
right figure), modified Halleys’s method (row two left figure), Algorithm (2.1)
(row two middle figure), Algorithm (2.2) (row two right figure) and Algorithm
(2.3) (row three) are given below



Higher order nonlinear equation solvers and their dynamical behavior 185

Figure 4. Polynomiographs of z4 − 1 = 0

Example 7.5. Polynomiograph for z4−z2−1 = 0 via Newton’s method (row one
left figure), Ostrowski’s method (row one middle figure), Traub’s method (row
one right figure), modified Halleys’s method (row two left figure), Algorithm (2.1)
(row two middle figure), Algorithm (2.2) (row two right figure) and Algorithm
(2.3) (row three) are given below
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Figure 5. Polynomiographs of z4 − z2 − 1 = 0

Example 7.6. Polynomiograph for z5−1 = 0 via Newton’s method (row one left
figure), Ostrowski’s method (row one middle figure), Traub’s method (row one
right figure), modified Halleys’s method (row two left figure), Algorithm (2.1)
(row two middle figure), Algorithm (2.2) (row two right figure) and Algorithm
(2.3) (row three) are given below
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Figure 6. Polynomiographs of z5 − 1 = 0

Example 7.7. Polynomiograph for z5−z3+2 = 0 via Newton’s method (row one
left figure), Ostrowski’s method (row one middle figure), Traub’s method (row
one right figure), modified Halleys’s method (row two left figure), Algorithm (2.1)
(row two middle figure), Algorithm (2.2) (row two right figure) and Algorithm
(2.3) (row three) are given below
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Figure 7. Polynomiographs of z5 − z3 + 2 = 0

Example 7.8. Polynomiograph for z6−1 = 0 via Newton’s method (row one left
figure), Ostrowski’s method (row one middle figure), Traub’s method (row one
right figure), modified Halleys’s method (row two left figure), Algorithm (2.1)
(row two middle figure), Algorithm (2.2) (row two right figure) and Algorithm
(2.3) (row three) are given below
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Figure 8. Polynomiographs of z6 − 1 = 0

Example 7.9. Polynomiograph for z6−z4+4 = 0 via Newton’s method (row one
left figure), Ostrowski’s method (row one middle figure), Traub’s method (row
one right figure), modified Halleys’s method (row two left figure), Algorithm (2.1)
(row two middle figure), Algorithm (2.2) (row two right figure) and Algorithm
(2.3) (row three) are given below
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Figure 9. Polynomiographs of z6 − z4 + 4 = 0

Example 7.10. Polynomiograph for z7 − 1 = 0 via Newton’s method (row one
left figure), Ostrowski’s method (row one middle figure), Traub’s method (row
one right figure), modified Halleys’s method (row two left figure), Algorithm (2.1)
(row two middle figure), Algorithm (2.2) (row two right figure) and Algorithm
(2.3) (row three) are given below
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Figure 9. Polynomiographs of z7 − 1 = 0

8. Conclusions

We have established three new sixth order iterative methods for solving non
linear functions. We solved some test examples to check the efficiency of our
developed methods. Table 1-5 shows that our methods perform better than
Newton’s method, Ostrowski’s method, Traub’s method and modified Halleys’s
method. We also compare our methods with Newton’s method, Ostrowski’s
method, Traub’s method and modified Halleys’s method by presenting poly-
nomiographs of different complex polynomials.
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