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ASSOCIATED WITH SINGULAR PARTIAL DIFFERENTIAL

OPERATORS
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Abstract. We define fractional transforms Rµ and Hµ, µ > 0 on the
space R×Rn. First, we study these transforms on regular function spaces

and we establish that these operators are topological isomorphisms and we

give the inverse operators as integro differential operators. Next, we study
the Lp-boundedness of these operators. Namely, we give necessary and

sufficient condition on the parameter µ for which the transforms Rµ and

Hµ are bounded on the weighted spaces Lp([0,+∞[×Rn, r2adr ⊗ dx) and
we give their norms.
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1. Introduction

Let Dj , 1 ≤ j ≤ n, and Ξµ, µ > 0, be the singular partial differential operators
defined by

Dj =
∂

∂xj

Ξµ = (
∂

∂r
)2 +

2µ

r

∂

∂r
+

n∑
j=1

(
∂

∂xj
)2; (r, x) ∈]0,+∞[×Rn, µ > 0.
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Ξµ is a Bessel-Laplace operator.
When µ = n−1

2 ; n ∈ N∗, Ξn−1
2

is the Laplacien operator on Rn×Rn when acting

on the functions f : Rn × Rn −→ C, that are radial with respect to the first
variable.

For every (λ0, λ) ∈ C× Cn, the system


Dju(r, x) = −iλju(r, x), 1 6 j 6 n
Ξµu(r, x) = −(λ20 + λ2)u(r, x)

u(0, 0) = 1,
∂

∂r
u(0, x) = 0,∀x ∈ Rn

admits a unique solution given by

ψλ0,λ(r, x) = jµ− 1
2
(rλ0)e−i〈λ|x〉, (1)

where
λ2 = λ21 + λ22 + ...+ λ2n, λ = (λ1, λ2, ..., λn)
〈λ|x〉 = λ1x1 + λ2x2 + ...+ λnxn
jµ− 1

2
is the modified Bessel function given by

jµ− 1
2
(s) = 2µ−

1
2 Γ(µ+

1

2
)
Jµ− 1

2
(s)

sµ−
1
2

= Γ(µ+
1

2
)

∞∑
k=0

(−1)k

k! Γ(µ+ k + 1
2 )

(
s

2
)2k

=
2 Γ(µ+ 1

2 )
√
π Γ(µ)

∫ 1

0

(1− t2)µ−1 cos(st)dt,

and Jµ− 1
2

is the Bessel function of first kind and index µ− 1
2 ([1, 2, 3, 4]).

The eigenfunction ψλ0,λ allows us to define the Fourier transform F̃µ− 1
2

con-

nected with the operators Dj , 1 6 j 6 n and Ξµ by

F̃µ− 1
2
(f)(λ0λ) =

∫ ∞
0

∫
Rn
f(r, x)ψλ0,λ(r, x)dνµ(r, x)

=

∫ ∞
0

∫
Rn
f(r, x)jµ− 1

2
(rλ0)e−i〈λ|x〉dνµ(r, x), (2)

where f is any integrable function on [0,+∞[×Rn with respect to the measure

dνµ(r, x) =
r2µdr

2µ−
1
2 Γ(µ+ 1

2 )
⊗ dx

(2π)
n
2
. (3)

Many harmonic analysis results related to the Fourier transform F̃µ− 1
2

are es-

tablished ([5, 6, 7, 8, 9, 10]).
Also, many uncertainty principles have been cheked for this transform ([11, 12,
13, 14]).
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On the other hand, the eigenfunction ψλ0,λ admits the Poisson integral repre-
sentation

ψλ0,λ(r, x) =
2 Γ(µ+ 1

2 )
√
π Γ(µ)

r1−2µ
∫ r

0

(r2 − t2)µ−1 cos(λ0t)e
−i〈λ|x〉dt

=
2Γ(µ+ 1

2 )
√
π Γ(µ)

∫ 1

0

(1− t2)µ−1 cos(λ0rt)e
−i〈λ|x〉dt. (4)

Using the relation (4), we define the fractional transform Rµ on Ce(R×Rn) (the
space of continuous functions on R×Rn, even with respect to the first variable)
by

Rµ(f)(r, x) =
2 Γ(µ+ 1

2 )
√
π Γ(µ)

r1−2µ
∫ r

0

(r2 − t2)µ−1f(t, x)dt; (r, x) ∈]0,+∞[×Rn

=
2 Γ(µ+ 1

2 )
√
π Γ(µ)

∫ 1

0

(1− t2)µ−1f(tr, x)dt; (r, x) ∈ R× Rn. (5)

This involves in particular, that

ψλ0,λ(r, x) = Rµ

(
cos(λ0·)e−i〈λ|·〉

)
(r, x), (6)

which gives the mutual connecion between the functions ψλ0,λ and cos(λ0·)e−i〈λ|·〉.
On the other hand, we shall prove in the next section that for every integrable
function f on [0,+∞[×Rn with respect to the measure dνµ(r, x) and for every
bounded function g on R× Rn, even with respect to the first variable, we have
the duality relation∫ ∞

0

∫
Rn
f(r, x)Rµ(g)(r, x)dνµ(r, x) =

∫ ∞
0

∫
Rn
g(r, x)Hµ(f)(r, x)dm(r, x),(7)

where
dm is the Lebesgue measure on ]0,+∞[×Rn,

dm(r, x) =

√
2

π
dr ⊗ dx

(2π)
n
2
. (8)

Hµ is the fractional transform defined by

Hµ(f)(r, x) =
1

2µ Γ(µ)

∫ ∞
r

(t2 − r2)µ−1f(t, x)2tdt.

The relations (2), (6) and (7) show that for all integrable functions f, g on
[0,+∞[×Rn with respect to the measure dνµ(r, x), we have

F̃µ− 1
2
(f) = ΛoHµ(f) (9)

and

Hµ(f ∗ g) = Hµ(f) ∗o Hµ(g), (10)
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where
Λ is the usual Fourier transform defined by

Λ(f)(λ0, λ) =

∫ ∞
0

∫
Rn
f(r, x) cos(λ0r)e

−i〈λ|x〉dm(r, x),

∗ is the convolution product associated with the Fourier transform F̃µ− 1
2
,

∗o is the usual convolution product defined by

f ∗o g(r, x) =

∫ ∞
0

∫
Rn
f(s, y)σr,x(g)(s,−y)dm(s, y)

and σr,x is the usual translation operator given by

σr,x(f)(s, y) =
1

2

(
f(r + s, x+ y) + f(|r − s|, x+ y)

)
. (11)

Our purpose in this work is to study the fractional transforms Rµ and Hµ in
two ways.
In the second section, we will prove that the operator Rµ is a topological iso-
morphism from Ee

(
R × Rn

)
(the space of infinitely differentiable functions on

R×Rn , even with respect to the first variable) onto itself and we give the inverse
operator R−1µ as integro-differential operator .
Next, we show that the fractional transform Hµ can be extended to µ ∈ R and
that for every µ ∈ R , Hµ is a topological isomorphism from the Schwartz’s
space Se

(
R×Rn

)
(the subspace of Ee

(
R×Rn

)
consisting of rapidly decreasing

functions together with all their derivatives) onto itself whose inverse operator
is H −1

µ = H−µ.
The precedent results imply in particular that Rµ and Hµ are transmutation
operators of Dj , 1 ≤ j ≤ n, and Ξµ to Dj , 1 ≤ j ≤ n and ∆, where

∆ = (
∂

∂r
)2 +

n∑
j=1

(
∂

∂xj
)2.

That is, for every f ∈ Ee
(
R× Rn

)
DjRµ(f) = RµDj(f), 1 6 j 6 n

ΞµRµ(f) = Rµ ∆(f),

and for every f ∈ Se

(
R× Rn

)
DjHµ(f) = HµDj(f), 1 6 j 6 n

∆Hµ(f) = Hµ Ξµ(f).

The third section contains the main results of this paper. In fact, we study
the Lp− boundedness of the operators Rµ and Hµ on the weighted spaces
Lp
(
[0,+∞[×Rn, r2adr⊗dx

)
, p ∈ [1,+∞]. We recall in this context, that studing

the Lp− boundedness of integral transforms connected with differential systems
is an interesting subject because knowing the range of parameters µ, p for which
an operator is bounded on Lebesgue space gives quantitative information about
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the rate of growth of the transformed functions ([15, 16, 17]) .
In this work, we give necessary and sufficient conditions on the parameters
µ, a, p for which the operator Rµ (respectively Hµ) satisfies

||Rµ(f)||p,a 6 Cp,a,µ ||f ||p,a, (12)

respectively

||Hµ(f)||p,a 6 Dp,a,µ ||r2µf ||p,a. (13)

Moreover, we give the best (the smallest) contants Cp,a,µ and Dp,a,µ that satisfy
the relations (12) and (13) .

2. Fractional transforms

2.1. The fractional transform Rµ. The space Ee(R× Rn) is equipped with
the topology generated by the family of semi-norms

Pm,k(f) = sup
||(r,x)||6m
|α|6k

∣∣Dα(f)(r, x)
∣∣, (m, k) ∈ N2.

and the distance

d(f, g) =

+∞∑
m,k=0

(
1

2
)m+k Pm,k(f − g)

1 + Pm,k(f − g)
.

Lemma 2.1. i. For every µ > 0, the transform Rµ is continuous from Ee(R×
Rn) into itself.

ii. The operator
∂

∂r2
=

1

r

∂

∂r
is continuous from Ee(R× Rn) into itself.

Proof. i. For every f ∈ Ee(R× Rn), we have

Rµ(f)(r, x) =
2Γ(µ+ 1

2 )
√
π Γ(µ)

∫ 1

0

(1− t2)µ−1f(tr, x)dt,

this shows that the function Rµ(f) belongs to the space Ee(R×Rn). Moreover,
for every (α0, α) ∈ N× Nn

D(α0,α)(Rµ(f))(r, x) =
2Γ(µ+ 1

2 )
√
π Γ(µ)

∫ 1

0

(1− t2)µ−1tα0D(α0,α)(f)(tr, x)dt,

thus, for every (m, k) ∈ N2, Pm,k(Rµ(f)) 6 Pm,k(f).
ii. For every f ∈ Ee(R× Rn)

∂

∂r2
(f)(r, x) =

∫ 1

0

∂2f

∂t2
(rt, x)dt.

Hence, the function
∂

∂r2
(f) belongs to the space Ee(R × Rn) and for every

(α0, α) ∈ N× Nn

D(α0,α)(
∂

∂r2
f)(r, x) =

∫ 1

0

tα0D(α0+2,α)(f)(rt, x)dt,
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so, for every (m, k) ∈ N2, Pm,k
(
∂
∂r2 (f)

)
6 Pm,k+2(f). �

In the following, we shall prove that Rµ is a topological isomorphism from
Ee(R×Rn) onto itself and we give the inverse operator. For this we need following
notations:
r2aEe(R×Rn) is the space defined by r2aEe(R×Rn) =

{
f : R\{0}×Rn −→ C, f

is even with respect to the first variable and f(r, x) = r2ag(r, x), g ∈ Ee(R×Rn)
}

r2aEe(R× Rn) is equipped by the family of semi-norms

P̃m,k,a(f) = Pm,k(r−2af).

R̃µ is the transform defined on r2aEe(R× Rn), a > − 1
2 , by

R̃µ(f)(r, x) =
2r

2µ Γ(µ)

∫ r

0

(r2 − t2)µ−1f(t, x)dt, r > 0.

Proposition 2.2. i. For every a > − 1
2 , the operator � defined by

�(f)(r, x) =
∂

∂r

(f(r, x)

r

)
is continuous from r2(a+1)Ee(R× Rn) into r2aEe(R× Rn).

ii. The transform R̃µ is continuous from r2aEe(R×Rn) into r2(a+µ)Ee(R×Rn).

Proof. i. Let f ∈ r2(a+1)Ee(R× Rn); f(r, x) = r2a+2g(r, x), g ∈ Ee(R× Rn)

�f(r, x) = r2a
(
(2a+ 1)g(r, x) + r

∂g

∂r
(r, x)

)
.

Since, the map : g −→ (2a+ 1)g+ r
∂g

∂r
is continuous from Ee(R×Rn) into itself,

then, the function �(f) belongs to r2aEe(R× Rn).
Moreover, for every (m, k) ∈ N2

P̃m,k,a(�(f)) = Pm,k
(
(2a+ 1)g + r

∂g

∂r

)
6 CPm′,k′(g) = CP̃m′,k′,a+1(f),

where C is a constant.
ii. For every f ∈ r2aEe(R × Rn), f = r2ag, g ∈ Ee(R × Rn) and a > − 1

2 , the
function

R̃µ(f)(r, x) =
2r

2µ Γ(µ)

∫ r

0

(r2 − t2)µ−1t2ag(t, x)dt

=
2r2a+2µ

2µ Γ(µ)

∫ 1

0

(1− t2)µ−1t2ag(tr, x)dt

belongs to the space r2(a+µ)Ee(R× Rn), and for every (m, k) ∈ N2

P̃m,k,a+µ(R̃µ(f)) = Pm,k
( 2

2µ Γ(µ)

∫ 1

0

(1− t2)a−1t2ag(tr, x)dt
)
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6
Γ(a+ 1

2 )

2µ Γ(µ+ a+ 1
2 )
Pm,k(g)

=
Γ(a+ 1

2 )

2µ Γ(µ+ a+ 1
2 )
P̃m,k,a(f).

�

Proposition 2.3. For all µ, ν > 0 and f ∈ r2aEe(R× Rn), a > − 1
2 , we have

R̃µ ◦ R̃ν(f) = R̃µ+ν(f).

Proof. For all µ , ν > 0 and f ∈ r2aEe(R× Rn), a > − 1
2 ,

R̃µ ◦ R̃ν(f)(r, x)

=
2r

2µ+ν Γ(µ) Γ(ν)

∫ r

0

(r2 − t2)µ−12t
(∫ t

0

(t2 − s2)ν−1f(s, x)ds
)
dt.

Applying Fubini’s theorem we get

R̃µ ◦ R̃ν(f)(r, x)

=
2r

2µ+ν Γ(µ) Γ(ν)

∫ r

0

f(s, x)
(∫ r

s

(r2 − t2)µ−1(t2 − s2)ν−12tdt
)
ds,

however,

∫ r

s

(r2 − t2)µ−1(t2 − s2)ν−12tdt =
Γ(µ) Γ(ν)

Γ(µ+ ν)
(r2 − s2)µ+ν−1.

This completes the proof. �

Proposition 2.4. i. For every µ > 1 and f ∈ r2aEe(R×Rn), a > − 1
2 , we have

�R̃µ(f) = R̃µ−1(f).

In particular, for every µ > 0, k ∈ N

�kR̃µ+k(f) = R̃µ(f). (14)

ii. For every f ∈ r2(a+1)Ee(R× Rn), a > − 1
2 and µ > 0

R̃µ(�f) = �R̃µ(f). (15)

In particular, for every f ∈ r2(a+k)Ee(R× Rn), a > − 1
2 , k ∈ N

R̃µ(�k(f)) = �kR̃µ(f). (16)

Proof. i. Let f ∈ r2aEe(R× Rn),

�R̃µ(f)(r, x) =
∂

∂r

( 2

2µ Γ(µ)

∫ r

0

(r2 − t2)µ−1f(t, x)dt
)

=
2.2r(µ− 1)

2µ Γ(µ)

∫ r

0

(r2 − t2)µ−2f(t, x)dt

= R̃µ−1(f)(r, x),
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and by induction, we deduce that for all µ > 0, k ∈ N

�kR̃µ+k(f) = R̃µ(f).

ii. Let f ∈ r2(a+1)Ee(R×Rn), by Proposition 2.2, the function �(f) belongs to
the space r2aEe(R× Rn) and we have

R̃µ(f)(r, x) =
r

2µ Γ(µ+ 1)

∫ r

0

− ∂

∂t

(
(r2 − t2)µ

)f(t, x)

t
dt.

Integrating by parts, we get

R̃µ(f)(r, x) =
r

2µ Γ(µ+ 1)

∫ r

0

(r2 − t2)µ�f(t, x)dt,

so,

�R̃µ(f)(r, x) =
2r

2µ Γ(µ)

∫ r

0

(r2 − t2)µ−1�f(t, x)dt

= R̃µ(�f)(r, x).

Now, suppose that for every f ∈ r2(a+k)Ee(R× Rn), �kR̃µ(f) = R̃µ(�kf),

let g ∈ r2(a+k+1)Ee(R× Rn).
Then, the function �g belongs to r2(a+k)Ee(R× Rn), and by hypothesis

�kR̃µ(�g)(r, x) = R̃µ(�k+1g),

on the other hand, by relation(15) and the fact that �g ∈ r2(a+k)Ee(R× Rn) ⊂
r2(a+1)Ee(R× Rn), we have

�kR̃µ(�g)(r, x) = �k+1R̃µ(g).

The proof is complete by induction. �

Theorem 2.5. For every k ∈ N\{0}, the operator R̃k is an isomorphism from
r2aEe(R × Rn) onto r2(a+k)Ee(R × Rn); a > − 1

2 . The inverse operator is given
by

R̃k

−1
= �k.

Proof. Let f ∈ r2aEe(R×Rn). From Proposition 2.2, the function R̃k(f) belongs
to r2(a+k)Ee(R× Rn) and by relation(14), we have

�kR̃k(f) = ��k−1R̃1+(k−1)(f)

= �R̃1(f)

= f.

Let g ∈ r2(a+k)Ee(R× Rn) ⊂ r2aEe(R× Rn), by relation(16)

R̃k(�k(g)) = �kR̃k(g)

= g.

This achieves the proof. �
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Theorem 2.6. For every µ ∈]0, 1[, the fractional transform R̃µ is an isomor-

phism from r2aEe(R×Rn) onto r2(a+µ)Ee(R×Rn), a > − 1
2 . The inverse operator

is given by

R̃µ

−1
= �R̃1−µ.

Proof. Let g ∈ r2(a+µ)Ee(R× Rn),

g(r, x) = r2a+2µh(r, x); h ∈ Ee(R× Rn),

�R̃1−µ(g)(r, x) =
∂

∂r

( 2

21−µΓ(1− µ)

∫ r

0

(r2 − t2)−µt2a+2µh(t, x)dt
)

=
∂

∂r

( 2r2a+1

21−µΓ(1− µ)

∫ 1

0

(1− t2)−µt2a+2µh(tr, x)dt
)

= 2(2a+ 1)
r2a

21−µ Γ(1− µ)

∫ 1

0

(1− t2)−µt2a+2µh(tr, x)dt

+ 2
r2a+1

21−µΓ(1− µ)

∫ 1

0

(1− t2)−µt2a+2µ+1 ∂h

∂t
(tr, x)dt

= 2
(2a+ 1)

21−µΓ(1− µ)

1

r

∫ r

0

(r2 − t2)−µt2a+2µh(t, x)dt

+
2

21−µ Γ(1− µ)

1

r

∫ r

0

(r2 − t2)−µt2a+2µ+1 ∂h

∂t
(t, x)dt.

We deduce that

R̃µ

(
�R̃1−µ(g)

)
(r, x)

=
2(2a+ 1)2r

2Γ(µ) Γ(1− µ)

∫ r

0

(r2 − t2)µ−1
1

t

(∫ t

0

(t2 − s2)−µs2a+2µh(s, x)ds
)
dt+

2.2r

2Γ(µ) Γ(1− µ)

∫ r

0

(r2 − t2)µ−1
1

t

(∫ t

0

(t2 − s2)−µs2a+2µ+1 ∂h

∂s
(s, x)ds

)
dt

= I1,µ(r, x) + I2,µ(r, x).

From Fubini’s theorem, we have

I1,µ(r, x) =
(2a+ 1)r

Γ(µ) Γ(1− µ)

∫ r

0

h(s, x)
(∫ r

s

(r2−t2)µ−1(t2−s2)−µ
2t

t2
dt
)
s2a+2µds.

Let

J(r, s) =

∫ r

s

(r2 − t2)µ−1(t2 − s2)−µ
2t

t2
dt.

By the change of variables ω = r2−t2
r2−s2 , we get

J(r, s) =
1

r2

∫ 1

0

ωµ−1(1− ω)−µ

1− r2−s2
r2 ω

dω
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=
1

r2

∞∑
k=0

(
r2 − s2

r2
)k
∫ 1

0

ωk+µ−1(1− ω)−µdω

=
Γ(1− µ)

r2

∞∑
k=0

Γ(k + µ)

k!
(
r2 − s2

r2
)k

= Γ(µ) Γ(1− µ)r2µ−2s−2µ.

So,

I1,µ(r, x) = (2a+ 1)r2µ−1
∫ r

0

h(s, x)s2ads

As the same way,

I2,µ(r, x)

=
r

Γ(µ) Γ(1− µ)

∫ r

0

∂h

∂s
(s, x)

( ∫ r

s

(r2 − t2)µ−1(t2 − s2)−µ
2t

t2
dt
)
s2a+2µ+1ds

= r2µ−1
∫ r

0

∂h

∂s
(s, x)s2a+1ds.

Consequently,

R̃µ

(
�R̃1−µ(g)

)
(r, x) = r2µ−1

∫ r

0

(
(2a+ 1)s2ah(s, x) + s2a+1 ∂h

∂s
(s, x)

)
ds

= r2µ−1
∫ r

0

∂

∂s

(
s2a+1h(s, x)

)
ds

= r2a+2µh(r, x), because a > −1

2
= g(r, x).

On the other hand, from Proposition 2.3 and for every f ∈ r2aEe(R× Rn),

�R̃1−µR̃µ(f) = �R̃1(f)

= f.

This completes the proof. �

Lemma 2.7. Let µ ∈ R, µ > 0. For every k1, k2 ∈ N\{0}, k1−µ > 0, k2−µ > 0
and for every f ∈ r2(a+µ)Ee(R× Rn), we have

�k1R̃k1−µ(f) = �k2R̃k2−µ(f).

Proof. Let k1, k2 ∈ N\{0}, k1 − µ > 0, k2 − µ > 0, and k1 < k2,

�k2R̃k2−µ(f) = �k1�k2−k1R̃k2−k1+(k1−µ)(f),

applying relation (14), we get

�k2R̃k2−µ(f) = �k1R̃k1−µ(f).

�
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The previous Lemma allows us to define the fractional transform R̃µ for every
µ ∈ R.

Definition 2.8. For every µ ∈ R, µ > 0, the fractional transform R̃−µ is defined

on r2(a+µ)Ee(R× Rn) by

R̃−µ(f) = �kR̃k−µ(f),

where k ∈ N\{0}, k − µ > 0.
In particular, for f ∈ r2(a+µ)Ee(R× Rn)

R̃−µ(f) = �E(µ)+1R̃E(µ)+1−µ(f),

where E(µ) is the entire party of µ.

Remark 2.9. According to definition 2.8 and for every f ∈ r2aEe(R×Rn), a >
− 1

2 , we have

R̃0(f) = �R̃1(f) = f,

that is

R̃0 = Idr2aEe(R×Rn).

Theorem 2.10. For µ > 0, the fractional transform R̃µ is a topological iso-

morphism from r2aEe(R × Rn) onto r2(a+µ)Ee(R × Rn), a > − 1
2 . The inverse

operator is given by

R̃µ

−1
= R̃−µ.

Proof. For µ ∈ N, the result follows from Theorem 2.5 and Remark 2.9. Let µ ∈
]0,+∞[\N, for every f ∈ r2aEe(R×Rn) and from Proposition 2.3 and Theorem
2.5, we have

R̃−µ
(
R̃µ(f)

)
= �E(µ)+1R̃E(µ)+1−µ

(
R̃µ(f)

)
= �E(µ)+1R̃E(µ)+1(f)

= f.

Conversely, for every g ∈ r2(a+µ)Ee(R× Rn),

R̃µ ◦ R̃−µ(g) = R̃µ�
E(µ)+1R̃E(µ)+1−µ(g),

let ν = µ− E(µ), then ν ∈]0, 1[, and

R̃µ ◦ R̃−µ(g) = R̃νR̃E(µ)�
E(µ)�R̃1−ν(g).

Since, �R̃1−ν(g) belongs to r2(a+E(µ))Ee(R × Rn), then, Theorem 2.5 involves
that

R̃µ ◦ R̃−µ(g) = R̃ν�R̃1−ν(g).

The result follows from Theorem 2.6. �

Now, we have the following important result.
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Theorem 2.11. For every µ > 0, the fractional transform Rµ defined by relation
(5) is a topological isomorphism from Ee(R× Rn) onto itself.

Proof. For every f ∈ Ee(R× Rn),

Rµ(r, x) =
2µ Γ(µ+ 1

2 )
√
π

r−2µR̃µ(f)(r, x).

From Theorem 2.10, the transform R̃µ is a topological isomorphism from Ee(R×
Rn) onto r2µEe(R× Rn). On the other hand, the map

f −→ r−2µf

is a topological isomorphism from r2µEe(R× Rn) onto Ee(R× Rn) .
Consequently, Rµ is a topological isomorphism from Ee(R× Rn) onto itself.
Moreover,

R−1µ (f)(r, x) =

√
π

2µ Γ(µ+ 1
2 )

R̃−µ
(
r2µf)(r, x

)
=

√
π

2µ Γ(µ+ 1
2 )
�E(µ)+1R̃E(µ)+1−µ

(
r2µf

)
(r, x).

�

2.2. The fractional transform Hµ. We recall that the space Se(R× Rn) is
equipped with the topology generated by the family of norms

Nm(f) = max
(r,x)∈R×Rn
k+|α|6m

(1 + r2 + |x|2)k|Dα(f)(r, x)|, m ∈ N.

By a standard argument, for every f ∈ Se(R×Rn), the function
∂

∂r2
(f) belongs

to Se(R× Rn) and for every m ∈ N,

Nm
( ∂

∂r2
(f)
)
6 2m+1Nm+3(f).

This shows that the operator
∂

∂r2
is continuous from Se(R×Rn) into itself and

consequently the operator Ξµ is also continuous from Se(R× Rn) into itself.
On the other hand, for every f ∈ Se(R× Rn) and for every k ∈ N, we have

(1 + λ20 + |λ|2)kF̃µ− 1
2
(f)(λ0, λ) = F̃µ− 1

2

(
(I − Ξµ)k(f)

)
(λ0, λ). (17)

Where I is the identity operator.

Using the relation (17) and the inversion formula for F̃µ− 1
2

that is for every

f ∈ L1(dνµ) such that F̃µ− 1
2
(f) belongs to L1(dνµ) , we have

f = F̃µ− 1
2
oF̃µ− 1

2
(f̌) a.e,
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we deduce that the transform F̃µ− 1
2

is a topolgical isomorphism from Se(R×Rn)

onto itself and

F̃−1
µ− 1

2

(f) = F̃µ− 1
2
(f̌)

where f̌(r, x) = f(r,−x).

Lemma 2.12. For every f ∈ L1(dνµ) and µ > 0, the function

Hµ(f)(t, x) =
1

2µ Γ(µ)

∫ ∞
t

(r2 − t2)µ−1f(r, x)2rdr,

is defined almost every where, belongs to L1(dm), where dm is the Lebesgue
measure given by relation (8), and we have

||Hµ(f)||1,m 6 ||f ||1,νµ .

Proof. By Fubini-Tonnelli Theorem’s, we have∫ ∞
0

∫
Rn
|Hµ(f)(t, x)|dm(t, x)

6

√
2

π

1

2µ Γ(µ)(2π)
n
2

∫ ∞
0

∫
Rn

(∫ ∞
t

(r2 − t2)µ−1|f(r, x)|2rdr
)
dtdx

=

√
2

π

1

2µ Γ(µ)(2π)
n
2

∫ ∞
0

∫
Rn
|f(r, x)|

(∫ r

0

(r2 − t2)µ−1dt
)

2rdrdx

=
1

2µ−
1
2 Γ(µ+ 1

2 )(2π)
n
2

∫ ∞
0

∫
Rn
|f(r, x)|r2µdrdx

= ‖f‖1,νµ .

�

Proposition 2.13. i. For every f ∈ L1(dνµ) and every bounded measurable
function g on [0,+∞[×Rn, we have the duality relation∫ ∞

0

∫
Rn
f(r, x)Rµ(g)(r, x)dνµ(r, x) =

∫ ∞
0

∫
Rn

Hµ(f)(r, x)g(r, x)dm(r, x).

ii. For every f ∈ L1(dνµ)

F̃µ− 1
2
(f) = Λ ◦Hµ(f), (18)

where, Λ is the usual Fourier transform defined on L1(dm) by

Λ(f)(λ0, λ) =

∫ ∞
0

∫
Rn
f(r, x) cos(rλ0)e−i〈λ|x〉dm(r, x).

Proof. i. It is clear that for every bounded function g on [0,+∞[×Rn, the
function Rµ(g) is also bounded on [0,+∞[×Rn.
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Consequently, the integral

∫ ∞
0

∫
Rn
f(r, x)Rµ(g)(r, x)dνµ(r, x) is well defined,

and we have∫ ∞
0

∫
Rn
f(r, x)Rµ(g)(r, x)dνµ(r, x) =

∫ ∞
0

∫
Rn
f(r, x)

2r

2µ−
1
2
√
π (2π)

n
2 Γ(µ)

×
(∫ r

0

(r2 − t2)µ−1g(t, x)dt
)
drdx.

By Fubini’s Theorem,∫ ∞
0

∫
Rn
f(r, x)Rµ(g)(r, x)dνµ(r, x)

=

∫ ∞
0

∫
Rn
g(t, x)

( 1

2µ Γ(µ)

∫ ∞
t

(r2 − t2)µ−1f(r, x)2rdr
)
×
√

2

π
dt

dx

(2π)
n
2

=

∫ ∞
0

∫
Rn
g(t, x)Hµ(f)(t, x)dm(t, x).

ii. Let f ∈ L1(dνµ), we have

F̃µ− 1
2
(f)(λ0, λ) =

∫ ∞
0

∫
Rn
f(r, x)Ψλ0,λ(r, x)dνµ(r, x)

and by the relation (6),

F̃µ− 1
2
(f)(λ0, λ) =

∫ ∞
0

∫
Rn
f(r, x)Rµ

(
cos(λ0.)e

−i〈λ|.〉)(r, x)dνµ(r, x),

and by the relation of duality, Proposition 2.13, we obtain

F̃µ− 1
2
(f)(λ0, λ) =

∫ ∞
0

∫
Rn

Hµ(f)(r, x) cos(λ0r)e
−i〈λ|x〉dm(r, x)

= Λ ◦Hµ(f)(λ0, λ).

�

Corollary 2.14. For every µ > 0, the fractional transform Hµ is a topological
isomorphism from Se(R× Rn) onto itself.

Proof. Since the Fourier transforms Λ and F̃µ− 1
2

are topological isomorphisms

from Se(R× Rn) onto itself, the result follows from the relation (18). �

Next, we will prove that the fractional transform Hµ can be extended to µ ∈ R
and we give the inverse operator H −1

µ .

Proposition 2.15. For every µ, ν > 0 and f ∈ Se(R× Rn),

Hµ ◦Hν(f) = Hµ+ν(f).
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Proof. Let µ, ν > 0 and f ∈ Se(R× Rn)

Hµ ◦Hν(f)(r, x)

=
1

2µ+ν Γ(µ)Γ(ν)

∫ ∞
r

(t2 − r2)µ−1
( ∫ +∞

t

(s2 − t2)ν−1f(s, x)2sds
)
2tdt.

Applying Fubini’s Theorem we get

Hµ ◦Hν(f)(r, x)

=
1

2µ+ν Γ(µ)Γ(ν)

∫ ∞
r

f(s, x)
( ∫ s

r

(s2 − t2)ν−1(t2 − r2)µ−12tdt
)
2sds,

however, ∫ s

r

(s2 − t2)ν−1(t2 − r2)µ−12tdt =
Γ(µ) Γ(ν)

Γ(µ+ ν)
(s2 − r2)µ+ν−1,

this completes the proof. �

Proposition 2.16. i. For every f ∈ Se(R× Rn) and µ > 0, we have

∂

∂t2
Hµ(f) = Hµ(

∂

∂t2
f). (19)

ii. For every f ∈ Se(R× Rn) and µ > 0, we have

−Hµ+1(
∂

∂t2
f) = Hµ(f). (20)

Proof. i. Integrating by parts, we get for every f ∈ Se(R× Rn),

Hµ(f)(t, x) = − 1

2µ Γ(µ+ 1)

∫ ∞
t

(r2 − t2)µ
∂f

∂r
(r, x)dr.

Hence,

∂

∂t2
Hµ(f)(t, x) =

1

2µ Γ(µ)

∫ ∞
t

(r2 − t2)µ−1
∂f

∂r2
(r, x)2rdr

= Hµ(
∂

∂r2
f)(t, x).

ii. For every f ∈ Se(R× Rn), µ > 0, and from relation (19),

∂

∂t2
Hµ+1(f) = Hµ+1(

∂

∂t2
f).

So, for every (t, x) ∈ R× Rn,

Hµ+1(
∂

∂t2
f)(t, x) =

∂

∂t2

( 1

2µ+1 Γ(µ+ 1)

∫ ∞
t

(r2 − t2)µf(r, x)2rdr
)

= −Hµ(f)(t, x).

�
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Corollary 2.17. Let µ be a real number. For all k1, k2 ∈ N, k1+µ > 0, k2+µ >
0 and for every f ∈ Se(R× Rn), we have

(−1)k1Hµ+k1

(
(
∂

∂t2
)k1f

)
= (−1)k2Hµ+k2

(
(
∂

∂t2
)k2f

)
.

Proof. Let k1, k2 ∈ N, k1 < k2, k1 + µ > 0 and k2 + µ > 0. From Proposition
2.16, it follows that for every f ∈ Se(R× Rn),

(−1)k2Hµ+k2((
∂

∂t2
)k2f)

= (−1)k1(−1)k2−k1Hµ+k1+(k2−k1)

(
(
∂

∂t2
)k2−k1(

∂

∂t2
)k1(f)

)
= (−1)k1Hµ+k1((

∂

∂t2
)k1f).

�

Definition 2.18. For every µ ∈ R, the fractional transform Hµ is defined on
Se(R× Rn) by

Hµ(f) = (−1)kHµ+k((
∂

∂t2
)kf) = (−1)k(

∂

∂t2
)kHµ+k(f),

where k ∈ N, k + µ > 0.

From Corollary 2.17, the expression Hµ in Definition 2.18 is independent of the
choice of k ∈ N, k + µ > 0.
For every f ∈ Se(R× Rn),

H0(f)(t, x) = − ∂

∂t2
H1(f)(t, x)

= −1

t

∂

∂t

( ∫ ∞
t

f(r, x)rdr
)

= f(t, x). (21)

Proposition 2.19. i. For every µ, ν ∈ R and f ∈ Se(R× Rn).

Hµ ◦Hν(f) = Hµ+ν(f) (22)

ii. For every µ ∈ R, the fractional transform Hµ is a topological isomorphism
from Se(R× Rn) onto itself whose inverse isomorphism is

H −1
µ = H−µ.

Proof. i. Let µ, ν ∈ R, k1, k2 ∈ N, k1 +µ > 0, k2 +µ > 0 and f ∈ Se(R×Rn),
we have

Hµ ◦Hν(f) = Hµ

(
(−1)k2(

∂

∂t2
)k2Hν+k2(f)

)
= (−1)k1+k2Hµ+k1

(
(
∂

∂t2
)k1Hν+k2

(
(
∂

∂t2
)k2(f)

))
= (−1)k1+k2Hµ+k1 ◦Hν+k2

(
(
∂

∂t2
)k1+k2(f)

)
.
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Now, from Proposition 2.15, we deduce that

Hµ ◦Hν(f) = (−1)k1+k2Hµ+ν+k2+k1

(
(
∂

∂t2
)k1+k2(f)

)
= Hµ+ν(f),

because µ+ ν + k1 + k2 > 0.
ii. The result follows from relations (21) and (22). �

3. Lp-boundedness of the fractional transform Rµ and Hµ

This section contains the main results of this work. In fact, we study the
boundedness of the operators Rµ and Hµ on the the weighted Lebesgue spaces
Lp
(
[0,+∞[×Rn, r2adrdx

)
, p ∈ [1,+∞[ equipped with the norm

||f ||p,a =


(∫ ∞

0

∫
Rn
|f(r, x)|pr2adrdx

) 1
p

, if 1 6 p 6 +∞

ess sup
(r,x)∈ [0,+∞[×Rn

∣∣f(r, x)
∣∣, if p = +∞.

For convenience we refer to this space as Lp(dγa) with dγa(r, x) = r2adrdx.

3.1. Lp-boundedness of the fractional transform Rµ.

Proposition 3.1. For every a ∈ R and every µ > 0, the fractional transform
Rµ is bounded from L∞(dγa) into itself and

||Rµ||∞,γa = sup
||f ||∞,a61

||Rµ(f)||∞,a = 1.

Proof. Let f be a bounded measurable function on [0,+∞[×Rn. For every
(r, x) ∈ [0,+∞[×Rn,

|Rµ(f)(r, x)| 6
2Γ(µ+ 1

2 )
√
πΓ(µ)

∫ 1

0

(1− t2)µ−1|f(tr, x)|dt

6 ||f ||∞,a
2Γ(µ+ 1

2 )
√
πΓ(µ)

∫ 1

0

(1− t2)µ−1dt

= ||f ||∞,a.
This shows that the operator Rµ is bounded from L∞(dγa) into itself and that

||Rµ||∞,γa 6 1.

However, Rµ(1) = 1, this shows that

||Rµ||∞,γa = 1.

�

Theorem 3.2. The operator Rµ;µ > 0 is bounded from L1(dγa) into itself if
and only if a < 0 and in this case

||Rµ||1,γa =
Γ(µ+ 1

2 )Γ(−a)
√
π Γ(µ− a)

.
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Proof. Let a ∈ R, a < 0. By Fubini-Tonnelli Theorem’s and for every f ∈
L1(dγa), ∫ ∞

0

∫
Rn
|Rµ(f)(r, x)|dγa(r, x)

6
2Γ(µ+ 1

2 )
√
π Γ(µ)

∫ ∞
0

∫
Rn

( ∫ 1

0

(1− t2)µ−1|f(tr, x)|dt
)
dγa(r, x)

=
2Γ(µ+ 1

2 )
√
π Γ(µ)

∫ 1

0

(1− t2)µ−1
( ∫ ∞

0

∫
Rn
|f(tr, x)|dγa(r, x)

)
dt

= ||f ||1,a
2Γ(µ+ 1

2 )
√
π Γ(µ)

∫ 1

0

(1− t2)µ−1t−(2a+1)dt

=
Γ(µ+ 1

2 )Γ(−a)
√
π Γ(µ− a)

||f ||1,a.

Consequently for a < 0, the transform Rµ is a bounded operator from L1(dγa)
into itself and

||Rµ||1,γa 6
Γ(µ+ 1

2 )Γ(−a)
√
π Γ(µ− a)

.

On the other hand, for every nonnegative f ∈ L1(dγa), we have

||Rµ(f)||1,a =
Γ(µ+ 1

2 )Γ(−a)
√
π Γ(µ− a)

||f ||1,a

We conclude that

||Rµ||1,γa =
Γ(µ+ 1

2 )Γ(−a)
√
π Γ(µ− a)

.

For converse, let a ∈ R, a > 0 and let f ∈ L1(dγa) be a nonnegative function
such that ||f ||1,a = 1. We have

||Rµ(f)||1,γa =
Γ(µ+ 1

2 )Γ(−a)
√
π Γ(µ− a)

= +∞.

This completes the proof. �

Theorem 3.3. Let p ∈]1,+∞[. The operator Rµ, µ > 0, is bounded from
Lp(dγa) into itself if and only if 2a+ 1 < p and in this case

||Rµ||p,γa =
Γ(µ+ 1

2 )Γ(p−(2a+1)
2p )

√
π Γ(µ+ p−(2a+1)

2p )
.

Proof. Let p ∈ ]1,+∞[, 2a + 1 < p. From Minkowski’s inequality [18] and for
every f ∈ Lp(dγa),

||Rµ(f)||p,a 6
2Γ(µ+ 1

2 )
√
π Γ(µ)

∫ 1

0

(1− t2)µ−1
(∫ ∞

0

∫
Rn
|f(tr, x)|pdγa(r, x)

) 1
p

dt

=
2Γ(µ+ 1

2 )
√
π Γ(µ)

‖f‖p,a
∫ 1

0

(1− t2)µ−1t−
2a+1
p dt
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=
Γ(µ+ 1

2 )Γ(p−(2a+1)
2p )

√
π Γ(µ+ p−(2a+1)

2p )
||f ||p,a.

This proves that for 2a + 1 < p, the fractional transform Rµ is bounded from
Lp(dγa) into itself and

||Rµ||p,γa 6
Γ(µ+ 1

2 )Γ(p−(2a+1)
2p )

√
π Γ(µ+ p−(2a+1)

2p )
. (23)

Let η > 0 and let

f0(r, x) = r
η−(2a+1)

p 1]0,1[(r)Π
n
j=11]0,1[(xj),

then f0 belongs to Lp(dγa) and

||f0||p,a = (
1

η
)

1
p .

On the other hand,

|Rµ(f0)(r, x)|

>
2Γ(µ+ 1

2 )
√
π Γ(µ)

r1−2µ
(∫ r

0

(r2 − t2)µ−1t
η−(2a+1)

p dt
)
1]0,1[(r)Π

n
j=11]0,1[(xj)

=
2Γ(µ+ 1

2 )
√
π Γ(µ)

f0(r, x)

∫ 1

0

(1− t2)µ−1t
η−(2a+1)

p dt

=
Γ(µ+ 1

2 )Γ( 1
2 + η−(2a+1)

2p )
√
π Γ(µ+ 1

2 + η−(2a+1)
2p )

f0(r, x).

Integrating over ]0,+∞[×Rn with respect to the measure dγa, we deduce that
for every η > 0,

||Rµ||p,γa ≥
Γ(µ+ 1

2 )Γ( 1
2 + η−(2a+1)

2p )
√
π Γ(µ+ 1

2 + η−(2a+1)
2p )

.

This involves that

||Rµ||p,γa ≥
Γ(µ+ 1

2 )Γ(p−(2a+1)
2p )

√
π Γ(µ+ p−(2a+1)

2p )
. (24)

The relations (23) and (24) imply that for every a, 2a+ 1 < p

||Rµ||p,γa =
Γ(µ+ 1

2 )Γ(p−(2a+1)
2p )

√
π Γ(µ+ p−(2a+1)

2p )
.

Now, we prove that, for 2a + 1 > p, Rµ does not map Lp(dγa) into itself. To
prove this we have following two cases:
Case 1. Suppose that 2a+ 1 = p and let

g0(r, x) =
1

r(1− ln(r))
1]0,1[(r)Π

n
j=11]0,1[(xj),
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then, g0 belongs to Lp(dγa) and we have

||g0||pp,a =

∫ 1

0

dr

r(1− ln(r))p
=

∫ 0

−∞

ds

(1− s)p
=

1

p− 1
.

However, for every (r, x) ∈]0, 1[×]0, 1[n,

Rµ(g0)(r, x) =
2Γ(µ+ 1

2 )
√
πΓ(µ)

r1−2µ
∫ r

0

(r2 − t2)µ−1
dt

t(1− ln(t))
= +∞,

in particular Rµ(g0) does not belong to Lp(dγa).
Case 2. Suppose that 2a+ 1 > p and let η ∈ R;− 2a+1

p < η < −1 and let

h0(r, x) = rη1]0,1[(r)Π
n
j=11]0,1[(xj).

Then the function h0 lies in Lp(dγa) and

||h0||pp,a =
1

pη + 2a+ 1
.

But, for every (r, x) ∈]0, 1[×]0, 1[n,

Rµ(h0)(r, x) =
2Γ(µ+ 1

2 )
√
π Γ(µ)

rη
∫ 1

0

(1− t2)µ−1tηdt = +∞.

Hence, for 2a + 1 > p, Rµ does not map Lp(dγa) into itself and this completes
the proof of theorem. �

Combining Proposition (3.1), Theorem (3.2) and Theorem (3.3) , we claim the
following interesting result.

Theorem 3.4. For every p ∈ [1,+∞], the fractional operator Rµ is bounded on
Lp(dγa) if and only if 2a+ 1 < p and in this case

||Rµ||p,γa =
Γ(µ+ 1

2 )Γ(p−(2a+1)
2p )

√
π Γ(µ+ p−(2a+1)

2p )
.

Remark 3.5. The case a = µ in Theorem (3.4) is important because the mea-
sure dνµ defined by the relation (3) is connected with the operators Dj , 1 6 j 6

n and Ξ and the Fourier-Hankel transform F̃µ− 1
2

given by relation (2) and in

this occurrence, Rµ is bounded from Lp(dνµ) into itself if and only if 2µ+ 1 < p
and we have

||Rµ||p,νµ =
Γ(µ+ 1

2 )Γ(p−(2µ+1)
2p )

√
π Γ(µ+ p−(2µ+1)

2p )
.
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3.2. Lp-boundedness of the fractional transform Hµ. We denote by
r−2µLp(dγa) the space defined by r−2µLp(dγa) =

{
f : ]0,+∞[×Rn −→ C, f

is measurable and the function (r, x) 7−→ r2µf(r, x) belongs to Lp(dγa)
}

r−2µLp(dγa) is equipped with the norm

Np,a(f) = ||r2µf ||p,a.

Theorem 3.6. The operator Hµ, µ > 0 is bounded from r−2µL1(dγa) into
L1(dγa) if and only if 2a+ 1 > 0 and in this case

N1,γa(Hµ) = sup
||r2µf ||1,a61

||Hµ(f)||1,a =
Γ( 2a+1

2 )

2µ Γ(µ+ 2a+1
2 )

.

Proof. Suppose that a > − 1
2 and let f ∈ r−2µL1(dγa). We have∣∣Hµ(f)(r, x)

∣∣ ≤ r2µ

2µ Γ(µ)

∫ ∞
1

(t2 − 1)µ−1
∣∣f(rt, x)

∣∣2tdt.
Applying Fubini-Tonnelli Theorem’s, we get∫ ∞

0

∫
Rn

∣∣Hµ(f)(r, x)
∣∣dγa(r, x)

6
1

2µ Γ(µ)

∫ ∞
1

(t2 − 1)µ−1
(∫ ∞

0

∫
Rn
r2µ+2a|f(tr, x)|drdx

)
2tdt

= ||r2µf ||1,a
1

2µ Γ(µ)

∫ ∞
1

(t2 − 1)µ−1t−(2µ+2a+1)2tdt.

By the change of variable s = 1
t2 , we have

1

2µ Γ(µ)

∫ ∞
1

(t2 − 1)µ−1t−(2µ+2a+1)2tdt =
Γ( 2a+1

2 )

2µ Γ(µ+ 2a+1
2 )

.

This shows that for every f ∈ r−2µL1(dγa), the function Hµ(f) belongs to
L1(dγa) and

||Hµ(f)||1,a 6
Γ( 2a+1

2 )

2µ Γ(µ+ 2a+1
2 )
||r2µf ||1,a

On the other hand, for every nonnegative function f ∈ r−2µL1(dγa), we have

||Hµ(f)||1,a =
Γ( 2a+1

2 )

2µ Γ(µ+ 2a+1
2 )
||r2µf ||1,a. (25)

Hence, for a > − 1
2 , the fractional transform Hµ is continuous from r−2µL1(dγa)

into L1(dγa) and

N1,γa(Hµ) =
Γ( 2a+1

2 )

2µ Γ(µ+ 2a+1
2 )

.
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For Converse, let a 6 − 1
2 and let f ∈ r−2µL1(dγa), f nonnegative function such

that
||r2µf ||1,a = 1. From relation (25)

||Hµ(f)||1,a = +∞,

which proves that for a ≤ − 1
2 , the operator Hµ does not map the space

r−2µL1(dγa) into L1(dγa). �

Theorem 3.7. For every p ∈]1,+∞[, the fractional transform Hµ is bounded
from r−2µLp(dγa) into Lp(dγa) if and only if 2a+ 1 > 0 and in this case

Np,γa(Hµ) = sup
||r2µf ||p,a61

||Hµ(f)||p,a =
Γ( 2a+1

2p )

2µ Γ(µ+ 2a+1
2p )

.

Proof. Let a > − 1
2 and f ∈ r−2µLp(dγa). By Minkouski’s inequality, we have

||Hµ(f)||p,a

6
1

2µ Γ(µ)

∫ ∞
1

(t2 − 1)µ−1
(∫ ∞

0

∫
Rn

(r2µ|f(tr, x)|)pr2adrdx
) 1
p

2tdt

= ||r2µf ||p,a
1

2µ Γ(µ)

∫ ∞
1

(t2 − 1)µ−1t−
2µp+2a+1

p 2tdt

=
Γ( 2a+1

2p )

2µ Γ(µ+ 2a+1
2p )
||r2µf ||p,a.

Consequently, for a > − 1
2 , Hµ is a bounded operator from r−2µLp(dγa) into

Lp(dγa) and

Np,γa(Hµ) 6
Γ( 2a+1

2p )

2µ Γ(µ+ 2a+1
2p )

. (26)

Let η ∈ R, η > 0, and let

f0(r, x) = r−2µ−
2a+η+1

p 1[1,+∞[(r)Π
n
j=11]0,1[(xj).

The function f0 belongs to r−2µLp(dγa) and

||r2µf0||p,a = (
1

η
)

1
p .

Moreover,

|Hµ(f0)(r, x)|
= Hµ(f0)(r, x)

≥ 1

2µ Γ(µ)

(∫ ∞
r

(t2 − r2)µ−1t−2µ−
2a+1+η

p 2tdt
)
1[1,+∞[(r)Π

n
j=11]0,1[(xj)

=
Γ( 2a+1+η

2p )

2µ Γ(µ+ 2a+1+η
2p )

r2µf0(r, x).



Lp− boundedness for integral transforms 75

Thus,

||Hµ(f0)||p,a >
Γ( 2a+1+η

2p )

2µ Γ(µ+ 2a+1+η
2p )

||r2µf0||p,a

and then, for every η > 0,

Np,γa(Hµ) >
Γ( 2a+1+η

2p )

2µ Γ(µ+ 2a+1+η
2p )

.

This implies that

Np,γa(Hµ) >
Γ( 2a+1

2p )

2µ Γ(µ+ 2a+1
2p )

. (27)

Combining the relations (26) and (27), we deduce that for a > − 1
2 , the fractional

transform Hµ is a bounded operator from r−2µLp(dγa) into Lp(dγa) and that

Np,γa(Hµ) =
Γ( 2a+1

2p )

2µ Γ(µ+ 2a+1
2p )

.

Now we prove that, for a ≥ 1
2 , the operator Hµ does not map the space

r−2µLp(dγ− 1
2
) into Lp(dγ− 1

2
). We have two cases:

Case 1. Suppose that 2a+ 1 = 0 and let

g0(r, x) =
1

r2µ(1 + ln(r))p
1[1,+∞[(r)Π

n
j=11]0,1[(xj).

The function g0 belongs to r−2µLp(dγ− 1
2
) and

||r2µg0||p,− 1
2

=
( ∫ ∞

1

dr

r(1 + ln(r))p
) 1
p

=
( ∫ ∞

0

du

(1 + u)p
) 1
p

= (
1

p− 1
)

1
p .

But for every (r, x) ∈]1,+∞[×]0, 1[n,

Hµ(g0)(r, x) =

∫ ∞
r

(t2 − r2)µ−1
2t

t2µ(1 + ln(r))
dt = +∞.

This shows that for a = − 1
2 , the operator Hµ does not map the space

r−2µLp(dγ− 1
2
) into Lp(dγ− 1

2
).

Case 2. Finally, suppose that a < − 1
2 and let η ∈ R; 1

2 < η < −a.
Let

h0(r, x) = r−2µ−
2a+2η
p 1[1,+∞[(x)Πn

j=11]0,1[(xj).
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The function h0 belongs to r−2µLp(dγa), and

||r2µh0||p,a =
( ∫ ∞

1

r−2ηdr
) 1
p = (

1

2η − 1
)

1
p .

However, for every (r, x) ∈]1,+∞[×]0, 1[n,

Hµ(h0)(r, x) =
1

2µ Γ(µ)

∫ ∞
r

(t2−r2)µ−1t−2µ−
2a+2η
p 2tdt = +∞, because a+η < 0

Hence, for a < − 1
2 , the operator Hµ does not map the space r−2µLp(dγa) into

Lp(dγa).
The proof of theorem is complete. �

Remark 3.8. For every a ∈ R, the fractional transform Hµ does not map the
space r−2µL∞(dγa) into itself.
In fact, the function f(r, x) = r2µ1[1,+∞[(r) belongs to r−2µL∞(dγa), but for
every (r, x) ∈]0,+∞[×Rn

Hµ(f)(r, x) =
1

2µ Γ(µ)

∫ ∞
r

(t2 − r2)µ−1t2µ2tdt = +∞.

We conclude that for every p ∈ [1,+∞[, the transform Hµ, µ > 0, is bounded
from r−2µLp(dγa) into Lp(dγa) if and only if 2a+ 1 > 0 and

Np,γa(Hµ) = sup
||r2µf ||p,a61

||Hµ(f)||p,a =
Γ( 2a+1

2p )

2µ Γ(µ+ 2a+1
2p )

.

In particular, for a = µ > 0, the fractional transform Hµ is bounded from
r−2µLp(dνµ) into Lp(dνµ) and for every f ∈ r−2µLp(dνµ),

||Hµ(f)||p,νµ 6
Γ( 2µ+1

2p )

2µ Γ(µ+ 2µ+1
2p )
||r2µf ||p,νµ .
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UR11ES23 Analyse géométrique et harmonique, 2092 Tunis, Tunisia.

e-mail: samiasghaier21@gmail.com


	1. Introduction
	2. Fractional transforms
	2.1.  The fractional transform R
	2.2. The fractional transform H

	3. Lp-boundedness of the fractional transform R and H 
	3.1. Lp-boundedness of the fractional transform R
	3.2. Lp-boundedness of the fractional transform H

	Competing Interests
	References

