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Abstract. Let D be an open subset of RN and f : D → RN a contin-

uous function. The classical topological degree for f demands that D be
bounded. The boundedness of domains is also assumed for the topologi-

cal degrees for compact displacements of the identity and for operators of

monotone type in Banach spaces. In this work, we follow the methodology
introduced by Nagumo for constructing topological degrees for functions on

unbounded domains in finite dimensions and define the degrees for Leray-

Schauder operators and (S+)-operators on unbounded domains in infinite
dimensions.

Mathematics Subject Classification: Primary 47H14; Secondary 47H05,

47H11.

Key words and phrases: Brouwer degree; Leray-Schauder degree; Brow-
der and Skrypnik degrees; Unbounded domains; Bounded demicontinuous

operators of type (S+).

1. Introduction

The theory of topological degrees has progressed significantly in recent years
because of its applicability to the analysis of ordinary and partial differential
equations and continuation methods in nonlinear analysis in general (e.g. see
[1, 2, 3, 4, 5, 6, 7, 8, 9]). The classical topological degree theory developed by
Brouwer [10] in 1912 for continuous functions on finite-dimensional spaces and
the Leray-Schauder degree [11] in 1934 for compact displacements of the iden-
tity in Banach spaces both assume the boundedness of the domains over which
the degrees are defined. There are numerous generalizations and extensions of
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these degree theories all of which are expressed, one way or the other, in terms
of the Brouwer degree or the Leray-Schauder degree, and therefore the bound-
edness of domains becomes an essential consideration. Nagumo [12] defined the
Brouwer degree based on infinitesimal analysis and indicated the possibility for
developing degree theories over unbounded domains. In this paper, we construct
topological degrees on unbounded domains both in finite-dimensional and infi-
nite dimensional spaces and discuss their properties. For the development of
degree theories for operators of monotone type that involve (S+)-operators and
their generalized and/or multivalued versions, the reader is referred to Kartsatos
and Skrypnik [1, 2], Berkovits [13], Berkovits and Mustonen [14], Kartsatos and
the first author [5, 7], Kartsatos and Kerr [8], Hu and Papageorgiou [15], Kittilä
[16] and the references therein. For the coincidence degree developed by Mawhin
for nonlinear perturbations of certain Fredholm operators in normed spaces, the
reader is referred to [17].
In Section 2, we elaborate on the Nagumo’s definition of the Brouwer degree
on unbounded domains by verifying the assertions made in [12]. We then prove
a version of the Leray-Schauder lemma for this new degree. In Section 3, we
construct the Leray-Schauder degree on unbounded domains and discuss its de-
sirable properties. Section 4 deals with the degree theory on unbounded domains
for operators of type α0(S+) introduced by Skrypnik [18].

2. Brouwer Degree on Unbounded Domains

Let D ⊂ RN be open and f : D → RN continuous. Let D be the set of all
sequences in D that have no limit points in D. Define the set f{D} to be
the set of all limit points of the sequence {f(xn)} for {xn} ∈ D . It follows
that f(∂D) ⊂ f{D}. In fact, let p ∈ f(∂D). Then there exist x0 ∈ ∂D and
{xn} in D such that f(x0) = p and xn → x0. The continuity of f implies
f(xn) → f(x0) = p. Since x0 /∈ D, it follows that {xn} ∈ D , and therefore
p ∈ f{D}. The inclusion f(∂D) ⊂ f{D} may be strict in general (e.g. for
N = 1, let D = (1,∞), f(x) = 1/x. Then f(∂D) = {1} and f{D} = {0, 1});
however, if D is bounded, then f{D} = f(∂D). To prove this, let q ∈ f{D}.
Then there exists {xn} ∈ D such that {f(xn)} has a subsequence {f(xnk

)}
such that f(xnk

) → q as k → ∞. Since D is bounded, we may assume that
{xnk

} converges to x0 ∈ D. Since {xn} ∈ D , we have x0 ∈ ∂D, and therefore
f(x0) = q, i.e. q ∈ f(∂D).
Suppose now that D is unbounded, and assume that p /∈ f{D} for the same f
as above. Denote

R = {x ∈ D : f(x) = p}.
We can show that R is closed and bounded in RN . In fact, let {xn} be a sequence
in R such that xn → x0 for some x0 ∈ RN . Then f(xn) = p for all n, and x0 ∈ D.
If x0 ∈ ∂D, then {xn} ∈ D so that p ∈ f{D}, a contradiction. Thus, x0 ∈ D.
Since f(x0) = p, we have x0 ∈ R, and therefore R is closed. In order to show
that R is bounded, suppose the contrary and let {xn} be a sequence in R such
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that ‖xn‖ → ∞. This implies that {xn} ∈ D . However, since xn ∈ D and
f(xn) = p for all n, we have p ∈ f{D}, which is a contradiction. Now, let D1

and D2 be any two bounded open sets such that R ⊂ Di and Di ⊂ D for i = 1, 2.
Then f is continuous on Di, p 6∈ f(∂Di) and the Brouwer’s degree, dB(f,Di, p),
is well-defined for i = 1, 2. Also, since there is no solution of f(x) = p in
(D1 \R) ∪ (D2 \R), we have

dB(f,D1, p) = dB(f,D2, p).

We define the degree of f at p over D as

d(f,D, p) = dB(f,D0, p), (1)

where D0 is any bounded open set containing R and D0 ⊂ D.
The degree mapping defined in (1) has the following properties, usually called
the desirable properties of any degree:

(i) Let I be the identity function. Then d(I,D, p) = 1 if p ∈ D and p /∈
I{D}, and d(I,D, p) = 0 if p /∈ D . Note that I{D} = ∂D, and therefore
it may be empty.

(ii) If d(f,D, p) 6= 0, then there exists x ∈ D such that f(x) = p.
(iii) If D ⊃

⋃n
i=1Di, where Di’s are mutually disjoint open sets such that

D =
⋃n

i=1Di and p 6∈ f{D}, then

p 6∈
n⋃

i=1

f{Di} and d(f,D, p) =

n∑
i=1

d(f,Di, p).

(iv) (Homotopy Invariance) If f(t, x) is a continuous on [0, 1] × D and p :
[0, 1] → RN is continuous such that p(t) /∈ f(t; t0){D} for all t ∈ [0, 1]
and t0 ∈ [0, 1] (see the paragraph below for notations used here), then
d(f(t, ·), D, p(t)) is constant for all t ∈ [0, 1].

We will only prove the homotopy invariance property. Let f : [0, 1]×D → RN

be a continuous mapping, and let f(t; t0){D} denote the set of all limit points
of {f(tn, xn)}, where {tn} ⊂ [0, 1], tn → t0, and {xn} ∈ D . As before, if D is
bounded, then f(t; t0){D} = f({t0} × ∂D).

Lemma 2.1. Let f : [0, 1] × D → RN be continuous, t0 ∈ [0, 1] be fixed, and
p /∈ f(t; t0){D}. Then there exist a neighborhood U of p, a number δ > 0 and a
bounded open set D0 such that D0 ⊂ D and

U ∩ f(t,D \D0) = ∅

for all t ∈ (t0 − δ, t0 + δ).

Proof. Assume that the conclusion does not hold. For each n ∈ N, define

Dn = {x ∈ D : ‖x‖ < n and dist(x, ∂D) > 1/n}.

Then each Dn is open and bounded. It is also clear that Dn ⊂ D for all n. By
the assumption, for each n ∈ N, there exist yn ∈ RN and tn ∈ [0, 1] such that
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tn → t0 and

yn ∈ B(p; 1/n) ∩ f(tn, D \Dn).

Then there exists xn ∈ D \ Dn such that f(tn, xn) = yn → p. Since xn 6∈ Dn,
we have either ‖xn‖ ≥ n or dist(xn, ∂D) ≤ 1/n. If ‖xn‖ ≥ n for infinitely many
values of n, then we may assume that {xn} ∈ D , and so p /∈ f(t; t0){D}, which
is a contradiction. Therefore dist(xn, ∂D) ≤ 1/n for infinitely many values of n.
If {xn} has a subsequence {xnk

} such that xnk
→ x0 for some x0 ∈ RN , then

dist(xnk
, ∂D)→ dist(x0, ∂D) = 0, which implies x0 ∈ ∂D. Since f is continuous,

we have f(t0, x0) = p so that p ∈ f(t0, ∂D) which contradicts p /∈ f(t; t0){D}
because f(t0, ∂D) ⊂ f(t; t0){D} . This means that {xn} has no convergent
subsequence, and therefore {xn} ∈ D . However, this implies p /∈ f(t; t0){D},
which is again a contradiction. This completes the proof. �

Proposition 2.2. Let f : [0, 1]×D → RN be continuous, and assume that, for
a fixed t0 ∈ [0, 1], p(t) /∈ f(t; t0){D} for all t ∈ [0, 1]. Then there exist number
δ > 0, an open set U and a bounded open set D0 with D0 ⊂ D such that

p(t) ∈ U and U ∩ f(t,D \D0) = ∅

for all t ∈ (t0 − δ, t0 + δ).

Proof. Since p(t0) /∈ f(t; t0){D}, by Lemma 2.1 there exist a neighborhood U of
p(t0), a number δ > 0 and a bounded open set D0 such that

D0 ⊂ D and U ∩ f(t,D \D0) = ∅

for all t ∈ (t0 − δ1, t0 + δ). The continuity of p ensures that we can shrink δ, if
necessary, so that p(t) ∈ U for all t ∈ (t0 − δ, t0 + δ). �

Theorem 2.3 (Homotopy Invariance). Let f : [0, 1]×D → RN be continuous,
and let p : [0, 1] → RN be continuous such that, for every t0 ∈ [0, 1], p(t) /∈
f(t; t0){D} for all t ∈ [0, 1]. Then the degree d(f(t, ·), D, p(t)) is a constant for
all t ∈ [0, 1].

Proof. In the settings of Proposition 2.2, we have ∂D0 = D0 \D0 ⊂ D \D0 and
U ∩ f(t,D \D0) = ∅ for all t ∈ (t0 − δ, t0 + δ), and therefore p(t) /∈ f(t, ∂D0).
This implies

d(f(t, ·), D, p(t)) = dB(f(t, ·), D0, p(t))

for all t ∈ (t0−δ, t0 +δ). Since [0, 1] is compact, by applying a standard covering
argument we find that the degree d(f(t, ·), D, p(t)) is constant for all t ∈ [0, 1].

�

We next give a version of the Leray-Schauder lemma [18, Lemma 1.1] for the
Brouwer degree on unbounded domains. If x = (x1, . . . , xN−1, xN ) ∈ RN , we
write x = (x′, xN ), where x′ = (x1, . . . , xN−1) ∈ RN−1.
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Theorem 2.4. Let D ⊂ RN be an unbounded open set and 0 ∈ D. Let f : D →
RN be continuous with f = (f1, . . . , fN ) and satisfy

fN (x) ≡ xN for x = (x′, xN ) ∈ D.

Suppose that 0 6∈ f{D} and D′ = {x′ : (x′, 0) ∈ D} is nonempty. Then

d(f,D, 0) = d(f ′, D′, 0),

where f ′ : D′ → RN−1 defined by

f ′(x′) = (f1(x′, 0), . . . , fN−1(x′, 0)).

Proof. We assert that 0 /∈ f ′{D′}. Otherwise, there would exist a sequence
{u′n} ∈ D ′ such that f ′(u′n) → 0. This implies that fi(u

′
n, 0) → 0 for each

i = 1, . . . , N − 1. Let vn = (u′n, 0). Then fN (vn) = 0 and {vn} ∈ D and
f(vn)→ 0. This implies 0 ∈ f{D}, a contradiction.
Next, let D0 ⊂ RN be a bounded open set containing R = {x ∈ D : f(x) = 0}
such that D0 ⊂ D. Since x ∈ R implies xN = 0, we define R′ = {x′ ∈ RN−1 :
x ∈ R}. Then R′ = {x′ ∈ D′ : f ′(x′) = 0}, and therefore D′0 := {x′ : x ∈ D0}
is a bounded open set in RN−1 satisfying R′ ⊂ D′0 and D′0 ⊂ D′. Applying the
Leray-Schauder lemma [18, Lemma 1.1], we see that

dB(f,D0, 0) = dB(f ′, D′0, 0).

Since these degrees are independent of the choice of D0, by the definition of the
degree in (1), we have

d(f,D, 0) = d(f ′, D′, 0).

�

3. Leray-Schauder Degree on Unbounded Domains

Let X be a Banach space, D an open subset of X and T : D → X a compact
operator (T is continuous and maps bounded sets to relatively compact sets).
When D is bounded, the construction of the Leray-Schauder degree for the
compact displacement of the identity over D uses the fact due to Schauder that
each compact operator on a bounded domain is the uniform limit of a sequence
of compact operators of finite-dimensional range. This consideration relies on
the boundedness of D so that T (D) is compact. However, if D is unbounded,
the approximation scheme is not applicable. In this section, we give a definition
of the degree of I − T when D is unbounded.
As in Section 1, we define the set (I − T ){D} as the set of limit points of
the sequence {xn − Txn} for {xn} ∈ D , where D has the same meaning as in
Section 1. One can easily verify that (I − T )(∂D) ⊂ (I − T ){D}. However,
if D is bounded, then it follows that (I − T )(∂D) = (I − T ){D}. In fact,
suppose D is bounded, and let p ∈ (I − T ){D}. Then there exists {xn} ∈ D
such that xn−Txn → p. Since D is bounded and T is compact, we may assume
(up to a subsequence) that Txn → y0 for some y0 ∈ X. This implies that
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xn → y0 + p =: x0, say. By the definition of D , we must have x0 ∈ ∂D. The
continuity of T yields Txn → Tx0, and therefore p = x0 − Tx0 ∈ (I − T )(∂D).
For a given point p ∈ X such that p /∈ (I − T ){D}, we now proceed to give a
meaning to the degree mapping d(I − T,D, p). Suppose p /∈ (I − T ){D}, and
define R = {x ∈ D : x − Tx = p}. We can easily show that R is bounded and
closed in X. Let Di, i = 1, 2, be bounded open sets such that R ⊂ Di ⊂ D.
Since x − Tx = p has no solutions in (D1 \ R) ∪ (D2 \ R), the Leray-Schuader
degree, dLS, satisfies

dLS(I − T,D1, p) = dLS(I − T,D2, p).

We define

d(I − T,D, p) = dLS(I − T,D0, p),

where D0 is any bounded open set such that R ⊂ D0 ⊂ D.
We now proceed to consider suitable homotopies under which this new degree is
invariant as in Proposition 3.

Lemma 3.1. Let p /∈ (I − T ){D}. Then there exist a neighborhood U of p and
a bounded open set D0 such that D0 ⊂ D and

U ∩ (I − T )(D \D0) = ∅.

Proof. Assume that the conclusion does not hold. For each n ∈ N, define Dn as
in Lemma 2.1. Then Dn is open and bounded. It is also clear that Dn ⊂ D for
all n. By the assumption, for each n ∈ N, there exists

yn ∈ B(p; 1/n) ∩ (I − T )(D \Dn).

Then, for each n ∈ N, there exists xn ∈ D \Dn such that xn − Txn = yn → p.
Since xn 6∈ Dn, either ‖xn‖ ≥ n or dist(xn, ∂D) ≤ 1/n. If ‖xn‖ ≥ n for infinitely
many values of n, then we may assume that {xn} ∈ D , and so p ∈ (I − T ){D},
which is a contradiction. Therefore dist(xn, ∂D) ≤ 1/n for infinitely many values
of n. If {xn} has a subsequence {xnk

} such that xnk
→ x0 for some x0 ∈ X, then

dist(xnk
, ∂D) → dist(x0, ∂D) = 0, which implies x0 ∈ ∂D. Since T is compact,

we have x0 − Tx0 = p so that p ∈ (I − T )(∂D), a contradiction. This means
that {xn} has no convergent subsequence, and therefore {xn} ∈ D . However,
this also implies p ∈ (I − T ){D}, a contradiction. �

Let T : [0, 1]×D → X be a compact mapping, and let (I−T )(t; t0){D} denote the
set of all limit points of {xn−T (tn, xn)}, where {tn} ⊂ [0, 1], tn → t0, and {xn} ∈
D . As before, if D is bounded, then (I − T )(t; t0){D} = (I − T )({t0} × ∂D).
In view of Lemma 3.1, we can prove an analog of Lemma 2.1 which we only state
as follows.

Lemma 3.2. Let T : [0, 1] × D → X be compact and t0 ∈ [0, 1] be fixed. Let
p /∈ (I − T )(t; t0){D}. Then there exist a neighborhood U of p, a number δ > 0
and a bounded open set D0 such that D0 ⊂ D and

U ∩ (I − T )(t,D \D0) = ∅
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for all t ∈ (t0 − δ, t0 + δ).

Theorem 3.3 (Homotopy Invariance). Let T : [0, 1] × D → X be compact,
and let p : [0, 1] → RN be continuous such that, for all t0 ∈ [0, 1], p(t) /∈
(I − T )(t; t0){D} for all t ∈ [0, 1]. Then the degree d(f(t, ·), D, p(t)) is constant
for all t ∈ [0, 1].

Proof. For each fixed t0 ∈ [0, 1] as in Lemma 3.2, we have ∂D0 = D0 \ D0 ⊂
D \D0 and U ∩ (I − T )(t,D \D0) = ∅ for all t ∈ (t0 − δ, t0 + δ), and therefore
p(t) /∈ (I − T )(t, ∂D0). This implies

d(I − T (t, ·), D, p(t)) = dLS(I − T (t, ·), D0, p(t))

for all t ∈ (t0 − δ, t0 + δ). Since [0, 1] is compact, by applying the Borel’s
covering argument we find that the degree d(I − T (t, ·), D, p(t)) is constant for
all t ∈ [0, 1]. �

4. Degree for (S+)-Operators on Unbounded Domains

In what follows, X denotes a real separable reflexive Banach space and X∗ its
dual. Without loss of generality, we assume that X is locally uniformly convex.
In this setting, the normalized duality mapping J from X to X∗ is single-valued,
bicontinuous and strongly maximal monotone operator given by

Jx = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖2, ‖x∗‖ = ‖x‖}.

The mapping J plays crucial roles in establishing existence results for operator
equations that involve operators of monotone type in Banach spaces (cf. [5, 13,
19, 15, 1, 18]). A more general class of operators is given in the definition below.

Definition 4.1. Let D ⊂ X be open. An operator T : D → X∗ is said to be
of class α0(S+) if each sequence {un} in D with un ⇀ u0 in X, Tun ⇀ 0 in X∗

and

lim sup
n→∞

〈Tun, un − u0〉 ≤ 0

is in fact strongly convergent to u0.

The operators of class α0(S+) were first studied by Skrypnik [18] and are more
general than (S+)-operators considered by Browder [19], Berkovits [13], and
several other authors.
Let T : D → X∗ be a bounded demicontinuous of type α0(S+), and let T{D}
be the set of all weak limits of {Tun} where {un} ∈ D , where D , as in previous
sections, denotes the set of all sequences in D that have no limit points in
D. We want to make sure that the set T{D} contains T (∂D). In fact, let
p ∈ T (∂D). Then p = Tu0 for some u0 ∈ ∂D, and therefore there exists a
sequence {un} ∈ D such that un → u0. By the demicontinuity of T , we get
Tun ⇀ Tu0 = p, which implies p ∈ T{D}. Thus, T (∂D) ⊂ T{D}. One can
verify that when D is bounded and T maps bounded sets to relatively compact
sets, then T (∂D) = T{D}.
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We proceed to define the degree, d(T,D, 0), of a bounded demicontinuous map-
ping T of type α0(S+) under the condition 0 /∈ T{D} when D is unbounded.
In this setting, let R = {x ∈ D : Tx = 0}. As in the previous sections, R is
bounded and closed in X here as well. In fact, let x0 ∈ R. Then there exists
a sequence {xn} ⊂ D with Txn = 0 such that xn → x0. Since T is demicon-
tinuous on D, Txn ⇀ Tx0 = 0. If x0 ∈ D, we are done. Otherwise, x0 ∈ ∂D.
Then x0 ∈ T (∂D) ⊂ T{D}, a contradiction. Thus, R is closed in X. To show
the boundedness of R, suppose that there exists a sequence {xn} in R such
that ‖xn‖ → ∞. Clearly, {xn} ∈ D and Txn = 0 for all n. This contradicts
0 /∈ T{D}, and therefore R must be bounded. Choose a bounded open set U
such that R ⊂ U ⊂ D.

Theorem 4.2. Let D ⊂ X be an unbounded open set and T : D → X∗ a bounded
demicontinuous mapping of type α0(S+). Assume 0 /∈ T{D}. Then there exists
n0 ∈ N such that 0 /∈ Tn(∂Un) for all n ≥ n0 and the degree dB(Tn, Un, 0) is
defined. Moreover, the degree dB(Tn, Un, 0) is independent of n.

Proof. Since 0 /∈ T{D}, there exists a bounded open subset U of X such that
R ⊂ U ⊂ D, where R = {x ∈ D : Tx = 0}. It now follows that 0 /∈ T (∂U).
Let {vi}, i = 1, 2, . . . , be a complete system of X. Suppose that {v1, . . . , vn} is
linearly independent for every n, and let Fn = span{v1, . . . , vn}. We now define
the finite-dimensional approximation Tn of T as

Tnu =

n∑
i=1

〈Tu, vi〉vi for u ∈ Un, Un = U ∩ Fn. (2)

For each n, Un is a bounded open subset of Fn, and Tn : Un → Fn is a continuous
operator. We now apply Theorem 2.1 in [18, p.35] to obtain the rest of the
conclusion. �

Remark 4.3. It would be interesting to determine whether a version of Theo-
rem 4.2 may be given by directly using the approximations Tn defined on Dn,
where Dn = D ∩ Fn. The set Dn is open in Fn, but it may be unbounded.
In this case, the degree theory introduced in Section 2 may be used to compute
d(Tn, Dn, 0). A suitable condition replacing 0 /∈ T{D} in Theorem 4.2 is needed.
Such a condition must be contradicted by the condition that 0 ∈ Tnk

{Dnk
} for

a sequence {nk} of positive integers with nk → ∞ as k → ∞. Here, Dnk
has

the same meaning as that of D in Section 2. A version of the Leray-Schuader
lemma given in Theorem 2.4 may be useful to establish the independence of
d(Tn, Dn, 0) for sufficiently large n.
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