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Abstract. In this paper, we consider initial boundary value problem of
the generalized Boussinesq equation with nonlinear interior source and
boundary absorptive terms. We establish both the existence of the solution
and a general decay of the energy functions under some restrictions on the
initial data. We also prove a blow-up result for solutions with positive and
negative initial energy respectively.
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1. Introduction

In this paper, we consider the following initial boundary value problem for the
generalized Boussinesq equation with a nonlinear Neumann condition















ut −∆ut −∆u+ |u|q−2ut = f(u),
u = 0, x ∈ Γ0,
∂u
∂ν

+ g(u) = 0, x ∈ Γ1,

u(x, 0) = u0(x), x ∈ Ω,

(1)

where u = u(t, x)(t ≥ 0, x ∈ Ω), ∆ denotes the Laplacian operator with respect
to the x variable, Ω is a bounded open subset of Rn(n ≥ 1) of class C1, ∂Ω =
Γ0 ∪ Γ1,mes(Γ0) > 0, Γ0 ∩ Γ1 = ∅, and ∂

∂ν
denotes the unit outer normal
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derivative, q > 2 is a positive constant, and the initial datum u0 is a given
function with the compatibility boundary condition u0 = 0 on Γ0 and f(s) and
g(s) are continuous functions. For sake of simplicity , in this paper, we consider
f(s) = a|u|p−1u, g(s) = b|u|k−1u, where p > 1, k > 1 and a = b = 1.
Problem (1) was derived in [1]. This problem describes an electric breakdown
in crystalline semiconductors with allowance for the linear dissipation of bound-
and free-charge sources [1, 2, 3], where the nonlinear Neumman boundary con-
dition on the boundary of the semiconductor was introduced. According to the
authors’ knowledge, there are few works on the study of problem (1). Korpusov
and Sveshnikov [4] and Makarov [5] proved a local theorem on the existence of
solutions to the following problem







ut −∆ut −∆u+ (|u|q3u)t = |u|q2u,
∂u
∂ν

+ |u|q1u = 0, x ∈ ∂Ω = Γ,
u(x, 0) = u0(x), x ∈ Ω

(2)

by using the Galerkin method combined with the compactness method. By using
the method of energy inequalities [6, 7], they also obtained sufficient conditions
for the blow-up of solutions in a finite time interval and established upper and
lower bounds for the blow-up time, provided the initial data satisfies

∫

Ω

[
1

q2 + 2
|u0|

q2+2 −
1

2
|∇u0|

2]dx−
1

q1 + 2

∫

Γ

|u0|
q1+2dx

≥ c1{

∫

Ω

[
1

2
|∇u0|

2 +
q3 + 1

q3 + 2
|u0|

q3+2]dx+
q1 + 1

q1 + 2

∫

Γ

|u0|
q1+2dx},

where c1 is a positive constant depending on q1, q2, q3. In this paper, we consider
both the existence of the solution and a general decay of the energy functions
under some restrictions on the initial data. We also study blow-up condition of
the solutions with positive and negative initial energy respectively.
Before we state and prove our results, let us recall some works related to the
problem we address.
In the absence of the nonlinear diffusion term |u|q−2ut and g(u) = 0, problem
(1) can be reduced to the following classical problem







ut −∆ut −∆u = f(u),
∂u
∂ν

= 0, or u = 0, x ∈ ∂Ω,
u(x, 0) = u0(x), x ∈ Ω,

(3)

The first equation in probem(3) can be called Sobolev type equation, Sobolev-
Galpern type equation, pseudo-parabolic equation, or the Benjamin Bona Ma-
hony Burgers’ (BBM-Burgers) equation (for example, see [1, 3, 8, 9]. It also
appears as a nonclassical diffusion equation in fluid mechanics, solid mechanics
and heat conduction theory, for instance, see [10] and references therein. It’s
well known that problem (3) has been studied by many authors. A powerful
technique to treat problem (3) is the so called ”potential well method”, which
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was established by Payne and Sattinger [11] and Sattinger [12], and then im-
proved by Liu and Zhao [13] by introducing a family of potential wells. Recently,
there are some interesting results about the global existence and blow-up of so-
lutions for problem (3) with f(u) = up in [14] where a family of potential wells
is introduced to prove global existence, nonexistence and asymptotic behavior of
solutions with low initial energy, while for high initial energy, finite time blow-
up of solutions is acquired by comparison principle. For other related works, we
refer the readers to [1, 2, 3, 6, 7, 8, 10, 16, 15, 17, 18, 19, 20, 21, 22, 23, 24]
and the references therein. The obtained results show that global existence and
nonexistence depend roughly on p, the degree of nonlinearity in f , the dimension
n, and the size of the initial data.
The equation in problem (1) with Dirichlet boundary condition (i.e. g(u) = 0)
has also been studied by many authors[1, 2, 3, 16, 25, 26, 27, 28]. Korpusov
and Sveshnikov et al [1, 2, 3, 16, 25, 26] gave the local strong solution and
sufficient close-to-necessary conditions for the blow-up of solutions with negative
initial energy using the energy approach developed by Levine [6]. Furthermore,
they also considered two different abstract Cauchy problems for equations of
Sobolev type. Zhang et al [27, 28] showed the exponential growth and blow-up
of solutions with negative or positive initial energy by constructing differential
inequality. We also refer to [29, 30, 31, 32, 33, 34, 35] for related results.
For the following parabolic equation with a nonlinear boundary condition or
dynamic boundary condition















ut −∆u = f(u),
u = 0, x ∈ Γ0,
∂u
∂ν

= −Q(ut) + g(u), x ∈ Γ1,

u(x, 0) = u0(x), x ∈ Ω,

(4)

local well-posedness, global existence and blow-up results for the solutions have
also been widely studied. For example, Levine and Smith[36] and Vitillaro
[37, 38] studied local and global existence and nonexistence of the solutions
to problem (4) by potential well theory. Also, we would like to mention the
classical global existence and nonexistence results in[39, 40, 41, 42]. For prob-
lem (4) with Q = 0, as that in [43], if we interpret u as a heat distribution in
the body Ω, and assume that u ≥ 0 for the moment, noting that for ranges
in which −f is positive we have ”absorption” of heat, while when −f is neg-
ative we have ”sources” of heat. The same holds for −g: when −g is positive
we have a flow of heat through the boundary of Ω that extracts heat from the
body, while in the opposite case, heat is flowing inside Ω. Then, for problem
(1) with f(s) = |u|p−1u, g(s) = |u|k−1u, f can be called ”sources” term and
g can be called ”boundary absorptive” term. When term |u|q−2ut does not
present in problem (1), the same boundary condition arises in the literature
in connection with the wave equation, i.e. when the operator ut − ∆u in (1)
is replaced by the wave operator utt − ∆u. Some related problems concerning
wave equations with nonlinear damping and source terms have been considered
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in [44, 45, 46, 47, 48, 49, 50, 51, 52, 53]. In particular, Cavalcanti et al [44] deals
with the problem







utt −∆u = f(u),
∂u
∂ν

+ u = −h(ut) + g(u), x ∈ ∂Ω,
u(x, 0) = u0(x), ut(0) = u1, x ∈ Ω,

(5)

where under some assumptions imposed on the damping and source terms, they
showed the well-posedness of the problem and effective optimal decay rates for
the solutions. They also established a blow-up result in the case where the
boundary source dominates the boundary damping and initial data are large
enough. In general, methods employed to study hyperbolic problems cannot
be employed to study parabolic problems, and conversely. Nevertheless, the
arguments of [44] can be conveniently adapted to problem (1) without |u|q−2ut.
However, there are several important differences in the proofs, which make the
adaptation non-trivial. The first essential difference, with respect to [44], comes
out here, since the boundary source term appearing in (5) is now a boundary
absorptive term. When one combines boundary absorption and interior source
terms with initial data of arbitrary size, the analysis becomes more difficult.
Moreover, terms −∆ut and |u|q−2ut differ from boundary damping term Q(ut)
given in [44].
In this paper, we will investigate the existence and nonexistence of global solu-
tions to problem (1). More precisely, under appropriate assumptions imposed on
the source and boundary absorption terms, we shall establish global existence of
solutions by using the potential well method combined with a standard contin-
uous argument. We will give sufficient conditions for the blow-up of solutions in
a finite time interval under suitable initial data using differential inequality. It
is different with the results in [4, 5]. We also give a general decay of the energy
by an integral inequality in [54].
This paper is organized as follows. Section 2 is concerned with some notations
and statement of assumptions. In Section 3, we prove global existence of solu-
tions and the blow-up result for the solutions with positive and negative initial
energy respectively. In Section 4, a general decay of the energy is proved.

2. Preliminaries

In this section, we present some materials needed in the proof of our results. We
use the standard Lebesgue space Lp(Ω)(1 < p < ∞) and Soblev space H1(Ω)
with their usual scalar products and norms. Moreover, we denote ||u||Lp(Ω) =

||u||p and ||u||Lp(Γ1) = ||u||p,Γ1 for 1 ≤ p ≤ ∞, and the Hilbert space H1
Γ0
(Ω) :=

{u ∈ H1(Ω) : u|Γ0
= 0}, ||u||2

H1
Γ0

= ||∇u||22 + ||u||22, where u|Γ0
stands for the

restriction of the trace of u on ∂Ω to Γ0, and in particular, we denote ||u||2 = ||u||
and ||u||2,Γ1 = ||u||Γ1 . Since meas(Γ0) > 0, a Poincare-type inequality holds
and consequently ||∇u|| is an equivalent norm in H1

Γ0
(Ω). The constants C used
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throughout this paper are positive generic constants, which may be various in
different occurrences.
We assume that

1 < p ≤
n+ 2

n− 2
, 1 < q ≤

n

n− 2
if n ≥ 3;

p > 1, q > 1 if n = 1, 2; p > max{q − 1, k} > 1. (6)

Then, we have the Soblev embedding H1
Γ0
(Ω) →֒ Lp+1(Ω) and the trace-Soblev

embeddingH1
Γ0
(Ω) →֒ Lk+1(Γ1). In these cases, the embedding constants denote

c∗, B∗ respectively, i.e.

||u||p+1 ≤ c∗||u||H1
Γ0

(Ω), ||u||k+1,Γ1 ≤ B∗||u||H1
Γ0

(Ω). (7)

A function u(x, t) of class H1(0, T ;H1
Γ0
(Ω)) is called a weak generalized solution

of problem (1) if it satisfies the equation

(ut, φ) + (∇ut,∇φ) + (∇u,∇φ) +

∫

Ω

|u|q−2utφdx −

∫

Ω

|u|p−1uφdx

+

∫

Γ1

|u|k−1uφdx+ k

∫

Γ1

|u|k−1utφdx = 0

for any φ ∈ H1
Γ0
(Ω), and almost all t ∈ [0, T ] and the initial condition u(x, 0) =

u0(x) (see [4, 5]).

Theorem 2.1. Let u0 ∈ H1(0, T ;H1
Γ0
(Ω)) and p, q, k satisfy (6), then problem

(1) has a unique weak generalized solution on [0, T0) for some T0 > 0, and we
have either T0 = +∞ or T0 < +∞ and

lim
t→T

−

0

sup||u||2H1
Γ0

(Ω) = +∞.

Theorem 2.1 can be easily established by combining the argument of [55], The-
orem 1 and Theorem 2 in [4, 5], thus we omit it.
We define the functional that plays as the ”potential energy”

E(t) = E(u) =
1

2
||∇u||2 −

1

p+ 1
||u||p+1

p+1 +
1

k + 1
||u||k+1

k+1,Γ1

=
1

2
||u||2H1

Γ0
(Ω) −

1

p+ 1
||u||p+1

p+1 +
1

k + 1
||u||k+1

k+1,Γ1
, (8)

and the Nehari functional

I(u) = ||u||2H1
Γ0

(Ω) − ||u||p+1
p+1 + ||u||k+1

k+1,Γ1
.

We also have the following identy

E′(t) = − 1
2 ||ut||

2
H1

Γ0
(Ω)

−
∫

Ω |u|q−2u2
tdx− k

∫

Γ1
|u|k−1u2

tdx ≤ 0. (9)

In the sequel, a crucial role is played by the Nehari manifold to I, which is

N = {u ∈ H1
Γ0
(Ω)|I(u) = 0, ||u||H1

Γ0
(Ω) 6= 0},
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and we can readily give the mountain-pass level d by d = inf
u∈N

E(u).

Next, we show some properties related to functions E(u) and I(u) in the follow-
ing lemmas.

Lemma 2.2. Let u ∈ H1
Γ0
(Ω), ||u||H1

Γ0
(Ω) 6= 0 and (6) hold, then

(i) lim
λ→0

E(λu) = 0, lim
λ→+∞

E(λu) = −∞;

(ii) In the interval 0 < λ < ∞, there exists a unique λ0 = λ0(u) > 0 such that
d
dλ

E(λu)|λ=λ0 = 0;
(iii)E(λu) is increasing on 0 < λ ≤ λ0, decreasing on λ0 ≤ λ < +∞ and takes
the maximum at λ = λ0;
(iv) I(λu) > 0, for 0 < λ < λ0; I(λu) < 0 , for λ > λ0 and I(λ0u) = 0.

Proof. (i) The conclusion follows from

E(λu) =
λ2

2
||u||2H1

Γ0
(Ω) −

λp+1

p+ 1
||u||p+1

p+1 +
λk+1

k + 1
||u||k+1

k+1,Γ1
.

(ii) First, note that

d

dλ
E(λu) = λ||u||2H1

Γ0
(Ω) − λp||u||p+1

p+1 + λk||u||k+1
k+1,Γ1

= 0, λ > 0

is equivalent to

λp−1||u||p+1
p+1 − λk−1||u||k+1

k+1,Γ1
= ||u||2H1

Γ0
(Ω). (10)

Let

h(λ) = λp−1||u||p+1
p+1 − λk−1||u||k+1

k+1,Γ1

= λk−1(λp−k||u||p+1
p+1 − ||u||k+1

k+1,Γ1
)

= λk−1h1(λ),

where h1(λ) = λp−k||u||p+1
p+1 − ||u||k+1

k+1,Γ1
. Note that h1(λ) is increasing on 0 <

λ < ∞, lim
λ→0+

h1(λ) ≤ 0, and lim
λ→+∞

h1(λ) = +∞, and hence there exists a

unique λ∗ > 0 such that h1(λ
∗) = 0, thereby h(λ∗) = 0,h(λ) < 0 for 0 < λ < λ∗,

h(λ) > 0 for λ∗ < λ < ∞. Hence, for any ||u||H1
Γ0

(Ω) > 0, there exists a unique

λ0 > λ∗ such that (10) holds, and then (ii) holds.
(iii) Note that d

dλ
E(λu) = λ(||u||2

H1
Γ0

(Ω)
− h(λ)). From the proof of (ii),

it follows that if 0 < λ < λ∗, then h(λ) < 0; if λ∗ < λ < λ0, then 0 <

h(λ) < ||u||2
H1

Γ0
(Ω)

; and if λ0 < λ < ∞, then h(λ) > ||u||2
H1

Γ0
(Ω)

. From this, the

conclusion of (iii) holds.
(iv)The conclusion follows from the proof of (iii) and

I(λu) = λ2||u||2H1
Γ0

(Ω) − λp+1||u||p+1
p+1 + λk+1||u||k+1

k+1,Γ1
= λ

d

dλ
E(λu).

This completes the proof of Lemma 2.2. �



Asymptotic stability and blow-up of solutions for the generalized Boussinesq equation 99

Now, we define

F (x) =
1

2
x2 −

c
p+1
∗

p+ 1
xp+1 −

Bk+1
∗

k + 1
xk+1,

and let r0 be the unique real root of equation F ′(x) = 0. We easily verify that r0
is the unique real root of equation φ(x) = 1, where φ(x) = c

p+1
∗ xp−1+Bk+1

∗ xk−1,

then φ(r0) = c
p+1
∗ r

p−1
0 + Bk+1

∗ rk−1
0 = 1. It can be checked that r0 is a point of

local maximum for F (x) (see[44] for more details). Accordingly, let us define E1

as

E1 = F (r0) =
1

2
r20 −

c
p+1
∗

p+ 1
r
p+1
0 −

Bk+1
∗

k + 1
rk+1
0 .

Lemma 2.3. Let (6) hold, then (i) if 0 < ||u||H1
Γ0

(Ω) < r0, then I(u) > 0; (ii)if

I(u) < 0, then ||u||H1
Γ0

(Ω) > r0; (iii) if I(u) = 0 and ||u||H1
Γ0

(Ω) 6= 0, i.e. u ∈ N ,

then ||u||H1
Γ0

(Ω) ≥ r0.

Proof. (i)Since φ(x) is a strictly increasing function in (0, r0), from

0 < ||u||H1
Γ0

(Ω) < r0,

we get φ(||u||H1
Γ0

(Ω)) < φ(r0) and

I(u) = ||u||2H1
Γ0

(Ω) − ||u||p+1
p+1 + ||u||k+1

k+1,Γ1

≥ ||u||2H1
Γ0

(Ω) − ||u||p+1
p+1 − ||u||k+1

k+1,Γ1

= ||u||2H1
Γ0

(Ω)(1− cp+1
∗ ||u||p−1

H1
Γ0

(Ω)
−Bk+1

∗ ||u||k−1
H1

Γ0
(Ω)

)

= ||u||2H1
Γ0

(Ω)(φ(r0)− φ(||u||H1
Γ0

(Ω))) > 0.

(ii) Condition I(u) < 0 gives

φ(r0)||u||
2
H1

Γ0
(Ω) = ||u||2H1

Γ0
(Ω)

< ||u||p+1
p+1 − ||u||k+1

k+1,Γ1
< ||u||p+1

p+1 + ||u||k+1
k+1,Γ1

≤ (cp+1
∗ ||u||p−1

H1
Γ0

(Ω)
+Bk+1

∗ ||u||k−1
H1

Γ0
(Ω)

)||u||2H1
Γ0

(Ω) = φ(||u||H1
Γ0

(Ω))||u||
2
H1

Γ0
(Ω),

which implies ||u||H1
Γ0

(Ω) 6= 0 and ||u||H1
Γ0

(Ω) > r0 by the monotonicity of φ.

(iii) If I(u) = 0 and ||u||H1
Γ0

(Ω) 6= 0, then

φ(r0)||u||
2
H1

Γ0
(Ω) = ||u||2H1

Γ0
(Ω) = ||u||p+1

p+1 − ||u||k+1
k+1,Γ1

≤ ||u||p+1
p+1 + ||u||k+1

k+1,Γ1
≤ φ(||u||H1

Γ0
(Ω))||u||

2
H1

Γ0
(Ω),

and from the monotonicity of φ, we get ||u||H1
Γ0

(Ω) > r0. �

Lemma 2.4. d ≥ d0 = (12 − 1
p+1 )r

2
0 = p−1

2(p+1)r
2
0.



100 J. Dang, Q. Hu, H. Zhang

Proof. For u ∈ N (or I(u) = 0 and ||u||H1
Γ0

(Ω) 6= 0), by Lemma 2.3, we have

||u||H1
Γ0

(Ω) > r0. Hence

E(u) ≥
1

2
||u||2H1

Γ0
(Ω) +

1

p+ 1
(−||u||p+1

p+1 + ||u||k+1
k+1,Γ1

)

= (
1

2
−

1

p+ 1
)||u||2H1

Γ0
(Ω) +

1

p+ 1
I(u)

= (
1

2
−

1

p+ 1
)||u||2H1

Γ0
(Ω) ≥ (

1

2
−

1

p+ 1
)λ2

0,

which gives d ≥ d0. �

Remark 2.5. Noting the definition of d and the fact that

E(u) =
1

2
||u||2H1

Γ0
(Ω) −

1

p+ 1
||u||p+1

p+1 +
1

k + 1
||u||k+1

k+1,Γ1

≥
1

2
||u||2H1

Γ0
(Ω) −

c
p+1
∗

p+ 1
||u||p+1

H1
Γ0

(Ω)
−

Bk+1
∗

k + 1
||u||k+1

H1
Γ0

(Ω)
= F (||u||H1

Γ0
(Ω)), (11)

we know d ≥ E1.

Now we define the subsets of H1
Γ0
(Ω) related to problem (1)-(3). Set

W = {u ∈ H1
Γ0
(Ω)| E(u) < d, I(u) > 0}, V = {u ∈ H1

Γ0
(Ω)| E(u) < d, I(u) < 0}.

(12)

Lemma 2.6. If u0 ∈ H1
Γ0
(Ω), 0 < E(0) < d, and u is a weak solution of problem

(1)-(3), then (i) u ∈ W if I(u0) > 0 or ||u||H1
Γ0

(Ω) = 0; (ii) u ∈ V if I(u0) < 0.

Proof. We only prove (i), and the proof for (ii) is similar. We are going to prove
that u ∈ W for 0 < t < T0. From (9), we have

E(u(t)) +

∫ t

0

[||ut||
2
H1

Γ0
(Ω) +

∫

Ω

|u|q−2u2
tdx + k

∫

Γ1

|u|k−1u2
tdx]ds

= E(0) < d, for any t ∈ [0, T0),

which implies E(u(t)) < d. To prove that u ∈ W for 0 < t < T0, we argue by
contradiction. Indeed, if it is not the case, there would exist t0 ∈ (0, T0) such
that u(t0) ∈ N , and by the definition of d = inf

u∈N
E(u), one has d < E(t0) ≤ d,

then we reach to a contradiction. �

3. Global existence and blow-up of solutions

In this section, we prove the global existence and blow-up of solutions to problem
(1).

Theorem 3.1. Let u0 ∈ H1
Γ0
(Ω), 0 < E(0) < d, I(u0) > 0 or ||u||H1

Γ0
(Ω) = 0,

and p, q, k satisfies (6), then the weak solution u to problem (1) in Theorem 2.1
can be extended to (0,∞).
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Proof. By Lemma 2.5, we have u ∈ W , then I(u) > 0 and E(u) < d for all
t ∈ (0, T0). Therefore,

d > E(u) =
1

2
||u||2H1

Γ0
(Ω) −

1

p+ 1
||u||p+1

p+1 +
1

k + 1
||u||k+1

k+1,Γ1

> (
1

2
−

1

p+ 1
)||u||2H1

Γ0
(Ω) +

1

p+ 1
I(u)

> (
1

2
−

1

p+ 1
)||u||2H1

Γ0
(Ω) (13)

for all t ∈ (0, T0). Then, (13) and (7) imply

||u||2H1
Γ0

(Ω) <
2(p+ 1)d

p− 1
, ||u||p+1

p+1

< cp+1
∗ (

2(p+ 1)d

p− 1
)

p+1
2 , ||u||k+1

k+1,Γ1

< Bk+1
∗ (

2(p+ 1)d

p− 1
)

k+1
2 (14)

for all t ∈ (0, T ). By (8) and the definition of E(u) , we have

1
2 ||ut||

2 + 1
2 ||u||

2
H1

Γ0
(Ω)

≤ E(0) + 1
p+1 ||u||

p+1
p+1 −

1
k+1 ||u||

k+1
k+1,Γ1

< C < +∞(15)

for all t ∈ (0, T ). It follows from (15) and from a standard continuous argument
that local weak solution u furnished by Theorem 2.1 can be extended to the
whole internal [0,∞), that is to say, u is a global solution. �

Theorem 3.2. Suppose that assumption (6) holds, u(0) = u0 ∈ H1
Γ0
(Ω) and u

is a local solution of probelem (1). If E(0) < 0, then the solution of the system
(1) blows up in finite time.

Proof. We set

H(t) = −E(t). (16)

By the definition of H(t) and (9),

H ′(t) = −E′(t) ≥ 0. (17)

Consequently, by E(0) < 0, we have

H(0) = −E(0) > 0. (18)

It is clear that by (17) and (18)

0 < H(0) ≤ H(t). (19)

By (16) and the expression of E(t),

H(t)−
1

p+ 1
||u||p+1

p+1 +
1

k + 1
||u||k+1

k+1,Γ1
= −

1

2
|| ▽ u||2 < 0. (20)
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One implies

0 < H(0) ≤ H(t) ≤
1

p+ 1
||u||p+1

p+1 −
1

k + 1
||u||k+1

k+1,Γ1

≤
1

p+ 1
||u||p+1

p+1 ≤
1

p+ 1
||u||p+1

p+1 +
1

k + 1
||u||k+1

k+1,Γ1
. (21)

Let us define the functional

L(t) = H1−σ(t) +
ǫ

2
|| ▽ u||2 +

ǫ

2
||u||2, (22)

where ǫ > 0 will be fixed in later and 0 < σ ≤ p+1−q
p+1 (this can be done since

q − 1 < p). By taking the time derivative of (21), using problem (1), and
performing several integration by parts, we get

L′(t) = (1− σ)H−σ(t)H ′(t) + ǫ

∫

Ω

▽u▽ utdx+ ǫ

∫

Ω

uutdx

= (1− σ)H−σ(t)H ′(t) + ǫ

∫

Ω

[uut − u∆ut]dx+ ǫ

∫

Γ1

ut

∂u

∂ν
dx

= (1− σ)H−σ(t)H ′(t) + 2ǫH(t) + 2ǫE(t)− ǫ|| ▽ u||2

+ ǫ||u||p+1
p+1 + ǫ||u||k+1

k+1,Γ1
− ǫ

∫

Ω

|u|q−2uutdx+ ǫ

∫

Γ1

ut|u|
k−1udx

= (1− σ)H−σ(t)H ′(t) + 2ǫH(t) + ǫ(1−
2

p+ 1
)||u||p+1

p+1

+ ǫ(1 +
2

k + 1
)||u||k+1

k+1,Γ1
− ǫ

∫

Ω

|u|q−2uutdx+ ǫ

∫

Γ1

ut|u|
k−1udx. (23)

To estimate the last two terms in the right-hand side of (23), by the following
Young’s inequality

ab ≤ δ−1a2 + δb2,

we deduce that, for any δ1 > 0 and δ2 > 0,
∫

Ω

|u|q−2uutdx =

∫

Ω

(|u|
q−2
2 ut)(|u|

q−2
2 u)dx ≤ δ−1

1

∫

Ω

|u|q−2u2
tdx+ δ1

∫

Ω

|u|qdx,

∫

Γ1

|u|k−1uutdx

=

∫

Γ1

(|u|
k−1
2 ut)(|u|

k−1
2 u)dx ≤ δ−1

2

∫

Γ1

|u|k−1u2
tdx+ δ2

∫

Γ1

|u|k+1dx.

Therefore, we have

L′(t) ≥ (1− σ)H−σ(t)H ′(t) + 2ǫH(t) + ǫ(1−
2

p+ 1
)||u||p+1

p+1

+ ǫ(1 +
2

k + 1
)||u||k+1

k+1,Γ1
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− ǫδ1||u||
q
q − ǫδ2||u||

k+1
k+1,Γ1

− ǫδ−1
1

∫

Ω

|u|q−2u2
tdx− ǫδ−1

2

∫

Γ1

|u|k−1u2
tdx. (24)

By choosing δ1 such that δ−1
1 = M1H

−σ(t) for M1 enough large constants to be
fixed later, and noting that

−

∫

Ω

|u|q−2u2
tdx ≥ −H ′(t),−

∫

Γ1

|u|k−1u2
tdx ≥ −H ′(t)

by (9) and (17), we have

L′(t) ≥ [(1 − σ − ǫM1)H
−σ(t)− ǫδ−1

2 ]H ′(t) + 2ǫH(t) + ǫ(1−
2

p+ 1
)||u||p+1

p+1

+ ǫ(1 +
2

k + 1
− δ2)||u||

k+1
k+1,Γ1

− ǫM−1
1 Hσ(t)||u||qq. (25)

Taking into account (21) and the embedding Lp+1(Ω) →֒ Lq(Ω), we get

Hσ(t)||u||qq ≤ C1||u||
(p+1)σ
p+1 ||u||qq ≤ C2||u||

(p+1)σ+q
p+1 , (26)

for some positive constants C1 and C2. Now apply the inequality

xl ≤ (x+ 1) ≤ (1 +
1

z
)(x+ z), x ≥ 0, 0 ≤ l ≤ 1, z > 0, (27)

in particular, taking x = ||u||p+1
p+1, l =

(p+1)σ+q

p+1 , z = H(0), we obtain

||u||
(p+1)σ+q
p+1 = (||u||p+1

p+1)
l ≤ (1 +

1

H(0)
)(||u||p+1

p+1 +H(0)) ≤ C3||u||
p+1
p+1. (28)

where we have used the fact that 0 < q
p+1 < 1, 0 < σ ≤ p+1−q

p+1 and (21).

By (25), (26) and (28), we have

L′(t) ≥ [(1− σ − ǫM1)H
−σ(t)− ǫδ−1

2 ]H ′(t) + 2ǫH(t)

+ ǫ(1−
2

p+ 1
− C3M

−1
1 )||u||p+1

p+1 + ǫ(1 +
2

k + 1
− δ2)||u||

k+1
k+1,Γ1

. (29)

Now, we take δ2 such that 1 + 2
k+1 − δ2 > 0, and we take M1 large enough such

that 1− 2
p+1 −C3M

−1
1 = C4 > 0. Once M1 and δ2 are fixed, we can pick ǫ small

enough such that

1− σ − ǫM1 > 0,

(1− σ − ǫM1)H
−σ(t)− ǫδ−1

2 > (1− σ − ǫM1)H
−σ(0)− ǫδ−1

2 > 0,

where we have used the fact that H−σ(t) > H−σ(0). Then there exist C5 > 0
such that (29) becomes

L′(t) ≥ C5(H(t) + ||u||p+1
p+1 + ||u||k+1

k+1,Γ1
). (30)

Then, we have

L(t) ≥ L(0) ≥ 0.
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On the other hand, by the definition of L(t) and (20), we have

L(t) = H1−σ(t)− ǫ(H(t)−
1

p+ 1
||u||p+1

p+1 +
1

k + 1
||u||k+1

k+1,Γ1
) +

ǫ

2
||u||2

≤ (1− ǫ)H1−σ(t) +
ǫ

p+ 1
||u||p+1

p+1 −
ǫ

k + 1
||u||k+1

k+1,Γ1
+

ǫ

2
||u||2

≤ (1− ǫ)H1−σ(t) +
ǫ

p+ 1
||u||p+1

p+1 +
ǫ

2
||u||2,

where we have used the fact H(t) ≥ H1−σ(t) (this can be ensured by (18), (19),
0 < σ < 1 and that E(0) is sufficient negative).

By the inequality (27) with x = ||u||
p+1
1−σ

p+1 ,l = 1− σ < 1,z = H
1

1−σ (0), we have

||u||p+1
p+1 = (||u||

p+1
1−σ

p+1 )
1−σ ≤ (1 +

1

H
1

1−σ (0)
)(||u||

p+1
1−σ

p+1 +H
1

1−σ (0)) ≤ C6||u||
p+1
1−σ

p+1 .

(31)

Therefore, we get

L(t) ≤ (1− ǫ)H1−σ(t) + C6||u||
p+1
1−σ

p+1 +
ǫ

2
||u||2.

Then, by the embedding Lp+1(Ω) →֒ L2(Ω), we have, for fixed ǫ sufficient small,

L
1

1−σ (t) ≤ C7[H(t) + ||u||p+1
p+1 + ||u||

2
1−σ

p+1 ]. (32)

Using again the inequality (27) with x = ||u||p+1
p+1,l = 2

(p+1)(1−σ) < 1 (since

σ < p+1−q
p+1 < p−1

p+1 ),z = H(0), we have

||u||
2

1−σ

p+1 = (||u||p+1
p+1)

2
(p+1)(1−σ) ≤ (1 +

1

H(0)
)(||u||p+1

p+1 +H(0)) ≤ C8||u||
p+1
p+1.

(33)

From (32) and (33), we obtain

L
1

1−σ (t) ≤ C9(H(t) + ||u||p+1
p+1) ≤ C9(H(t) + ||u||p+1

p+1 + ||u||k+1
k+1,Γ1

). (34)

Combining with (30) and (34), we arrive that

L′(t) ≥ C10L
1

1−σ (t). (35)

Integration of (35) between 0 and t gives the desired results. The theorem is
proved. �

In the following, we will prove that the solution will blow up provided that the
initial energy E(0) > 0. The next lemma will play an essential role in our proving
and it is similar to a lemma used firstly by Vitillaro [56]. Now the main idea of
the proof is from Lemma 9.1 in [44].
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Lemma 3.3. Let u be a solution of problem (1). Suppose that the assumption
of k, p hold. Further assume that E(0) < E1 and ||u(0)||H1

Γ0
(Ω) > r0. Then there

exists a constant r1 > r0 such that ||u(t)||H1
Γ0

(Ω) ≥ r1, and

1

p+ 1
||u||p+1

p+1 +
1

k + 1
||u||k+1

k+1,Γ1
≥

1

2
r21 − F (r1) =

c
p+1
∗

p+ 1
r
p+1
1 +

Bk+1
∗

k + 1
rk+1
1 .

Proof. We observe from (11) that

E(u(t)) ≥ F (||u||H1
Γ0

(Ω)). (36)

We have that F (r) is increasing for 0 < r < r0, decreasing for r > r0, F (r0) = E1,
and lim

r→+∞
F (r) = −∞. Then, since d ≥ E1 > E(u(0)) ≥ F (||u(0)||H1

Γ0
(Ω)) ≥

F (0) = 0, there exist r′1 < r0 < r1, which verify

F (r1) = F (r′1) = E(u(0)). (37)

Considering that E(t) is non-increasing, we have

E(u(t)) ≤ E(u(0)). (38)

From (37) and (38) we have

F (||u(0)||H1
Γ0

(Ω)) ≤ E(u(0)) = F (r1). (39)

Since ||u(0)||H1
Γ0

(Ω), r1 ∈ (r0,+∞) and F (r) is deceasing in this interval, from

(39) one has

||u(0)||H1
Γ0

(Ω) ≥ r1. (40)

In the sequel, we will prove that

||u(t)||H1
Γ0

(Ω) ≥ r1. (41)

In fact, we will argue by contradiction. Supposing that (41) does not hold, then,
there exists t∗ ∈ (0, T0) such that

||u(t∗)||H1
Γ0

(Ω) < r1. (42)

If ||u(t∗)||H1
Γ0

(Ω) > r0, then,from (36), (37) and (42), we have

E(u(t∗)) ≥ F (||u(t∗)||H1
Γ0

(Ω)) > F (r1) = E(u(0)),

which contradicts (38) and proves (41). Now, if ||u(t∗)||H1
Γ0

(Ω) ≤ r0, we have,

taking (40) into account, that there exists r2 which verifies

||u(t∗)||H1
Γ0

(Ω)) ≤ r0 < r2 < r1 ≤ ||u(0)||H1
Γ0

(Ω). (43)

Consequently, from the continuity of ||u(.)||H1
Γ0

(Ω), there exists t′ ∈ (0, t∗) veri-

fying

||u(t′)||H1
Γ0

(Ω) = r2.
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From the last identity and from (36), (37) and (43), we obtain

E(u(t′)) ≥ F (||u(t′)||H1
Γ0

(Ω)) > F (r2) > F (r1) = E(u(0)),

which also contradicts (38) and proves (41).
On the other hand, from the identity of the energy, it holds that

1

2
||u||2H1

Γ0
(Ω) ≤ E(u(0)) +

1

p+ 1
||u||p+1

p+1 −
1

k + 1
||u||k+1

k+1,Γ1

≤ E(u(0)) +
1

p+ 1
||u||p+1

p+1 +
1

k + 1
||u||k+1

k+1,Γ1
, (44)

which implies, from (37), (41) and by the definition of F , that

1

p+ 1
||u||p+1

p+1 +
1

k + 1
||u||k+1

k+1,Γ1
≥

1

2
||u||2H1

Γ0
(Ω) − E(u(0))

≥
1

2
r21 − F (r1) =

c
p+1
∗

p+ 1
r
p+1
1 +

Bk+1
∗

k + 1
rk+1
1 .

�

Theorem 3.4. Suppose that the assumption (6) holds, u(0) = u0 ∈ H1
Γ0
(Ω) and

u is a local solution of the system (1), ||u0||H1
Γ0

(Ω) > r0 and E(0) < E1 . Then

the solution of problem (1) blows up.

Proof. We set

H(t) = E2 − E(t), (45)

where E2 is a constant and E(0) < E2 < E1 < d. By the definition of H(t) and
(9)

H ′(t) = −E′(t) ≥ 0, (46)

which implies that H(t) is non-decreasing, and, consequently,

H(t) ≥ H(0) = E2 − E(0) > 0. (47)

Considering Lemma 3.3, we have that ||u(t)||H1
Γ0

(Ω) ≥ r1, for some r1 > r0.

From this inequality, the definition of the energy and taking (45) into account,
we deduce

H(t) = E2 − [
1

2
||u||2H1

Γ0
(Ω) −

1

p+ 1
||u||p+1

p+1 +
1

k + 1
||u||k+1

k+1,Γ1
]

≤ E1 −
1

2
||u||2H1

Γ0
(Ω) +

1

p+ 1
||u||p+1

p+1 −
1

k + 1
||u||k+1

k+1,Γ1

≤ E1 −
1

2
r21 +

1

p+ 1
||u||p+1

p+1 −
1

k + 1
||u||k+1

k+1,Γ1
,
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which implies, having in mind that E1 = F (r0) =
1
2r

2
0 − cp+1

∗

p+1 r
p+1
0 − Bk+1

∗

k+1 rk+1
0 ,

that

H(t) ≤
1

2
r20 −

c
p+1
∗

p+ 1
r
p+1
0 −

Bk+1
∗

k + 1
rk+1
0 −

1

2
r21 +

1

p+ 1
||u||p+1

p+1 −
1

k + 1
||u||k+1

k+1,Γ1

≤ −
c
p+1
∗

p+ 1
r
p+1
0 −

Bk+1
∗

k + 1
rk+1
0 +

1

p+ 1
||u||p+1

p+1 −
1

k + 1
||u||k+1

k+1,Γ1

≤
1

p+ 1
||u||p+1

p+1 −
1

k + 1
||u||k+1

k+1,Γ1

≤
1

p+ 1
||u||p+1

p+1 ≤
1

p+ 1
||u||p+1

p+1 +
1

k + 1
||u||k+1

k+1,Γ1
. (48)

�

Then we can prove the theorem similar to the proof of Theorem 3.2.

4. Asymptotic stability

In this section, we will state and prove the exponential decay of the solutions to
problem (1). In this context, we have the following lemma.

Lemma 4.1. Let u be a solution to problem (1). Assume that assumption (6)
holds and u0 ∈ W , then we have

||u||2H1
Γ0

(Ω) ≤
2(p+ 1)

p− 1
E(t) ≤

2(p+ 1)

p− 1
E(0), (49)

||u||k+1
k+1,Γ1

≤ Bk+1
∗ (

2(p+ 1)

p− 1
E(0))k−2||u||2H1

Γ0
(Ω), (50)

||u||p+1
p+1 ≤ cp+1

∗ (
2(p+ 1)

p− 1
E(0))p−2||u||2H1

Γ0
(Ω). (51)

Proof. By Lemma 2.5, we have u ∈ W and I(u) > 0. We know from (9) and the
definition of E(t) that

E(0) ≥ E(u) =
1

2
||u||2H1

Γ0
(Ω) −

1

p+ 1
||u||p+1

p+1 +
1

k + 1
||u||k+1

k+1,Γ1

≥
1

2
||u||2H1

Γ0
(Ω) −

1

p+ 1
||u||p+1

p+1 +
1

p+ 1
||u||k+1

k+1,Γ1
+ (

1

k + 1
−

1

p+ 1
)||u||k+1

k+1,Γ1

≥ (
1

2
−

1

p+ 1
)||u||2H1

Γ0
(Ω) +

1

p+ 1
I(u) + (

1

k + 1
−

1

p+ 1
)||u||k+1

k+1,Γ1

≥ (
1

2
−

1

p+ 1
)||u||2H1

Γ0
(Ω) +

p− k

(k + 1)(p+ 1)
||u||k+1

k+1,Γ1
.

Thus we obtain (49). By the embedding H1
Γ0
(Ω) →֒ Lk+1(Γ1) and (49), we have

||u||k+1
k+1,Γ1

≤ Bk+1
∗ ||u||k+1

H1
Γ0

(Ω)
≤ Bk+1

∗ (
2(p+ 1)

p− 1
E(0))k−2||u||2H1

Γ0
(Ω).
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Then, (50) holds. By the embedding H1
Γ0
(Ω) →֒ Lp+1(Ω) and (49), we have

||u||p+1
p+1 ≤ cp+1

∗ ||u||p+1
H1

Γ0
(Ω)

≤ cp+1
∗ (

2(p+ 1)

p− 1
E(0))p−2||u||2H1

Γ0
(Ω),

Then, we conclude (51). Hence, we complete the proof.
Now, we state an important lemma by Martinez[54]. �

Lemma 4.2. Let E : R+ → R+ be a nonincreasing function. Assume that there

exists σ > 0 for which
∫ +∞

S
E(t)dt ≤ σE(S) for any S ≥ 0, then there exist two

positive constants C and ξ independent of t such that:

0 < E(t) ≤ Ce−ξt.

Theorem 4.3. Assume that assumption (6) holds and u0 ∈ W . Moreover, as-

sume that E(0) < d and Bk+1
∗ (2(p+1)

p−1 E(0))k−2 (p+1)(k−1)
(p−1)(k+1)+c

p+1
∗ (2(p+1)

p−1 E(0))p−2 =

α < 1, then there exist two positive constants Ĉ and ξ independent of t such that:

0 < E(t) ≤ Ĉe−ξt.

Proof. Multiplying the first equation in problem (1) by u, then integrating it
over Ω× (S, T ), and performing several integration by parts, we get:

∫ T

S

∫

Ω

[uut +∇u∇ut + |u|q−2uut]dxdt +

∫ T

S

||u||2H1
Γ0

(Ω)dt

+

∫ T

S

||u||k+1
k+1,Γ1

dt+ k

∫ T

S

∫

Γ1

|u|k−1uutdxdt =

∫ T

S

||u||p+1
p+1dt. (52)

From the definition of E(t) and equation (52), we obtain

2

∫ T

S

E(t)dt =

∫ T

S

[||u||2H1
Γ0

(Ω) +
2

k + 1
||u||k+1

k+1,Γ1
+

2

p+ 1
||u||p+1

p+1]dt

= −

∫ T

S

∫

Ω

[uut +∇u∇ut]dxdt −

∫ T

S

∫

Ω

|u|q−2uutdxdt

−k

∫ T

S

∫

Γ1

|u|k−1uutdxdt−
k − 1

k + 1

∫ T

S

||u||k+1
k+1,Γ1

dt+
p− 1

p+ 1

∫ T

S

||u||p+1
p+1dt.

(53)

Now, we estimate every term on the right-hand side of (53).
Employing Hölder’s inequality, Young’s inequality, (49) and (9), the first and
second terms on the right-hand side of (53) can be estimated as follows, for
δ1 > 0,

−

∫ T

S

∫

Ω

[uut +∇u∇ut]dxdt ≤ δ1

∫ T

S

||u||2H1
Γ0

(Ω)dt+ C(δ1)

∫ T

S

||ut||
2
H1

Γ0
(Ω)dt

≤ δ1
2(p+ 1)

p− 1

∫ T

S

E(t)dt− C(δ1)

∫ T

S

E′(t)dt. (54)
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By Hölder’s inequality, Young’s inequality, (49) and (9), the third terms on the
right-hand side of (53) can be estimated as follows, for δ2 > 0,

−

∫ T

S

∫

Ω

|u|q−2uutdxdt = −

∫ T

S

∫

Ω

(|u|
q−2
2 ut)|u|

q

2 dxdt

≤ δ2

∫ T

S

||u||qqdt+ C(δ2)

∫ T

S

∫

Ω

|u|q−2u2
tdxdt

≤ δ2c
q
∗

2(p+ 1)

p− 1
(
2(p+ 1)

p− 1
E(0))q−2

∫ T

S

E(t)dt− C(δ2)

∫ T

S

E′(t)dt, (55)

where we used the embedding H1
Γ0
(Ω) →֒ Lq(Ω) and (49).

Similar to the process of the proof of (55) and by (50), we have

−

∫ T

S

∫

Γ1

|u|k−1uutdxdt ≤

∫ T

S

∫

Γ1

|u|
k+1
2 (|u|

k−1
2 ut)dxdt

≤ δ3

∫ T

S

||u||k+1
k+1,Γ1

dt+ C(δ3)

∫ T

S

∫

Γ1

|u|k−1u2
tdxdt

≤ δ3B
k+1
∗ (

2(p+ 1)

p− 1
E(0))k−2 2(p+ 1)

p− 1

∫ T

S

E(t)dt − C(δ3)

∫ T

S

E′(t)dt.(56)

As for the fifth term on the right-hand side of (53), by (50) and (9), we arrive
at

−
k − 1

k + 1

∫ T

S

||u||k+1
k+1,Γ1

dt

≤ 2Bk+1
∗ (

2(p+ 1)

p− 1
E(0))k−2 (p+ 1)(k − 1)

(p− 1)(k + 1)

∫ T

S

E(t)dt.

(57)

For the sixth term on the right-hand side of (53), by (50) and (9), we get

p− 1

p+ 1

∫ T

S

||u||p+1
p+1dt ≤ 2cp+1

∗ (
2(p+ 1)

p− 1
E(0))p−2

∫ T

S

E(t)dt. (58)

Then, combining these estimates (54)-(58), (53) becomes

2

∫ T

S

E(t)dt

≤ [δ1
2(p+ 1)

p− 1
+ δ2c

q
∗

2(p+ 1)

p− 1
(
2(p+ 1)

p− 1
E(0))q−2

+δ3B
k+1
∗ (

2(p+ 1)

p− 1
E(0))k−2 2(p+ 1)

p− 1

+2Bk+1
∗ (

2(p+ 1)

p− 1
E(0))k−2 (p+ 1)(k − 1)

(p− 1)(k + 1)
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+2cp+1
∗ (

2(p+ 1)

p− 1
E(0))p−2]

∫ T

S

E(t)dt

−(C(δ1) + C(δ2) + C(δ3))

∫ T

S

E′(t)dt. (59)

NoteBk+1
∗ (2(p+1)

p−1 E(0))k−2 (p+1)(k−1)
(p−1)(k+1)+c

p+1
∗ (2(p+1)

p−1 E(0))p−2 = α < 1, and choose

δ1 > 0, δ2 > 0, δ3 > 0 sufficiently small such that

2− δ1
2(p+ 1)

p− 1
− δ2c

q
∗

2(p+ 1)

p− 1
(
2(p+ 1)

p− 1
E(0))q−2

−δ3B
k+1
∗ (

2(p+ 1)

p− 1
E(0))k−2 2(p+ 1)

p− 1
− 2α > 0. (60)

Hence, by (9), there exists a positive constant σ > 0 such that
∫ T

S

E(t)dt ≤ σE(S), for any S ≥ 0.

By letting T go to +∞ on the left hand in the aforementioned inequality, one
can easily deduce that Lemma 4.2 is satisfied. Hence the conclusion of Theorem
4.3 is established. �

By Lemma 4.1, we have the following result

Corollary 4.4. Under the assumption of Theorem 4.3, there exist two positive
constants C and ξ independent of t such that:

||u||H1
Γ0

(Ω) ≤ Ce−ξt.

Remark 4.5. If g(u) is boundary source term and f(u) is absorptive term, we
can also get the similar results.

5. Conclusions

This paper consider the initial boundary value problem of the generalized Boussi-
nesq equation with nonlinear interior source and boundary absorptive terms.
Under appropriate assumptions imposed on the source and boundary absorp-
tion terms, we establish global existence of solutions by using the potential well
method combined with a standard continuous argument and we give sufficient
conditions for the blow-up of solutions with positive and negative initial energy
respectively in a finite time. It is different with the results in [4, 5]. We also give
a general decay of the energy by an integral inequality in [54].
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