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1. Introduction

Special mappings having fixed point, like contractive, non-expansive and asymp-
totically non-expansive etc, have become a field of interest on their own and have
a variety of application in related field like signal processing, image recovery and
geometry of objects [5] as well as in IMRT optimization to pre-compute dose-
deposition coefficient(DDC) matrix, see [6]. Almost in all branches of math-
ematics, we see some version of theorems relating to fixed points of functions
of special nature. Because of the vast range of applications in almost all areas
of everyday life, the research in this field is moving rapidly and an immense
literature is present now.
Any equation that can be written as T (x) = x, for some map T , that is con-
tracting with respect to some (complete) metric on X, will provide such a fixed
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point iteration. Mann iteration method, [7], was the stepping stone in this re-
gard and is invariably used in most of the problems. But it only ensures week
convergence, see [8]. We require strong convergence in real world problems re-
lating to Hilbert spaces [9]. A large amount of research work is dedicated for the
modification of Mann process, to control and ensure the strong convergence (see
[10, 11, 12, 13, 14, 15, 16]). The first modification of Mann process was proposed
by Nakajo et al. in 2003 [10]. They introduced this modification for only one
nonexpansive mapping, whereas, Kim et al. introduced a variant for asymptot-
ically nonexpansive mappings, in Hilbert spaces, in the year 2006 [12]. In the
same year, Martinez et al. introduced Ishikawa iterative scheme for nonexpan-
sive mappings in Hilbert spaces [13]. They gave a variant of Halpern method.
Su et al. in [14] gave a hybrid iteration process for monotone nonexpansive
mappings. Liu et al. gave a novel method for quasi-asymptotically finite family
of pseudo-contractive mappings [16]. Others have also worked on this problem.
For more detail, see [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].
In this paper, by using viscosity approximation methods for asymptotically non-
expansive mappings, we obtained fixed point of an iterative sequence, which is
the unique solution of variational inequality, with some sufficient and necessary
conditions. The results presented in this paper extend and improve mainly re-
sults in [28], which primarily are the improvement and extension of results in
[1, 2, 3, 4].

2. Preliminaries

Throughout this paper, we will assume E to be a real Banach space, with M 6= ∅
be its closed, bounded and convex subset. Also, T will be a mapping from M
to itself and F (T ) will denote the set of fixed points of T . T is said to be
nonexpansive, if for all y, z ∈ M , ‖T (y) − T (z)‖ ≤ ‖y − z‖. It will be called
asymptotically nonexpansive, if ∃ a sequence lm in [1,∞) with lim

m→∞
lm = 1,

such that ∀ y, z ∈ M and m ≥ 0, ‖Tm(y) − Tm(z)‖ ≤ lm‖y − z‖. Similarly, T
is called uniformly L-Lipschitzian, if ∃ L > 0 such that ∀ y, z ∈ M and m ≥ 0,
‖Tm(y)− Tm(z)‖ ≤ L‖y − z‖.

Remark 2.1. Every mapping, which is contractive, is also nonexpansive. Sim-
ilarly, every mapping, which is nonexpansive, is also asymptotically nonexpan-
sive. Finally, every asymptotically nonexpansive is uniformly L-Lipschitzian
with appropriate constants. Generally, the converses of these statements do not
hold. The asymptotically nonexpansive mappings are important generalization
of nonexpansive mappings. For further details, see [29].

Let f ∈ E∗, where E∗ is the dual of E. The inner product of f ∈ E∗ and
x ∈ E, denoted by 〈f, x〉, is called the duality pairing on E. Let P (E∗) denote
the power set of E∗. Define J : E → P (E∗), for any y ∈ E, as J(y) = {j ∈
E∗ : 〈y, j〉 = ‖y‖2 = ‖j‖2}. This J is called the normalized duality pairing of E.
We will use j as the single-valued normalized duality mapping in J .
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Let S be a unit sphere, in some Banach space E, i-e, S = {y ∈ E : ‖y‖ = 1}.
E is said to have Gâteaux differentiable norm if, for every y, z ∈ S, the limit

lim
h→0

‖y+hz‖−‖y‖
h exists. If for each y ∈ S, the limit exists uniformly for x ∈ S,

then, E is said to have Gâteaux differentiable norm.

Remark 2.2. It is well-known that, if E has a uniformly Gâteaux differentiable
norm, then the normalized duality mapping J : E → P (E∗) is uniformly contin-
uous from the norm topology of E to the weak∗ topology of E∗ on any bounded
subsets of E.

The Normal structure coefficient is defined as N(E) = inf
M⊂E

{
d(M)
r(M)

}
, where

d(M) and r(M) are the diameter and Chebyshev radius of M , respectively [28].
If N(E) > 1, then, E is said to have uniform normal structure. A space which
has uniform normal structure is also known as reflexive.
The variational inequality problem is the problem of solving the inequality,
〈F (y), z − y〉 ≥ 0, for some y ∈M and ∀ z ∈M . Here, F : M → E∗.
A linear continuous functional, v ∈ {l∞}∗, is called a Banach limit [30], if
‖v‖ = 1, vm(ξm) = vm(ξm+1) and lim inf

m→∞
ξm ≤ vm‖ξm‖ ≤ lim sup

m→∞
ξm. This is

true for all x = {ξi} ∈ l∞. Here, common notation is to write vm(ξm), instead
of v(x).
In order to prove our main theorem, we will need the following results.

Lemma 2.3. [21] Let E be a Banach space having uniform normal struc-
ture, M a non-empty bounded subset of E and T : M −→ M be a uniformly
L-Lipschitzian mapping with L <

√
N(E). Suppose also that there exist a

nonempty, bounded convex subset A of M with the property that if x ∈ A, the
weak ω-limit set of T at x, denoted by ωw(x), is a subset of A, i-e, for some
mi →∞,

ωw(x) := {y ∈ E : y = weak− lim
i
Tmi(x), x ∈ A} ⊂ A,

then, T has a fixed point in M .

Lemma 2.4. [31] Let {ξm}, {ηm} and {γm} be three non-negative real sequences,

with ηm = o({ξm}),
∞∑
m=0

γm <∞ and ξm+1 ≤ {1−µm}ξm+ηm+γm, ∀ m ≥ m0,

m0 ∈ Z+, where {µm} ⊂ (0, 1), with
∞∑
m=0

µm =∞. Then, lim
m→∞

ξm = 0.

Lemma 2.5. [23] Let E be a real Banach space and J be a normalized duality
mapping on E. For any y, z ∈ E, j(y + z) ∈ J(y + z) and j(y) ∈ J(y), the
following statements are true.

(1) ‖y + z‖2 ≤ ‖y‖2 + 2〈z, j(y + z)〉,
(2) ‖y + z‖2 ≥ ‖y‖2 + 2〈z, j(y)〉.
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Lemma 2.6. [28] Let (tm) be a sequence in (0, 1), such that lim
m→∞

tm = 1. Also,

let (lm) be a sequence in [1,∞) with lim
m→∞

lm = 1. Then, for any α ∈ (0, 1), the

following are true ∀ m ≥ 0

(1) 0 < tm <
(1− α)lm
lm − α

(2) (l2m − 1) <

(
1− tm

lm

)2

(3)
lm − 1

lm − tm
<

lm − tm
(lm + 1)l2m

→ 0.

3. Main Result

We have a well known Noor iterative process [32]. If (αm), (βm) and (γm) are
sequences in [0, 1], then,

xm+1 = αmxm + (1− αm)T (ym)

ym = βmxm + (1− βm)T (xm)

zm = γmxm + (1− γm)T (xm).

Corresponding to above, we have following three step viscosity approximation
method for asymptotically nonexpansive mappings in Banach spaces, whose
strong convergence is also proved below.

Theorem 3.1. Let E be a real Banach space and let the norm on E be uniformly
Gâteaux differentiable, possessing uniform normal structure. Let M 6= ∅ be
bounded, closed and convex subset of E and let k : M →M be a contraction with
α ∈ (0, 1) be its contractive constant. Also, let T : M → M be asymptotically

nonexpansive mapping, (lm) a sequence in [1,∞), such that
∞∑
m=0

(lm − 1) < ∞

and lim
m→∞

lm = 1. Also, let (tm) be a sequence in (0, 1) such that ∀ m ≥ 0,

tm ∈ (0, ηm), where ηm =
{

(1−α)lm
lm−α , lm(1−

√
l2m − 1)

}
and lim

m→∞
tm = 1.

Given any x0 ∈M and sequences (αm), (βm) and (γm) in [0, 1], define a sequence
(xm) as follows.

xm+1 = αmk(xm) + (1− αm)Tm(ym)

ym = βmxm + (1− βm)Tm(zm)

zm = γmxm + (1− γm)Tm(xm). (1)

Then, for every m ≥ 0, ∃ Nm ∈M , such that

Nm =

{
1− tm

lm

}
k(xm) +

tm
lm
Tm(Nm). (2)

Also, (Nm) and (xm) are strongly convergent to some h ∈ F (T ) which, ∀ u ∈
F (T ), is the unique solution of the variational inequality 〈(I−k)h, j(h−u)〉 ≤ 0,
if and only if the following conditions hold.
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(1) lim
m→∞

‖Nm − T (Nm)‖ = 0 and lim
m→∞

‖xm − T (xm)‖ = 0,

(2) As m→∞, αm → 0 and
∞∑
m=0

αm =∞.

Proof. It follows from Lemma 2.6 that for each m ≥ 0, tm ∈
{

0, (1−α)lm
lm−α

}
.

Define Um : M →M as,

Um(x) =

(
1− tm

lm

)
k(x) +

tm
lm
Tm(x).

It can easily be checked that Um is a contraction. By Banach fixed point theorem,
there exists a unique fixed point Nm ∈M , ∀ m ≥ 0, such that

Um(Nm) =

(
1− tm

lm

)
k(Nm) +

tm
lm
Tm(Nm) = Nm.

Next, we want to show that (Nm) is a sequence that converges strongly to some
h ∈ F (T ), which is the unique solution of variational inequality 〈(I−k)h, j(h−
u)〉 ≤ 0. To show this, let h ∈ F (T ). Then, using lemma 2.5, we get,

‖Nm − h‖2 ≤ 2〈Nm − k(Nm), j(Nm − h)〉+ 2〈k(Nm)− k(h), j(Nm − h)〉
+2〈k(h)− h, j(Nm − h)〉

≤ 2〈Nm − k(Nm), j(Nm − h) + {α2 + 2α}‖Nm − h‖2

+2〈k(h)− h, j(Nm − h)〉.
This means that

(1− α2 − 2α)‖Nm − h‖2 ≤ 2〈Nm − k(Nm), j(Nm − h)〉
+2〈k(h)− h, j(Nm − h)〉. (3)

For the second term on the right in (3), define ψ : M −→ R by ψ(x) = νm‖Nm−
x‖2. Since, E is Banach space having uniform normal structure, it is reflexive.
Also, since lim

m→∞
ψ(x) =∞, ψ is continuous and convex. By Schauder Theorem,

there exist x
′ ∈ M , such that ψ(x

′
) = inf

x∈M
ψ(x) and the set A = {y ∈ M :

ψ(y) = inf
x∈M

ψ(x)} 6= ∅. It is also closed, bounded and convex. Since, ‖Nm −
T (Nm)‖ → 0, by assumption, it can readily be seen that

⋃
x∈M

ωw(x) ⊂ A. By

Lemma 2.3, T has a fixed point h ∈ A.
Since, M is convex, for any x ∈M and t ∈ [0, 1], we have (1− t)h+ tx ∈M . As
established above, ψ is continuous, we get ψ(h) ≤ ψ((1 − t)h + tx). This, with
lemma 2.5-(1), can be written as

0 ≤ ψ((1− t)h+ tx)− ψ(h)

t

=
νm
t

(
‖ (Nm − h) + {h− x}t‖2 − ‖Nm − h‖2

)
≤ νm

t

(
{‖Nm − h‖2 + 2〈(h− x)t, j(Nm − h+ t(h− x))〉} − ‖Nm − h‖2

)
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= 2νm〈h− x, j(Nm − h+ t(h− x))〉.
This implies that

2νm〈x− h, j(Nm − h+ t(h− x))〉 ≤ 0.

Since, M is bounded and j is norm-to-weak uniformly continuous, letting t→ 0
∀ x ∈M , we have

2νm〈x− h, j(Nm − h)〉 ≤ 0.

In particular, since h ∈M and k : M →M , ∃ x ∈M such that k(h) = x. Thus,
the above equation can be written as

2νm〈k(h)− h, j(Nm − h)〉 ≤ 0. (4)

For the first term on the right in (3), ∀ u ∈ F (T ), we can write 〈Nm −
k(Nm), j(Nm − u)〉 by using (2), as follows:

〈Nm − k(Nm), j(Nm − u)〉

=

〈
(1− tm

lm
)k(Nm) +

tm
lm
Tm(Nm)− k(Nm), j(Nm − u)

〉
=

tm
lm
〈Nm − k(Nm), j(Nm − u)〉

+
tm
lm
〈Tm(Nm)−Nm, j(Nm − u)〉 .

This implies that

〈Nm − k(Nm), j(Nm − u)〉 =
tm

lm − tm
〈Tm(Nm)−Nm, j(Nm − u)〉 .

Note that,

〈Nm − Tm(Nm), j(Nm − u)〉 = ‖Nm − u‖2 − 〈Tm(Nm)− u, j(Nm − u)〉.
By lemma 2.5-2, we have

‖Nm − u‖2 − ‖Nm − u+ Tm(Nm)− u‖2 ≤ −2〈Tm(Nm)− u, j(Nm − u)〉.
Also,

‖{Nm − u}+ {Tm(Nm)− u}‖2 ≤ ‖Nm − u‖2 + ‖Tm(Nm)− u‖2

+2‖Nm − u‖‖Tm(Nm)− u‖
≤ {1 + l2m + 2lm}‖Nm − u‖2

= {lm + 1}2‖Nm − u‖2.
This implies that

−lm{lm + 2}‖Nm − u‖2 ≤ ‖Nm − u‖2 − ‖{Nm − u}+ {Tm(Nm)− u}‖2

≤ −2〈Tm(Nm)− u, j(Nm − u)〉.
This means that

− lm
2
{lm + 2}‖Nm − u‖2 ≤ −〈Tm(Nm)− u, j(Nm − u)〉.
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Thus, our equation becomes

{2− l2m − 2lm
2

}‖Nm − u‖2 = ‖Nm − u‖2 −
lm
2
{lm + 2}‖Nm − u‖2

≤ ‖Nm − u‖2 − 〈Tm(Nm)− u, j(Nm − u)〉
= 〈Nm − Tm(Nm), j(Nm − u).〉

The above equation can be written as

〈Tm(Nm)−Nm, j(Nm − u)〉 ≤ { l
2
m + 2lm − 2

2
}‖Nm − u‖2.

This means that

〈Nm − k(Nm), j(Nm − u)〉 ≤ { tm
lm − tm

}{ l
2
m + 2lm − 2

2
}‖Nm − u‖2.

Note that
l2m + 2lm − 2

2
→ 1

2
as m → ∞. Similarly, since tm > 0 and lm ≥ 1,

for all m > 0,
tm

lm − tm
> 0. Thus, lim

m→∞

tm
lm − tm

≥ 0. Since, M is bounded, so

‖Nm − u‖ is bounded, ∀ u ∈ F (T ). This shows that

lim sup
m−→∞

〈Nm − k(Nm), j(Nm − u)〉 ≤ 0. (5)

Since, h ∈ F (T ) and (5) is true for all u ∈ F (T ), we have

lim sup
m−→∞

〈Nm − k(Nm), j(Nm − h)〉 ≤ 0. (6)

Using (4) and (6), it can be seen from (3) that, lim
m→∞

‖Nm−h‖2 = 0. Therefore,

there is a subsequence {Nmc
} ⊂ {Nm}, such that Nmc

→ h, as c→∞.
For uniqueness of the h, Suppose ∃ another subsequence {Nmi} ⊂ (Nm), such
that lim

i→∞
Nmi → s, where s ∈ F (T ). Since Nmc → h, taking u = s in (5), we

get 〈h− k(h), j(h− s)〉 ≤ 0. Similarly, since Nmi
→ s, taking u = h in (5), we

get 〈s− k(s), j(s− h)〉 ≤ 0. Adding these two gives,

〈h− s− k(h) + k(s), j(h− s)〉 ≤ 0.

Therefore we have

‖h− s‖2 ≤ 〈k(h)− h(s), j(h− s) ≤ α‖h− s‖2.

Since α < 1, this implies that h = s. Thus, Nm → h and h ∈ F (T ) is unique.
From (5), for all u ∈ F (T ), we have,

〈h− k(h), j(h− u)〉 ≤ 0.

Hence h ∈ F (T ) is the unique solution of the variational inequality,

〈(I − k)h, j(h− u)〉 ≤ 0.
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In order to show that xm converges strongly to h, we first need to show that

lim sup
m→∞

〈k(h)− h, j(xm+1 − h)〉 ≤ 0. For simplicity, let Cr =
tr
lr

, for each r ≥ 0.

By using (1) and (2), for any m, r ≥ 0, we can write

xm −Nr = (1− Cr){xm − k(Nr)}+ Cr{xm − T r(Nr)}.

Rearranging the above equation gives

Cr(xm − T r(Nr)) = xm −Nr − (1− Cr)(xm − k(Nr)).

Taking squared norm on both sides and using Lemma 2.6(2) gives

C2
r‖xm − T r(Nr)‖2

≥ ‖xm −Nr‖2 − 2(1− Cr)〈xm − k(Nr), j(xm −Nr)〉
≥ ‖xm −Nr‖2 − 2(1− Cr)‖xm −Nr‖2 + 2(1− Cr)〈k(Nr)−Nr, j(xm −Nr)〉
= {2Cr − 1}‖xm −Nr‖2 + 2(1− Cr)〈k(Nr)−Nr, j(xm −Nr)〉.

The rearrangement of the above inequality gives

〈k(Nr)−Nr, j(xm −Nr)〉

≤ {1− 2Cr}‖xm −Nr‖2 + C2
r‖xm − T r(Nr)‖2

2(1− Cr)

=
2Cr − 1

2(1− Cr)
{‖T r(Nr)− xm‖2 − ‖xm −Nr‖2}+

(Cr − 1)2

2(1− Cr)
‖T r(Nr)− xm‖2

≤ 2Cr − 1

2(1− Cr)
{(‖T r(Nr)− T r(xm)‖+ ‖T r(xm)− xm‖)2 − ‖xm −Nr‖2}

+
(Cr − 1)2

2(1− Cr)
‖T r(Nr)− xm‖2

≤ 2Cr − 1

2(1− Cr)
{(l2r − 1)‖Nr − xm‖2 + ‖T r(xm)− xm‖2 + 2lr‖Nr − xm‖

×‖T r(xm)− xm‖}+
(Cr − 1)2

2(1− Cr)
‖T r(Nr)− xm‖2. (7)

Since (xm) and (Nr) are sequences in M , they are bounded. Similarly, since
T : M →M , ‖T r(Nr)− xm‖ is also bounded. So, Let

G1 = sup
m,r≥0

{‖T r(Nr)−xm‖, ‖T r(Nr)−xm‖2, ‖Nr−xm‖, ‖Nr−xm‖2, ‖xm−h‖}.

Note that G1 <∞. Hence, (7) can be written as,

〈k(Nr)−Nr, j(xm −Nr)〉 ≤
2Cr − 1

2(1− Cr)
{(l2r − 1)G1

+2lrG1‖T r(xm)− xm‖+ ‖T r(xm)− xm‖2}+
(Cr − 1)2

2(1− Cr)
G1. (8)
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It follows from Lemma 2.6(2) that (l2r − 1) < (1− Cr)2, which shows that,

(2Cr − 1)

2(1− Cr)
(l2r − 1) ≤ (2Cr − 1)

2(1− Cr)
(1− Cr)2 ≤

(2Cr − 1)

2
(1− Cr). (9)

Substituting (9) in (8), we get,

〈k(Nr)−Nr, j(xm −Nr)〉 ≤ Cr{1− Cr}G1

+
2Cr − 1

2(1− Cr)
{2lrG1‖T r(xm)− xm‖

+‖T r(xm)− xm‖2}. (10)

Further, by the assumption that lim
m→∞

‖xm−T (xm)‖ = 0. Hence, for any r ≥ 1,

‖T r(xm)− xm‖ ≤ {lr−1 + lr−2 + . . .+ l2 + l1}‖T (xm)− xm‖ → 0. (11)

as m→∞. From (10) and (11), ∀ r ≥ 0, we have

lim sup
m→∞

〈k(Nr)−Nr, j(xm −Nr〉 ≤ Cr{1− Cr}G1.

Since, lim
r→∞

tr = 1 and lim
r→∞

lr = 1, we have, lim
r→∞

Cr = 1. Thus,

lim sup
r→∞

lim sup
m→∞

〈k(Nr)−Nr, j(xm −Nr〉 ≤ 0. (12)

Since, Nr → h ∈ F (T ) and k is a contraction map, k(Nr) → k(h). Also, J is
uniformly continuous from the norm topology of E to weak∗ topology of E∗ on
any bounded subset of E, hence for any given ε > 0, ∃ a positive integer m0,
such that for any m, r ≥ m0 we have

|〈h−Nr, j(xm −Nr)〉| <
ε

3

|〈k(Nr)− k(h), j(xm −Nr〉| <
ε

3

|〈k(h)− h, j(xm −Nr)− j(xm)− h〉| <
ε

3
.

Hence, for any m, r ≥ m0 we have

|〈k(Nr)−Nr, j(xm −Nr)〉 − 〈k(h)− h, j(xm)− h〉|
≤ |〈k(Nr)− k(h), j(xm −Nr)〉|+ |〈k(h)− h, j(xm − h)〉|

+|〈h−Nr, j(xm −Nr)〉|

<
ε

3
+
ε

3
+
ε

3
= ε. (13)

From (12) and (13), we have,

lim sup
m→∞

〈k(h)− h, j(xm − h)〉

≤ lim sup
r→∞

lim sup
m→∞

〈k(Nr)−Nr, j(xm −Nr)〉+ ε ≤ ε.

By arbitrariness of ε > 0, this becomes,

lim sup
m→∞

〈k(h)− h, j(xm − h)〉 ≤ 0.
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In order to prove that xm → h, consider the following.

‖xm+1 − h‖2 ≤ (1− αm)2‖Tm(ym)− h‖2 + 2αm〈k(xm)− h, j(xm+1 − h)〉
≤ (1− αm)2l2m‖ym − h‖2 + 2αm〈k(xm)− k(h), j(xm+1 − h)〉

+2αm〈k(h)− h, j(xm+1 − h)〉
≤ (1− αm)2l2m‖ym − h‖2 + 2αmα‖xm − h‖.‖xm+1 − h‖

+2αm〈k(h)− h, j(xm+1 − h)〉. (14)

Using (1), we have ‖zm− h‖ ≤ lm‖xm− h‖ and ‖ym− h‖ ≤ βm‖xm− h‖+ (1−
βm)lm‖zm − h‖. This gives us,

‖ym − h‖ ≤ βm‖xm − h‖+ (1− βm)l2m‖xm − h‖ ≤ l2m‖xm − h‖. (15)

Now consider the second term of (14)

2αmα‖xm − h‖.‖xm+1 − h‖ ≤ αmα{‖xm − h‖2 + ‖xm+1 − h‖2} (16)

Putting the value from (15) and (16) into (14) and solve it.

‖xm+1 − h‖2 ≤ (1− αm)2l6m‖xm − h‖2 + αmα‖xm − h‖2 + αmα‖xm+1 − h‖2

+2αm〈k(h)− h, j(xm+1 − h)〉.

If we define dm+1 := max
m≥0
〈k(h)− h, j(xm − h)〉 ≥ 0, the above equation can be

written as,

(1− αmα)‖xm+1 − h‖2

≤ (1− αm)2l6m‖xm − h‖2 + αmα‖xm − h‖2 + 2αmdm+1

= (1− αm)2(l6m − 1)‖xm − h‖2 + (1− αm)2

+αmα‖xm − h‖2 + 2αmdm+1

= (1− αm)2(lm − 1)(l5m + l4m + l3m + l2m + lm + 1)‖xm − h‖2

+(1− αm){2− α}‖xm − h‖2 + α2
m‖xm − h‖2 + 2αmdm+1.

If we define G2 := sup
m≥1
{{l5m + l4m + l3m + l2m + lm + 1}‖xm − h‖2}, we can write

the above equation as

‖xm+1 − h‖2 ≤ {1− αm}2

1− αmα
{lm − 1}G2 +

1− αm{2− α}
1− αmα

G2

+
α2
m

1− αmα
G2 +

2αm
1− αmα

dm+1. (17)

By assumption, lim
m→∞

αm = 0. Thus, ∃ m0 ∈ Z+, such that 1− αmα > 1
2 . This

means that

1− αm{2− α}
1− αmα

= 1− 2αm{1− α}
1− αmα

≤ 1− 2αm{1− α}.

Thus, inequality (17) is equivalent to,

‖xm+1 − h‖2 ≤ 2{1− αm}2{lm − 1}G2 + {1− 2αm{1− α}}G2 + 2α2
mG2
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+
2αm

1− αmα
dm+1.

Note that, dm → 0, [28]. It is not difficult to show that the assumptions of
lemma 2.4 will be satisfied, if we assume ξm = ‖xm − h‖2, µm = 2{1 − α}αm,
ηm = 2G2α

2
m + 2αm

1−αmα
dm+1 and γm = 2{1−αm}2{lm − 1}G2. Thus, by lemma

2.4, lim
m→∞

‖xm − h‖2 = 0.

Suppose that lim
m→∞

xm = h and lim
m→∞

Nm = h, where h ∈ F (T ), which, ∀ u ∈
F (T ), is the unique solution of the variational inequality 〈(I−k)h, j(h−u)〉 ≤ 0
and T is asymptotically non-expansive mapping as given in the theorem. It is
straightforward to see that as m→∞, we get,

‖xm − T (xm)‖ ≤ {1 + l1}‖xm − h‖ → 0.

Thus, lim
m→∞

‖xm−T (xm)‖ = 0. Using the same argument as above, we can show

that lim
m→∞

‖Nm − T (Nm)‖ = 0.

Next, for any m ≥ 0, let βm = 1 and k(xm) = u in (1), where u ∈M and u 6= h.
Then, (1) can be written as

xm+1 − Tm(xm) = αm(u− Tm(xm)).

Since, T is asymptotically non-expansive and h ∈ F (T ), ‖Tm(xm)− Tm(h)‖ =
‖Tm(xm) − h‖ ≤ lm‖xm − h‖. But, xm → h, (given), which implies that
‖Tm(xm)− h‖ → 0 or Tm(xm)→ h, as m→∞. This implies,

lim sup
m→∞

αmu− Tm(xm) = lim sup
m→∞

‖xm+1 − Tm(xm))‖ = 0.

Since, Tm(xm) → h and u 6= h, ‖u − Tm(xm)‖ 9 0, m → ∞. Thus, for the
above to be true, the only possibility is that αm → 0, as m→∞.

Finally, for any m ≥ 0, let M = {x ∈ E : x ≤ 1}, T = −I, where I is identity
mapping on M , k = 0 and βm = 1, γm = 1. Then, the sequence in (1) can be
written as follows.

xm+1 = (1− αm)Tm(xm) = (1− αm)(−Im)xm = (−1m)(1− αm)xm

= (−1)m+(m−1)(1− αm)(1− αm−1)xm−1
...

= (−1)m+(m−1)+....+1(1− αm)(1− αm−1) · · · (1− α0)x0.

Since, T = −I has a unique fixed point 0 ∈ M , limm→∞ ‖xm+1 − 0‖ =

limm→∞{−1}
m(m+1)

2 Πm
j=0(1−αj)‖x0‖ = 0. This implies that Π∞j=0(1−αj)‖x0‖ =

0, which means that
∑∞
j=0 αj =∞. �
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As already mentioned in Remark 2.1, every nonexpansive mapping is a particular
case of an asymptotically nonexpansive mapping. This means that Theorem 3.1
is true for any nonexpansive mapping as well. This is specifically interesting
because if T is nonexpansive, then, we can remove the boundedness requirement
on M in Theorem 3.1 {for further details see [1]}. Again, since the sequence
{lm} is a constant-valued sequence 1’s, in this scenario, we get ηm = 1, ∀ m ≥ 0.
Hence from Theorem 3.1, we can obtain the following theorem.

Theorem 3.2. Let E be a real Banach space and let the norm on E be uniformly
Gâteaux differentiable, possessing uniform normal structure. Let M 6= ∅ be
closed and convex subset of E and let k : M →M be a contraction with α ∈ (0, 1)
be its contractive constant. Also, let T : M → M be a nonexpansive mapping,
with F (T ) 6= ∅. Also, assume (tm) to be a sequence in (0, 1) with lim

m→∞
tm = 1.

Given any x0 ∈M and sequences (αm), (βm) and (γm) in [0, 1], define a sequence
(xm) as follows.

xm+1 = αmk(xm) + (1− αm)T (ym)

ym = βmxm + (1− βm)T (zm)

zm = γmxm + (1− γm)T (xm).

Then, for every m ≥ 0, ∃ Nm ∈M , such that

Nm =

{
1− tm

lm

}
k(xm) +

tm
lm
T (Nm).

Also, (Nm) and (xm) are strongly convergent to some h ∈ F (T ) which, ∀ u ∈
F (T ), is the unique solution of the variational inequality 〈(I−k)h, j(h−u)〉 ≤ 0,
if and only if the following conditions hold.

(1) lim
m→∞

‖Nm − T (Nm)‖ = 0 and lim
m→∞

‖xm − T (xm)‖ = 0,

(2) As m→∞, αm → 0 and
∞∑
m=0

αm =∞.

4. Conclusion

In this paper, we introduced a new viscosity approximation method. Strong con-
vergence of proposed method is proved under certain assumptions. In uniformly
smooth Banach spaces, Theorem 3.2 extends and improves the corresponding
results of Xu [2], which themselves were an extension of results by Moudafi in
[25]. Theorem 3.1 extends and improves the results presented by Chidume et al.
[3], the scheme presented by Shahzad and Udomene [4], the theorem proved by
Lim and Xu [1] and the corresponding results in Schu [[17], [18]]. Our result is
also a direct extension, as well as, improvement of the work done by Chang et
al. [28].
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