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NECESSARY AND SUFFICIENT CONDITION FOR A

SURFACE TO BE A SPHERE

ALEXANDER G. RAMM1

Abstract. Let S be a C1-smooth closed connected surface in R3, the
boundary of the domain D, N = Ns be the unit outer normal to S at the

point s, P be the normal section of D. A normal section is the intersection

of D and the plane containing N . It is proved that if all the normal sections
for a fixed N are discs, then S is a sphere. The converse statement is trivial.
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1. Introduction

Let S be a C1-smooth closed connected surface in R3, the boundary of the
domain D, N = Ns be the unit outer normal to S at the point s. Throughout
we assume that S satisfies these assumptions. Let P be the normal section of
D. A normal section is the intersection of D and the plane containing N . Our
result is the following:

Theorem 1.1. If all the normal sections for a fixed N are discs, then S is a
sphere. Conversely, if S is a sphere then all its normal sections are discs.

There are several ”characterizations” of the sphere in the literature. We will use
the following.
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Lemma 1.2. Let r = r(p, q) be a parametric representation of S. If [r(p, q), Ns] =
0 for all s = s(p, q) on S, then S is a sphere. Here [r,N ] is the vector product
of two vectors.

A proof of this result can be found in [1, 2]. For convenience of the reader a
short proof of Lemma 1.2 is given in Section 2.

2. Proof

Theorem 1.1. Let s ∈ S be a fixed point and P be one of the normal sections of
D corresponding to Ns. By assumption, this section is a disc. Let O be its center
and R be its radius. Rotate P about Ns. Each of the resulting normal sections
is a disc of radius R centered at O. If r = r(p, q) is a parametric representation
of S then [r,N ] = 0 for every point of S because each such point belongs to a
boundary of a disc centered at O with radius R. From Lemma 1.2 it follows that
S is a sphere. �

Lemma 1.2. One has N = [rp(p, q), rq(p, q)]/|[rp(p, q), rq(p, q)]|, where [a, b] is
the vector product of a and b, and |a| is the length of the vector. Therefore
[r,N ] = 0 implies [r, [rp(p, q), rq(p, q)]] = 0 or rp(r, rq) − rq(r, rp) = 0, where
(a, b) is the scalar product of two vectors. The vectors rp and rq are linearly
independent since the surface S is smooth. Thus, (r, rq) = 0 and (r, rp) = 0.
Consequently (r, r) = const, that is, S is a sphere. �
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