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THE STUDY OF HONEY COMB DERIVED NETWORK VIA

TOPOLOGICAL INDICES
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Abstract. Chemical reaction network theory is an area of applied math-
ematics that attempts to model the behavior of real world chemical sys-
tems. Since its foundation in the 1960s, it has attracted a growing research
community, mainly due to its applications in biochemistry and theoretical
chemistry. It has also attracted interest from pure mathematicians due
to the interesting problems that arise from the mathematical structures
involved. In this report, we compute newly defined topological indices,
namely, Arithmetic-Geometric index (AG1 index), SK index, SK1 index,
and SK2 index of the Honey Comb Derived Networks. We also compute
sum connectivity index and modified Randić index. Moreover we give geo-
metric comparison of our results.

Mathematics Subject Classification: 05C12, 05C90.
Key words and phrases: Network; Randić index; Degree-based topological
index.

1. Introduction

A topological index is a numeric quantity, which is invariant up to graph iso-
morphism, associated with the chemical constitution of a chemical compound
aiming the correlation of chemical structure with many of its physico-chemical
properties, chemical reactivity or biological activities. Topological indices are
designed on the ground of transformation of a molecular graph into a number
which characterize the topology of that graph.
For example, a fixed interconnection parallel architecture is characterized by a
graph, with vertices corresponding to processing edges and nodes representing
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communication links. In hard to compare Interconnection networks are notori-
ously in abstract terms. Thus, in parallel processing, researchers are motivated
to propose improved interconnection networks, offering performance evaluations
and arguing the benefits in different contexts [1, 2, 3]. A few networks such
as grid, honeycomb and hexagonal networks, for instance, bear resemblance to
molecular or atomic lattice structures. These networks have interesting topo-
logical properties which have been studied in [4, 5, 6, 7, 8]. The honeycomb
and hexagonal networks have been known as crucial for evolutionary biology,
in particular for the evolution of cooperation, where the overlapping triangles
are vital for the propagation of cooperation in social dilemmas. For relevant
research, see [9, 10].
In hexagonal network HX(n) the parameter n is the number of vertices on each
side of the network see Figure 1, whereas for honeycomb network HC(n), n is
the number of hexagons between boundary and central hexagon see Figure 2.
Due to significance of topological indices in chemistry, a lot of research has been
done in this area. For further studies of topological indices of various graph
families, see [11, 12, 13, 14, 15].

Figure 1. Hexagonal network.

Figure 2. Honeycomb network.

Let us consider a graph as shown in Figure 3
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Figure 3. Graph G.

The stellation of G is denoted by St(G) and can be obtained by adding a vertex
in each face of G and then by join these vertices to all vertices of the respective
face (see Figure 4).

Figure 4. Stellation of G (dotted).

The dual Du(G) of a graph G is a graph that has a vertex for each face of G.
The graph has an edge whenever two faces of G are separated from each other,
and a self-loop when the same face appears on both sides of an edge, see Figure
5. Hence the number of faces of a graph is equal to the number of edges of its
dual.

Figure 5. Dual of graph G (dotted).

In dual graph, if we delete the vertex corresponding to the bounded face of planer
graph, which is unique in it, we get bounded dual Bdu(G) (see Figure 6).

Figure 6. Bounded dual of graph G (dotted).

Given a connected plane graph G, its medial graph M(G) has a vertex for each
edge of G and an edge between two vertices for each face of G in which their
corresponding edges occur consecutively (see Figure 7).
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Figure 7. Medial of G (dotted).

In this report, we aim to compute degree-based topological indices of networks
derived from honeycomb networks by taking Stellation, dual and bounded dual
and Medial of honeycomb network.

2. Basic definitions and background of problem

A molecular graph is a simple graph in chemical graph theory, in which atoms are
represented by vertices and chemical bonds are represented by edges. A graph
is connected if there is a connection between any pair of vertices. A network is
a connected graph which has no multiple edge and loop. The number of vertices
which are connected to a fixed v vertex is called the degree of v and is denoted
by dv. The distance between two vertices is the length of shortest path between
them. The concept of valence in chemistry and concept of degree is somewhat
closely. For details on bases of graph theory, we refer the book [16]. Quantitative
structure-activity and Structure-property relationships predict the properties
and biological activities of unstudied material. In these studies, topological
indices and some Physico-chemical properties are used to predict bioactivity
of the chemical compounds [17, 18, 19, 20]. A topological index of the graph
of a chemical compound is a number, which can be used to characterize the
underlined chemical compound and help to predict its physiochemical properties.
Weiner laid the foundation of Topological index in 1947. He was approximated
the boiling point of alkanes and introduced the Weiner index [21]. The Weiner
index is defined as

W (G) =
1

2

∑

uv

d(u, v)

Till now more than 140 topological indices are defined but no single index is
enough to determine all physico-chemical properties, but, these topological in-
dices together can do this to some extent. Later, in 1975, Milan Randić intro-
duced Randić index, [22].

R−1

2

=
∑

uv∈E(G)

1√
dudv

.
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In 1998, Bollobás and Erdös [23] and Amić et al. [24] proposed the generalized
Randić index and has been studied by both chemist and mathematicians [25].

Rα(G) =
∑

uv∈E(G)

(dudv)
α.

The Randić index is one of the most popular and most studied and applied
topological index. Many reviews, papers and books [26, 27, 28, 29, 30, 31] are
written on this simple graph invariant The first Zagreb index and second Zagreb
index was introduced by Gutman and Trinajstić as

M1(G) =
∑

uv∈E(G)

(du + dv),

M2(G) =
∑

uv∈E(G)

(dudv).

respectively. See [32, 33, 34, 35, 36, 37] for detail. Sum connectivity index is
defined as

χ(G) =
∑

uv∈E(G)

1√
du + dv

and modified Randić index is defined as

R′(G) =
∑

uv∈E(G)

1

max{du, dv}
.

V. S. Shigehalli and Rachanna Kanabur [?] introduced following new degree-
based topological indices:

AG1 =
∑

uv∈E(G)

1

2
√
du + dv

, SK =
∑

uv∈E(G)

du + dv

2
,

SK1 =
∑

uv∈E(G)

dudv

2
,

SK2 =
∑

uv∈E(G)

(

du + dv

2

)2

.

3. Main Results

In this section we present our computational results. Honey Comb derived net-
work of dimension 1 is obtained by taking the union of honey comb network and
its stellation (see Figure 8), which is a planar graph. In this section, we will
present our computational results

Theorem 3.1. Let HcDN1(n) be the Honey Comb Derived Network of dimen-

sion 1. Then

(1) χ(HcDN1(n)) = 9
√
3

2 n2 − 4784
1000n+ 1439

1000 ,

(2) R′(HcDN1(n)) = 9
2n

2 − 31
10n+ 8

5 ,
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(3) AG1(HcDN1(n)) = 27n2 − 20167
1000 n+ 553

100 ,

(4) SK(HcDN1(n)) = 162n2 − 168n+ 51,
(5) SK1(HcDN1(n)) = 486n2 − 612n+ 207,
(6) SK2(HcDN1(n)) = 972n2 − 1194n+ 795

2 .

Proof. Let HcDN1(n) be the Honey Comb Derived Network of dimension 1
shown in Figure 8.

Figure 8. HcDN1(n) network with n = 3.

The number of vertices and edges inHcDN1(n) are 9n2−3n+1 and 27n2−3n+1
respectively. There are five types of edges in HcDN1(n) based on degrees of
end vertices of each edge. Table 1 shows such an edge partition of HcDN1(n) .

Table 1. Edge partition HcDN1(n).

(du, dv) Number of edges
(3,3) 6
(3,5) 12(n− 1)
(3,6) 6n
(5,6) 18(n− 1)
(6,6) 27n2 − 57n+ 30

(1)

χ(HcDN1(n)) =
∑

uv∈E(HcDN1(n))

1√
du + dv

=
∑

uv∈E1(HcDN1(n))

1√
du + dv

+
∑

uv∈E2(HcDN1(n))

1√
du + dv

+
∑

uv∈E3(HcDN1(n))

1√
du + dv

+
∑

uv∈E4(HcDN1(n))

1√
du + dv

+
∑

uv∈E5(HcDN1(n))

1√
du + dv
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= |E1(HcDN1(n))| 1√
3 + 3

+ |E2(HcDN1(n))| 1√
3 + 5

+|E3(HcDN1(n))| 1√
3 + 6

+ |E4(HcDN1(n))| 1√
5 + 6

+|E5(HcDN1(n))| 1√
6 + 6

=
√
6 +

12(n− 1)

5
+

6n

6
+

18(n− 1)

6
+

27n2 − 57n+ 30

6

=
9
√
3

2
n2 − 4784

1000
n+

1439

1000
.

(2)

R′(HcDN1(n), x)

=
∑

uv∈E(HcDN1(n))

1

max{du, dv}

=
∑

uv∈E1(HcDN1(n))

1

max{du, dv}
+

∑

uv∈E2(HcDN1(n))

1

max{du, dv}

+
∑

uv∈E3(HcDN1(n))

1

max{du, dv}
+

∑

uv∈E4(HcDN1(n))

1

max{du, dv}

+
∑

uv∈E5(HcDN1(n))

1

max{du, dv}

= |E1(HcDN1(n))| 1

max{3, 3} + |E2(HcDN1(n))| 1

max{3, 5}

+|E3(HcDN1(n))| 1

max{3, 6} + |E4(HcDN1(n))| 1

max{5, 6}

+|E5(HcDN1(n))| 1

max{6, 6}

= 6

(

1

3

)

+
6(n− 1)√

2
+ 2n+

18(n− 1)√
11

+
27n2 − 57n+ 30

2
√
3

=
9

2
n2 − 31

10
n+

8

5
.

(3)

AG1(HcDN1(n))

=
∑

uv∈E(HcDN1(n))

du + dv

2
√
dudv

=
∑

uv∈E1(HcDN1(n))

du + dv

2
√
dudv

+
∑

uv∈E2(HcDN1(n))

du + dv

2
√
dudv
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+
∑

uv∈E3(HcDN1(n))

du + dv

2
√
dudv

+
∑

uv∈E4(HcDN1(n))

du + dv

2
√
dudv

+
∑

uv∈E5(HcDN1(n))

du + dv

2
√
dudv

= |E1(HcDN1(n))| 3 + 3

2
√
3.3

+ |E2(HcDN1(n))| 3 + 5

2
√
3.5

+|E3(HcDN1(n))| 3 + 6

2
√
3.6

+ |E4(HcDN1(n))| 5 + 6

2
√
5.6

+|E5(HcDN1(n))| 6 + 6

2
√
6.6

= 6 + 12(n− 1)

(

4√
15

)

+

(

27√
18

)

n

+

(

99√
30

)

(n− 1) + (27n2 − 57n+ 30)

= 27n2 − 20167

1000
n+

553

100
.

(4)

SK(HcDN1(n)) =
∑

uv∈E(HcDN1(n))

du + dv

2

=
∑

uv∈E1(HcDN1(n))

du + dv

2
+

∑

uv∈E2(HcDN1(n))

du + dv

2

+
∑

uv∈E3(HcDN1(n))

du + dv

2
+

∑

uv∈E4(HcDN1(n))

du + dv

2

+
∑

uv∈E5(HcDN1(n))

du + dv

2

= |E1(HcDN1(n))|3 + 3

2
+ |E2(HcDN1(n))|3 + 5

2

+|E3(HcDN1(n))|3 + 6

2
+ |E4(HcDN1(n))|5 + 6

2

+|E5(HcDN1(n))|6 + 6

2

= 18 + 48(n− 1) + 27n+ 99(n− 1) + 6(27n2 − 57n+ 30)

= 162n2 − 168n+ 51.

(5)

SK1(HcDN1(n)) =
∑

uv∈E(HcDN1(n))

dudv

2
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=
∑

uv∈E1(HcDN1(n))

dudv

2
+

∑

uv∈E2(HcDN1(n))

dudv

2

+
∑

uv∈E3(HcDN1(n))

dudv

2
+

∑

uv∈E4(HcDN1(n))

dudv

2

+
∑

uv∈E5(HcDN1(n))

dudv

2

= |E1(HcDN1(n))|3.3
2

+ |E2(HcDN1(n))|3.5
2

+|E3(HcDN1(n))|3.6
2

+ |E4(HcDN1(n))|5.6
2

+|E5(HcDN1(n))|6.6
2

= 27 + 90(n− 1) + 54n+ 270(n− 1)

+18(27n2 − 57n+ 30)

= 486n2 − 612n+ 207.

(6)

SK2(HcDN1(n))

=
∑

uv∈E(HcDN1(n))

(

du + dv

2

)2

=
∑

uv∈E1(HcDN1(n))

(

du + dv

2

)2

+
∑

uv∈E2(HcDN1(n))

(

du + dv

2

)2

+
∑

uv∈E3(HcDN1(n))

(

du + dv

2

)2

+
∑

uv∈E4(HcDN1(n))

(

du + dv

2

)2

+
∑

uv∈E5(HcDN1(n))

(

du + dv

2

)2

= |E1(HcDN1(n))|
(

3 + 3

2

)2

+ |E2(HcDN1(n))|
(

3 + 5

2

)2

+|E3(HcDN1(n))|
(

3 + 6

2

)2

+ |E4(HcDN1(n))|
(

5 + 6

2

)2

+|E5(HcDN1(n))|
(

6 + 6

2

)2

= 54 + 12.16(n− 1) + 6n

(

81

4

)
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+18(n− 1)

(

121

4

)

+36(27n2 − 57n+ 30)

= 972n2 − 1194n+
795

2
.

�

Theorem 3.2. Let HcDN2(n) be the Honey Comb Derived Network of dimen-

sion 2. Then

(1) χ(HcDN2(n)) = 8677
1000n

2 − 6311
1000n+ 2050

1000 ,

(2) R′(HcDN2(n)) = 15
4 n2 − 43

20n+ 13
10 ,

(3) AG1(HcDN2(n)) =
(

18 + 27√
2

)

n2 − 3636
100 n+ 11856

1000 ,

(4) SK(HcDN2(n)) = 324n2 − 462n+ 180,
(5) SK1(HcDN2(n)) = 1458n2 − 2568n+ 1155,
(6) SK2(HcDN2(n)) = 3078n2 − 5376n+ 2409.

Proof. Let HcDN2(n) be honey Comb Derived Network of dimension 2 shown
in Figure 9. The number of vertices and edges in HcDN2(n) are 9n2−3n+1 and
27n2−21n+6 respectively. There are sixteen types of edges in HcDN2(n) based
on degrees of end vertices of each edge. Table 2 shows such an edge partition of
HcDN2(n).

Figure 9. HcDN2(n) network with n = 3.

Now, using the edge partition given in Table 2 in the formulas of χ(G), R′(G),
AG1(G), SK(G), SK1(G) and SK2(G) in the similar fashion as in Theorem 3.1,
we can get the desired results. �

Honey Comb derived network of dimension 3 HcDN3(n) is obtained by taking
the union of honey comb network, its stellation and medial (see Figure 10), which
is a non-planar graph.

Theorem 3.3. Let HcDN2(n) be the Honey Comb Derived Network of dimen-

sion 3. Then

(1) χ(HcDN3(n)) = 9
√
3n2 − 9298

1000n+ 2366
1000 ,

(2) R′(HcDN3(n)) = 9n2 − 51
10n+ 8

5 ,

(3) AG1(HcDN3(n)) = 54n2 − 4111
100 n+ 11692

1000 ,
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Table 2. Edge partition HcDN2(n).

(du, dv) Number of edges
(3,3) 6
(3,5) 12(n− 1)
(3,9) 12
(3,10) 6(n− 1)
(5,6) 6(n− 2)
(5,9) 12
(5,10) 12(n− 2)
(6,6) 9n2 − 21n+ 12
(6,19) 12
(6,10) 8(n− 2)
(6,12) 18n2 − 54n+ 42
(9,10) 12
(9,12) 6
(10,10) 6(n− 3)
(10,12) 12(n− 2)
(12,12) 9n2 − 33n+ 30

(4) SK(HcDN3(n)) = 324n2 − 342n+ 111,
(5) SK1(HcDN3(n)) = 972n2 − 1236n+ 438,
(6) SK2(HcDN3(n)) = 1944n2 − 2436n+ 1713

2 .

Proof. Let HcDN3(n) be honey Comb Derived Network of dimension 3 shown
in Figure 10. The number of vertices and edges in HcDN3(n) are 18n2− 6n+1
and 54n2 − 42n+ 12 respectively. There are seven types of edges in HcDN3(n)
based on degrees of end vertices of each edge. Table 3 shows such an edge
partition of HcDN3(n).

Figure 10. HcDN3(n) network with n = 3.

Now, using the edge partition given in Table 3 in the formulas of χ(G), R′(G),
AG1(G), SK(G), SK1(G) and SK2(G) in the similar fashion as in Theorem 3.1,
we can get the desired results. �
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Table 3. Edge partition HcDN3(n).

(du, dv) Number of edges
(3,4) 12n
(3,6) 6n
(4,4) 6n
(4,5) 12(n− 1)
(4,6) 12(n− 1)
(5,6) 18(n-1)
(6,6) 54n2 − 108n+ 54

Honey Comb derived network of dimension 4 HcDN4(n) is obtained by taking
the union of honey comb network, its stellation, bounded dual and medial (see
Figure 11), which is a non-planar graph.

Theorem 3.4. Let HcDN4(n) be the Honey Comb Derived Network of dimen-

sion 4. Then

(1) χ(HcDN4(n)) = 1647
1000n

2 − 1188
100 n+ 2976

1000 ,

(2) R′(HcDN4(n)) = 33
4 n2 − 83

20n+ 13
10 ,

(3) AG1(HcDN4(n)) =
(

45 + 27√
2

)

n2 − 573
10 n+ 17928

100 ,

(4) SK(HcDN4(n)) = 486n2 − 636n+ 240,
(5) SK1(HcDN4(n)) = 19444n2 − 3192n+ 1386,
(6) SK2(HcDN4(n)) = 4050n2 − 6618n+ 2868.

Proof. LetHcDN4(n) be honey Comb Derived Network of dimension 4 shown in
Figure 11. The number of vertices and edges in HcDN4(n) are 18n2−6n+1 and
63n2 − 57n+ 18 respectively. There are eighteen types of edges in HcDN4(n)
based on degrees of end vertices of each edge. Table 4 shows such an edge
partition of HcDN4(n).

Figure 11. HcDN4(n) network with n = 3.

Now, using the edge partition given in Table 4 in the formulas of χ(G), R′(G),
AG1(G), SK(G), SK1(G) and SK2(G) in the similar fashion as in Theorem 3.1,
we can get the desired results. �
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Table 4. Edge partition HcDN4(n).

(du, dv) Number of edges
(3,4) 12n
(3,9) 12
(3,10) 6(n− 2)
(4,4) 6n
(4,5) 12(n− 1)
(4,6) 12(n− 1)
(5,6) 6(n− 1)
(5,9) 12
(5,10) 12(n− 3)
(6,6) 36n2 − 72n+ 36
(6,9) 12
(6,10) 18(n− 2)
(6,12) 18n2 − 54n+ 42
(9,10) 12
(9,12) 6
(10,10) 6(n− 3)
(10,12) 12(n− 2)
(12,12) 9n2 − 33n+ 30

4. Concluding Remarks and Graphical Comparison

Here we give geometric comparison of results. In Figure 12-17 , red, blue, or-
ange and green colors are for honeycomb derived networks of dimension 1, 2,
3 and 4 respectively. With the help of these figures one can choose a network
having maximum value and minimums value of topological index. For example
from Figure 12 it can be observed easily that Honeycomb derived network of
dimension 3 has maximum value of sum connectivity index, while honeycomb
derived network of dimension III has minimum value of sum connectivity in-
dex. The Figure 13 tells us that Honeycomb derived network of dimension I
gives maximum value of modify Randić index and honeycomb derived network
of dimension II has minimum value of modify Randić index.

Figure 12. Sum Connectivity Index.
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Figure 13. Modify Randić Index.

Figure 14. AG1 index.

Figure 15. SK Index.

Figure 16. SK1 Index.

Figure 17. SK2 Index.
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In this paper, we computed some newly defined degree-based topological indices
of networks derived from Honey comb networks. Topological indices help us
to guess properties of understudy chemical networks. For example, it has been
experimentally verified that the first Zagreb index is directly related with total
π-electron energy. Also Randić index is useful for determining physio-chemical
properties of alkanes as noticed by chemist Melan Randić in 1975. He noticed the
correlation between the Randić index and several physico-chemical properties of
alkanes like, enthalpies of formation, boiling points, chromatographic retention
times, vapor pressure and surface areas. Our next target is to study mathemati-
cal properties of understudy topological indices and correlate these indices with
chemical properties of networks. To find the bonds of these topological indices
for special families of graphs like trees, hyper cubes, bipartite graphs, completer
graphs etc is an interesting problems for the researchers working in this direc-
tion. Another open problem is to compute distance based topological indices of
these networks.
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