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OSCILLATION BEHAVIOR OF SECOND ORDER NONLINEAR

DYNAMIC EQUATION WITH DAMPING ON TIME SCALES

FANFAN LI, ZHENLAI HAN1

Abstract. In this paper, we use Riccati transformation technique to es-
tablish some new oscillation criteria for the second order nonlinear dynamic
equation with damping on time scales

(r(t)(x∆(t))α)∆ − p(t)(x∆(t))α + q(t)f(x(t)) = 0.

Our results not only generalize some existing results, but also can be ap-
plied to the oscillation problems that are not covered in literature. Finally,
we give some examples to illustrate our main results.
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1. Introduction

The calculus theory of time scales was introduced by Hilger [1] in order to unify,
extend and generalize ideas from discrete calculus, quantum calculus and con-
tinuous calculus to arbitrary time scales calculus. A time scale T is an arbitrary
closed subset of the real numbers R. For an introduction to time scales cal-
culus and dynamic equations, see Bohner and Peterson books [2, 3]. We are
concerned with the oscillation behavior of all solutions of the second order non-
linear dynamic equation with damping on a time sceles T which is unbounded
above

(r(t)(x∆(t))α)∆ − p(t)(x∆(t))α + q(t)f(x(t)) = 0, (1)
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where t ∈ T, t > t0 > 0. The equation will be studied under the following
assumptions:

(H1) r(t), q(t) are positive real-valued rd-continuous functions on T, p(t) < 0,
p(t)
r(t) ∈ R+, and α is the quotient of two positive odd numbers;

(H2) f : R → R is such that uf(u) > 0 for u 6= 0;
(H3) f : R → R is such that f(u) > kuα for u 6= 0 and some k > 0;

(H4)
∫∞

t0

(

1
r(t)e⊖p(s)

r(s)

(t, t0

)
1
α

∆t = ∞.

We only consider these solutions of (1) which exist on some half-line [t0,∞)T
and satisfy sup{|x(t)| : t1 6 t <∞} > 0, for any t1 > t0. If x(t) satisfies (1) on
[t1,∞)T for some t1 > t0, then the function x(t) is called a solution of (1). A
solution x(t) of (1) is said to be oscillatory if it is neither eventually positive nor
eventually negative, otherwise it is called nonoscillatory. The equation itself is
called oscillatory if all of its solutions are oscillatory.
In the last decades, much interest has focused on obtaining sufficient conditions
for the oscillation of solutions of different classes of dynamic equations on time
scales, and we refer the reader to the papers [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].
In particular, much work has been done on the following dynamic equation

(p(t)x∆(t))∆ + q(t)x(σ(t)) = 0,

(p(t)x∆(t))∆ + q(t)(f ◦ x(σ(t))) = 0.

Erbe et al. [15] considered the second-order nonlinear damped dynamic equation

(r(t)(x∆(t))γ)∆ + p(t)(x∆σ(t))γ + q(t)f(x(τ(t))) = 0,

and obtained some oscillation criteria.
Saker et al. [16] studied the oscillation criteria for difference equations with
damping terms

∆(an(∆xn)
γ) + pn(∆xn)

γ + qnf(xn+1) = 0,

and obtained some oscillation criteria.
Deng et al. [17] researched oscillation criteria for second order nonlinear delay
dynamic equations

(r(t)|x∆(t)|γ−1x∆(t))∆ + p(t)f(x(τ(t))) = 0,

Agwo et al. [18] considered the oscillation criteria of second order half linear
delay dynamic equation

(r(t)g(x∆(t)))∆ + p(t)f(x(τ(t))) = 0,

and obtained some oscillation criteria.
Note that in the special case when T = R, (1) becomes the second-order nonlinear
damped differential equation

(r(t)(x′(t))α)′ + p(t)(x′(t))α + q(t)f(x(t)) = 0, t ∈ R,
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and when T = Z, (1) becomes the second-order nonlinear damped difference
equation

∆(r(t)(∆x(t))α) + p(t)(∆x(t))α + q(t)f(x(t)) = 0, t ∈ Z,

where ∆x(t) = x(t+ 1)− x(t).
In this paper, we replace ep(t, s) with e⊖p(t, s) and this is difference between
our paper and other articles. Our result extend and improve some well-known
oscillation results. The paper is organized as follows. In Section 2, we present
some basic definitions and useful results from the theory of calculus on time
scales on which we rely in the later section. In section 3, we intend to use the
Riccati transformation technique, integral averaging technique, and inequalities
to obtain some sufficient conditions for oscillation for oscillation of every solution
of (1). In section 4, we give a example to illustrate our results. The last section
is devoted to remarks and comments concerning our results. We also formulate
possible new research directions.

2. Preliminaries

Lemma 2.1. [2] We say that a function p : T → R is regressive provided

1 + µ(t)p(t) 6= 0

for all t ∈ T
κ holds.

We define the set R+ of all positively regressive elements of R by

R+ = {p ∈ R : 1 + µ(t)p(t) > 0 for all t ∈ T} .

R+ is a subgroup of R.

Lemma 2.2. [2] Show that if p ∈ R, then the function ⊖p defined by

(⊖p)(t) := −
p(t)

1 + µ(t)p(t)

for all t ∈ T
κ are also elements of R. Since p ∈ R+, we have ⊖p ∈ R+ by

Lemma 2.1.
If p ∈ R+, then ep(t, t0) > 0 for all t ∈ T.

Lemma 2.3. [2] If p ∈ R, then we have define the exponential function by

ep(t, s) = exp

(
∫ t

s

ξµ(τ)(p(τ))∆τ

)

for s, t ∈ T,

where ξh(z) =
1
h
log(1 + zh), h > 0.

Lemma 2.4. [2] If p, q ∈ R, then
(1) ep(t, t) ≡ 1;
(2) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);
(3) 1

ep(t,s)
= e⊖p(t, s).x
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Lemma 2.5. [2] Let y ∈ Crd and p ∈ R+, we have

(ye⊖p(·, t0))
∆(t) = y∆(t)e⊖p(σ(t), t) + y(t)(⊖p)(t)e⊖p(t, t0)

= y∆(t)e⊖p(σ(t), t) + y(t)
(⊖p)(t)

1 + µ(t)(⊖p)(t)
e⊖p(σ(t), t)

=
(

y∆(t)− (⊖(⊖p))(t)y(t)
)

e⊖p(σ(t), t)

= (y∆(t)− p(t)y(t))e⊖p(σ(t), t).

Lemma 2.6. [3] Assume that α > 0 is the ratio of positive odd integers and
xα(t) ∈ C1

rd(I,R). Then

(xα(t))∆ >

{

α(x(σ(t)))α−1y∆(t), 0 < α 6 1,

α(x(t))α−1x∆(t), α > 1.

3. Main Results

Now, we are in a position to state and prove some new results which guarantee
that every solution of (1) oscillates.

Theorem 3.1. Assume that (H1)-(H4) hold. Furthermore, assume that there
exists a positive real rd-continuous differentiable function v(t) such that

lim sup
t→∞

∫ t

t0

(

kv(s)q(s)−
ψα+1(s)r(s)

(α+ 1)α+1vα(s)

)

∆s = ∞, (2)

where

ψ(t) =
r(t)v∆(t) + v(t)p(t)

r(t)
(3)

Then every solution of (1) is oscillatory.

Proof. Suppose to the contrary that x(t) is a nonoscillatory solution of (1). With
loss of generality, we may assume that x(t) > 0 for t > t1 > t0. We shall consider
only this cases, since in view of (H2), the proof of the case when x(t) is eventually
negative is similar. Now, we claim that x∆(t) has a fixed sign on the interval
[t2,∞) for some t2 > t1. From (1), since q(t) > 0 and f(x(t)) > 0, we have

(r(t)(x∆(t))α)∆ − p(t)(x∆(t))α = −q(t)f(x(t)) < 0,

i.e.,
(r(t)(x∆(t))α)∆ − p(t)(x∆(t))α < 0.

By setting y(t) = r(t)(x∆(t))α, we immediately see that y∆(t) − p(t)
r(t)y(t) < 0,

by Lemma 2.2 and Lemma 2.3, we have (y(t)e⊖ p

r
)∆ < 0. Then y(t)e⊖p

r
is

decreasing and thus y(t) is eventually of one sign. Then x∆(t) has a fixed sign
for all sufficiently large t and we have one of the following:

{

Case (1). x∆(t) is eventually positive.

Case (2). x∆(t) is eventually negative.
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First, we consider Case (1). x∆(t) > 0 on [t2,∞) for some t2 > t1. Then in view
(1) and (H1) we have

x(t) > 0, x∆(t) > 0, (r(t)(x∆(t))α)∆ < 0, t > t2.

We see that for t > t3 = σ(t2)

r(t)(x∆(t))α > r(σ(t))(x∆(σ(t)))α, xα(σ(t)) > xα(t). (4)

Define the function w(t) by the Riccati substitution

w(t) := v(t)r(t)

(

x∆(t)

x(t)

)α

, t > t2. (5)

In view of (1), we have

w∆(t) =r(σ(t))(x∆(σ(t)))α
(

v(t)

xα(t)

)∆

+
v(t)(r(t)(x∆(t))α)∆

xα(t)

=r(σ(t))(x∆(σ(t)))α
v∆(t)xα(t)− v(t)(xα(t))∆

xα(t)xα(σ(t))

+
v(t)

xα(t)
(p(t)(x∆(t))α − q(t)f(x(t)))

=−
v(t)q(t)f(x(t))

xα(t)
+ v(t)

p(t)(x∆(t))α

xα(t)
+

v∆(t)

v(σ(t))
w(σ(t))

−
v(t)r(σ(t))(x∆(σ(t)))α(xα(t))∆

xα(t)xα(σ(t))
,

(6)

Using (4) in (6) and by (H3), we have

w∆(t) 6− kv(t)q(t) + v(t)
p(t)r(σ(t))(x∆(σ(t)))α

r(t)xα(σ(t))
+

v∆(t)

v(σ(t))
w(σ(t))

−
v(t)r(σ(t))(x∆(σ(t)))α(xα(t))∆

xα(t)xα(σ(t))

=− kv(t)q(t) +
ψ(t)

v(σ(t))
w(σ(t)) −

v(t)r(σ(t))(x∆(σ(t)))α(xα(t))∆

xα(t)xα(σ(t))
,

where ψ(t) as defined as (3).
By Lemma 2.5, if 0 < α 6 1, we have

w∆(t) 6− kv(t)q(t) +
ψ(t)

v(σ(t))
w(σ(t)) −

αv(t)r(σ(t))(x∆(σ(t)))αx∆(t)

xα(t)x(σ(t))

6− kv(t)q(t) +
ψ(t)

v(σ(t))
w(σ(t)) −

αv(t)r(σ(t))(x∆(σ(t)))αx∆(t)

xα+1(σ(t))
,

(7)
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if α > 1, we have

w∆(t) 6− kv(t)q(t) +
ψ(t)

v(σ(t))
w(σ(t)) −

αv(t)r(σ(t))(x∆(σ(t)))αx∆(t)

x(t)xα(σ(t))

6− kv(t)q(t) +
ψ(t)

v(σ(t))
w(σ(t)) −

αv(t)r(σ(t))(x∆(σ(t)))αx∆(t)

xα+1(σ(t))
.

(8)

Thus, by (7) and (8), we obtain

w∆(t) 6 −kv(t)q(t) +
ψ(t)

v(σ(t))
w(σ(t)) −

αv(t)r(σ(t))(x∆(σ(t)))αx∆(t)

xα+1(σ(t))

= −kv(t)q(t) +
ψ(t)

v(σ(t))
w(σ(t)) −

αv(t)r
1
α (t)x∆(t)

v(σ(t))x(σ(t))r
1
α (t)

w(σ(t))

6 −kv(t)q(t) +
ψ(t)

v(σ(t))
w(σ(t)) −

αv(t)r
1
α (σ(t))x∆(σ(t))

v(σ(t))x(σ(t))r
1
α (t)

w(σ(t))

= −kv(t)q(t) +
ψ(t)

v(σ(t))
w(σ(t)) −

αv(t)

v
α+1
α (σ(t))r

1
α (t)

w
α+1
α (σ(t))

(9)

hold for all α > 0.
Then, using the inequality[19]

Bu− Cu
1+α

α 6
αα

(1 + α)α+1

Bα+1

Cα
,

let B = ψ(t)
v(σ(t)) , C = αv(t)

v
α+1
α (σ(t))r

1
α (t)

and u = w(σ(t)), we obtain

w∆(t) 6 −kv(t)q(t) +
αα

(1 + α)1+α

(

ψ(t)

v(σ(t))

)α+1
(

v
α+1
α (σ(t))r

1
α (t)

αv(t)

)α

= −kv(t)q(t) +
ψα+1(t)r(t)

(α+ 1)α+1vα(t)
.

(10)

Integrating (10) from t3 to t, we obtain

w(t) − w(t3) 6 −

∫ t

t3

(

kv(s)q(s)−
ψα+1(s)r(s)

(α+ 1)α+1vα(s)

)

∆s,

which yields
∫ t

t3

(

kv(s)q(s) −
ψα+1(s)r(s)

(α+ 1)α+1vα(s)

)

∆s 6 w(t3)− w(t) < w(t3)

for all large t. This is contrary to (2).
Next, we consider Case(2). Then exists t2 > t1 such that (x∆(t))α < 0 for t > t2.
Define the function u(t) = −r(t)(x∆(t))α. Then from (1), we have

u∆(t)−
p(t)

r(t)
u(t) > 0.
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Thus
u(t) > u(t2)e⊖ p(t)

r(t)

(t, t2),

so that

(x∆(t))α 6 −u(t2)

(

1

r(t)
e
⊖

p(t)
r(t)

(t, t2)

)

,

i.e.

x∆(t) 6

(

−u(t2)

(

1

r(t)
e
⊖

p(t)
r(t)

(t, t2)

))
1
α

. (11)

Integrating (11) from t2 to t, we get

x(t)− x(t2) 6 (r(t2))
1
αx∆(t2)

∫ t

t2

(

1

r(s)
e
⊖

p(m)
r(m)

(s, t2)

)
1
α

∆s.

Condition (H4) implies that x(t) is eventually negative, which is a contradiction.
The proof is complete. �

Corollary 3.2. Assume that (H1)-(H4) hold. If

lim sup
t→∞

∫ t

t0

(

kq(s)−
pα+1(s)

(α+ 1)α+1rα(t)

)

∆s = ∞,

the every solution of (1) is oscillatory.

Corollary 3.3. Assume that (H1)-(H4) hold. If there is λ > 1 such that

lim sup
t→∞

∫ t

t0

(

ksλq(s)−
(r(s)(sλ)∆ − sλp(s))α+1

(α+ 1)α+1(sλ)αrα(s)

)

∆s = ∞,

the every solution of (1) is oscillatory.

Corollary 3.4. Assume that (H1)-(H4) hold. If

lim sup
t→∞

∫ t

t0

(

kR(s, t0)q(s)−
(r(s)(R(s, t0))

∆ −R(s, t0)p(s))
α+1

(α+ 1)α+1(R(s, t0))αrα(s)

)

∆s = ∞,

where R(t, t0) =
∫ t

t0

1
r(s)∆s, the every solution of (1) is oscillatory.

Theorem 3.5. Assume that (H1)-(H4) hold. Furthermore, suppose that v(t) be
as defined in Theorem 3.1 and a function H ∈ C(D,T), where D := {(t, s) : t >
s > t0}, such that

H(t, t) = 0, for t > t0,

H(t, s) > 0, for (t, s) ∈ D0,

where D0 := {(t, s) : t > s > t0}, and H has a nonpositive continuous partial
derivative H∆s(t, s) := ∂H(t, s)/∂s on D0 with respect to the second variable
and satisfies

lim sup
t→∞

1

H(t, t0)

∫ t

t0

(

kH(t, s)v(s)q(s) −
vα+1(σ(t))r(s)Aα+1(t, s)

(1 + α)1+αHα(t, s)vα(s)

)

∆s = ∞,

(12)
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where

A(t, s) = H(t, s)
ψ(s)

v(σ(t))
+H∆s(t, s).

Then every solution of (1) is oscillatory.

Proof. Suppose to the contrary that x(t) is a nonoscillatory solution of (1) and
let t1 > t0 be such that x(t) 6= 0 for all t > t1, so with loss of generality, we
may assume that x(t) is an eventually positive solution of (1) with x(t) > 0 for
t > t1 sufficiently large. In view of Theorem 3.1 we see that x∆(t) is eventually
negative or eventually positive. If x∆(t) is eventually negative, we are then back
to Case (2) of Theorem 3.1 and we obtain a contradiction.
If x∆(t) is eventually positive, we assume that there exists t2 > t1 such that
x∆(t) > 0 for t2 > t1 and proceed as in the proof of Case (1) of Theorem 3.1
and get (9). From (9), it follows that
∫ t

t2

kH(t, s)v(s)q(s)∆s 6−

∫ t

t2

H(t, s)w∆(s)∆s+

∫ t

t2

H(t, s)
ψ(s)

v(σ(s))
w(σ(s))∆s

−

∫ t

t2

H(t, s)
αv(s)

v
α+1
α (σ(s))r

1
α (s)

w
α+1
α (σ(s))∆s,

(13)
Using the integration by parts formula, we have

∫ t

t2

H(t, s)w∆(s)∆s = H(t, s)w(s)|tt2 −

∫ t

t2

H∆s(t, s)w(σ(s))∆s

= −H(t, t2)w(t2)−

∫ t

t2

H∆s(t, s)w(σ(s))∆s,

(14)

where H(t, t) = 0. Substituting (14) into (13), we obtain
∫ t

t2

kH(t, s)v(s)q(s)∆s 6

H(t, t2)w(t2) +

∫ t

t2

H∆s(t, s)w(σ(s))∆s +

∫ t

t2

H(t, s)
ψ(s)

v(σ(s))
w(σ(s))∆s

−

∫ t

t2

H(t, s)
αv(s)

v
α+1
α (σ(s))r

1
α (s)

w
α+1
α (σ(s))∆s.

Hence,
∫ t

t2

kH(t, s)v(s)q(s)∆s 6

H(t, t2)w(t2) +

∫ t

t2

(

H(t, s)
ψ(s)

v(σ(s))
+H∆s(t, s)

)

w(σ(t))∆s

−

∫ t

t2

H(t, s)
αv(s)

v
α+1
α (σ(s))r

1
α (s)

w
α+1
α (σ(t))∆s.
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Then, using the inequality [19]

Bu− Cu
1+α

α 6
αα

(1 + α)α+1

Bα+1

Cα
,

let B = H(t, s) ψ(t)
v(σ(t)) , C = H(t, s) αv(t)

v
α+1
α (σ(t))r

1
α (t)

and u = w(σ(t)), we obtain

∫ t

t2

kH(t, s)v(s)q(s)∆s 6H(t, t2)w(t2) +

∫ t

t2

vα+1(σ(t))r(s)Aα+1(t, s)

(1 + α)1+αHα(t, s)vα(s)
∆s.

Then for all t > t2, we have
∫ t

t2

(

kH(t, s)v(s)q(s)−
vα+1(σ(t))r(s)Aα+1(t, s)

(1 + α)1+αHα(t, s)vα(s)

)

∆s 6 H(t, t2)w(t2),

and this implies that

1

H(t, t2)

∫ t

t2

(

kH(t, s)v(s)q(s)−
vα+1(σ(t))r(s)Aα+1(t, s)

(1 + α)1+αHα(t, s)vα(s)

)

∆s 6 w(t2)

for all large t, which contradicts (12). The proof is complete. �

4. Examples

Example 4.1. Consider the equation

((x∆(t))α)∆ +
1

t
(x∆(t))α + txα(t) = 0, (15)

where r(t) = 1, p(t) = − 1
t
, q(t) = t, µ(t) = t

2 , f(x(t)) = xα(t) with k = 1,
and α > 0. It is clear that conditions (H1)-(H4) are satisfied. Letting v(t) = t,
T = [1,∞), by Lemma 2.3 and Lemma 2.4 we have

e p

r
(t, t0) = e− 1

t
(t, 1) = exp

(
∫ t

1

ξ0(−
1

τ
)dτ

)

= exp

(
∫ t

1

(−
1

τ
)dτ

)

=
1

t
,

e⊖p

r
(t, t0) =

1

e p

r
(t, t0)

= t,

∫ ∞

t0

(

1

r(t)
e⊖ p

r
(t, t0)

)
1
α

∆t =

∫ ∞

t0

(t)
1
α ∆t = ∞,

ψ(t) = v∆(t) + v(t)p(t) = 0.

Hence,

lim sup
t→∞

∫ t

t0

(

kv(s)q(s) −
ψα+1(s)r(s)

(α+ 1)α+1vα(s)

)

∆s = lim sup
t→∞

∫ t

t0

(t2)∆s = ∞.

That is (2) holds. By Theorem 3.1 we see that (15) is oscillatory.
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5. Conclusion

The results of this article are presented in a form which is essentially new and
of high degree of generalize. In this article, using generalized Riccati transfor-
mation and inequality technique, we offer some new sufficient conditions which
insure that any solution of dynamic equation (1) oscillates. In addition, we
can try to get some oscillation behavior of dynamic equation (1) if q(t) < 0 or

∫∞

t0

(

1
r(t)e⊖ p(s)

r(s)

(t, t0

)
1
α

∆t <∞ in the future work.
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