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1. Introduction

F ixed point theory of special mappings like nonexpansive, asymptotically nonexpansive, contractive and
other mappings is an active area of interest and finds applications in many related fields like image

recovery, signal processing and geometry of objects [1]. From time to time, some versions of theorems relating
to fixed points of functions of special nature keep on appearing in almost in all branches of mathematics.
Consequently, we apply them in industry, toy making, finance, aircrafts and manufacturing of new model
cars. For example, a fixed-point iteration scheme has been applied in IMRT optimization to pre-compute
dose-deposition coefficient (DDC) matrix, see [2]. Because of its vast range of applications almost in all
directions, the research in it is moving rapidly and an immense literature is currently.

The construction of fixed point theorems (e.g. Banach fixed point theorem) which not only claim the
existence of a fixed point but yield an algorithm, too (in the Banach case fixed point iteration xn+1 = f (xn)).
Any equation that can be written as x = f (x) for some map f that is contracting with respect to some
(complete) metric on X will provide such a fixed point iteration. Mann’s iteration method was the stepping
stone in this regard and is invariably used in most of the occasions, see [3]. But it only ensures weak
convergence, see [4] but more often then not, we require strong convergence in many real world problems
relating to Hilbert spaces, see [5]. So mathematician are in search for the modifications of the Mann’s process
to control and ensure the strong convergence, (see [4,6–12] and references therein).

Most probably the first noticeable modification of Mann’s iteration process was proposed by Nakajo et
al. in [8] in 2003. They introduced this modification for only one nonexpansive mapping, where as Kim
and Xu introduced a modification for asymptotically nonexpansive mapping in 2006, see [9]. In the same
year Martinez et al. in [10] introduced a modification of the Ishikawa iteration process for a nonexpansive
mapping. They also gave modification of Halpern iteration method. Su et al. in [11] gave a monotone hybrid
iteration process for nonexpansive mapping. Liu et al. in [12] gave a novel iteration method for finite family of
quasi-asymptotically pseudo-contractive mapping in a Hilbert space. Let H be the fixed notation for Hilbert
space and C be nonempty, closed and convex subset of it. First we recall some basic definitions that will
accompany us throughout this paper.

Let Pc(.) be the metric projection onto C. A mapping T : C → C is said to be non-expensive if ‖Tx− Ty‖ ≤
‖x− y‖ ∀ x, y ∈ C. And T : C → C is said to be quasi-Lipschitz if

1. FixT 6= φ,
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2. For all p ∈ FixT, ‖Tx− p‖ ≤ L‖x− p‖ where L is a constant 1 ≤ L < ∞.

If L = 1 then T is known as quasi-nonexpansive. It is well-known that T is said to be closed if for n → ∞,
xn → x and ‖Txn− xn‖ → 0 implies Tx = x. T is said to be weak closed if xn ⇀ x and ‖Txn− xn‖ → 0 implies
Tx = x. as n→ ∞. It is admitted fact that a mapping which is weak closed should be closed but converse is no
longer true.

Let {Tn} be a sequence of mappings having non-empty fixed points sets. Then {Tn} is defined to be
uniformly closed if for all convergent sequences {Zn} ⊂ C with conditions ‖Zxn − Zn‖ → 0,n → ∞ implies
the limit of {Zn} belongs to FixTi.

In 1953 [3], Mann proposed an iterative scheme given as:

xn+1 = (1− αn)xnn + αnT(xn); n = 0, 1, 2, . . . .

Guan et al. in [7] established the following non-convex hybrid iteration algorithm corresponding to Mann
iterative scheme:

x0 ∈ C = Q0, choosen arbitrarily,
yn = (1− αn)xn + αnTnxn, n ≥ 0,
Cn = {z ∈ C : ‖yn − z‖ ≤ (1 + (Ln − 1)αn)‖xn − z‖ ∩ A, n ≥ 0,
Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,
xn+1 = PcoCn∩Qn x0,

They proved strong convergence results relating to common fixed points for a uniformly closed
asymptotic family of countable quasi-Lipschitz mappings in H. They applied their results for the finite
case to obtain fixed points. In this article, we establish a non-convex hybrid algorithm and prove strong
convergence theorems about common fixed points related to a uniformly closed asymptotically family of
countable quasi-Lipschitz mappings in the realm of Hilbert spaces. An application of this algorithm is also
given.

We fix coCn for closed convex closure of Cn for all n ≥ 1, A = {z ∈ H : ‖z− PFx0‖ ≤ 1}, Tn for countable
quasi-Ln-Lipschitz mappings from C into itself, and T be closed quasi-nonexpansive mapping from C into
itself to avoid redundancy. We also present an application of our algorithm.

2. Main results

In this part we formulate our main results. We start with some basic definitions.

Definition 1. {Tn} is said to be asymptotic, if limn→∞ Ln = 1

Proposition 2. For x ∈ H and z ∈ C, z = PCx iff we have 〈x− z, z− y〉 ≥ 0 for all y ∈ C.

Proposition 3. The common fixed point set F of above said Tn is closed and convex.

Proposition 4. For any given x0 ∈ H, we have p = PCx0 ⇐⇒ 〈p− z, x0 − p〉 ≥ 0, ∀z ∈ C.

Theorem 5. Suppose that αn ∈ (0, 1], and βn ∈ [0, 1] for all n ∈ N. Then {xn} generated by

x0 ∈ C = Q0, choosen arbitrarily,
yn = (1− αn)Tnxn + αnTnzn, n ≥ 0,
zn = (1− βn) + βnTnxn, n ≥ 0,
Cn = {z ∈ C : ‖yn − z‖ ≤ Ln(1 + (Ln − 1)αnβn)‖xn − z‖} ∩ A, n ≥ 0,
Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,
xn+1 = PcoCn∩Qn x0,

converges strongly to PFx0.
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Proof. We give our proof in following steps.
Step 1. We know that coCn and Qn are closed and convex for all n ≥ 0. Next, we show that F ∩ A ⊂ coCn for
all n ≥ 0. Indeed, for each p ∈ F ∩ A, we have

‖yn − p‖ = ‖(1− αn)Tnxn + αnTnzn − p‖
= ‖(1− αn)Tnxn + αnTn((1− βn) + βnTnxn)− p‖
= ‖(1− αnβn)(Tnxn − p) + (αnβn)(T2

n xn)‖
≤ (1− αnβn)‖Tnxn − p‖+ (αnβn)‖T2

n xn‖
= Ln(1 + (Ln − 1)αnβn)‖xn − p‖

and p ∈ A, so p ∈ Cn which implies that F ∩ A ⊂ Cn for all n ≥ 0. therefore, F ∩ A ⊂ coCn for all n ≥ 0.
Step 2. We show that F ∩ A ⊂ coCn ∩ Qn for all n ≥ 0. it suffices to show that F ∩ A ⊂ Qn, for all n ≥ 0. We
prove this by mathematical induction. For n = 0 we have F ∩ A ⊂ C = Q0. Assume that F ∩ A ⊂ Qn. Since
xn+1 is the projection of x0 onto coCn ∩Qn, from Proposition 3, we have
〈xn+1 − z, xn+1 − x0〉 ≤ 0, ∀z ∈ coCn ∩Qn

as F∩ A ⊂ coCn ∩Qn, the last inequality holds, in particular, for all z ∈ F∩ A. This together with the definition
of Qn+1 implies that F ∩ A ⊂ Qn+1. Hence the F ∩ A ⊂ coCn ∩Qn holds for all n ≥ 0.
Step 3. We prove {xn} is bounded. Since F is a nonempty, closed, and convex subset of C, there exists a unique
element z0 ∈ F such that z0 = PFx0. From xn+1 = PcoCn∩Qn x0, we have
‖xn+1 − x0‖ ≤ ‖z− x0‖
for every z ∈ coCn ∩Qn. As z0 ∈ F ∩ A ⊂ coCn ∩Qn, we get
‖xn+1 − x0‖ ≤ ‖z0 − x0‖
for each n ≥ 0. This implies that {xn} is bounded.
Step 4. We show that {xn} converges strongly to a point of C (we show that {xn} is a cauchy sequence). As
xn+1 = PcoCn∩Qn x0 ⊂ Qn and xn = PQn x0 (Proposition 4), we have
‖xn+1 − x0‖ ≥ ‖xn − x0‖
for every n ≥ 0, which together with the boundedness of ‖xn − x0‖ implies that there exists the limit of
‖xn − x0‖. On the other hand, from xn+m ∈ Qn, we have 〈xn − xn+m, xn − x0〉 ≤ 0 and hence

‖xn+m − xn‖2 = ‖(xn+m − x0)− (xn − x0)‖2

≤ ‖xn+m − x0‖2 − ‖xn − x0‖2 − 2〈xn+m − xn, xn − x0〉
≤ ‖xn+m − x0‖2 − ‖xn − x0‖2 → 0 as n→ ∞

for any m ≥ 1. Therefore {xn} is a cauchy sequence in C, then there exists a point q ∈ C such that limn→∞ xn =

q.
Step 5. We show that yn → q, as n→ ∞. Let
Dn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + L2

n(Ln − 1)(Ln + 1)}.
From the definition of Dn, we have

Dn = {z ∈ C : 〈yn − z, yn − z〉 ≤ 〈xn − z, xn − z〉+ L2
n(Ln − 1)(Ln + 1)}

= {z ∈ C : ‖yn‖2 − 2〈yn, z〉+ ‖z‖2 ≤ ‖xn‖2 − 2〈xn, z〉+ ‖z‖2 + L2
n(Ln − 1)(Ln + 1)}

= {z ∈ C : 2〈xn − yn, z〉 ≤ ‖xn‖2 − ‖yn‖2 + L2
n(Ln − 1)(Ln + 1)}

This shows that Dn is convex and closed, n ∈ Z+ ∪ {0}. Next, we want to prove that Cn ⊂ Dn, n ≥ 0.
In fact, for any z ∈ Cn, we have

‖yn − z‖2 ≤ [Ln(1 + (Ln − 1)αnβn)]
2‖xn − z‖2

= ‖xn − z‖2L2
n + L2

n[2(Ln − 1)αnβn + (Ln − 1)2α2
nβ2

n]‖xn − z‖2

≤ ‖xn − z‖2L2
n + L2

n[2(Ln − 1) + (Ln − 1)2]‖xn − z‖2

= ‖xn − z‖2L2
n + L2

n(Ln − 1)(Ln + 1)‖xn − z‖2.
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From Cn = {z ∈ C : ‖yn − z‖ ≤ [Ln(1 + (Ln − 1)αnβn)]‖xn − z‖} ∩ A, n ≥ 0, we have Cn ⊂ A, n ≥ 0. Since
A is convex, we also have coCn ⊂ A, n ≥ 0. Consider xn ∈ coCn−1, we know that

‖yn − z‖ ≤ ‖xn − z‖2L2
n + L2

n(Ln − 1)(Ln + 1)‖xn − z‖2

≤ ‖xn − z‖2 + L2
n(ln − 1)(Ln + 1).

This implies that z ∈ Dn and hence Cn ⊂ Dn, n ≥ 0. Sinnce Dn is convex, we have co(Cn) ⊂ Dn, n ≥ 0.
Therefore ‖yn − xn+1‖2 ≤ ‖xn − xn+1‖2 + L2

n(Ln − 1)(Ln − 1)→ 0 as n→ ∞. That is, yn → q as n→ ∞.
Step 6. We show that q ∈ F. From the definition of yn, we have (1 + αnβnTn)‖Tnxn − xn‖ = ‖yn − xn‖ → 0 as
n→ ∞. Since αn ∈ (a, 1] ⊂ [0, 1],from the above limit we have limn → ∞‖Tnxn − xn‖ = 0.
Since {Tn} is uniformly closed and xn → q, we have q ∈ F.
Step 7. We claim that q = z0 = PFx0, if not, we have that ‖x0 − p‖ > ‖x0 − z0‖. There must exist a positive
integer N, if n > N then ‖x0 − xn‖ > ‖x0 − z0‖, which leads to
‖z0 − xn‖2 = ‖z0 − xn + xn − x0‖2 = ‖z0 − xn‖2 + ‖xn − x0‖2 + 2〈z0 − xn, xn − x0〉.
It follows that 〈z0 − xn, xn − x0〉 < 0 which implies that z0∈Qn, so that z0∈F, this is a contradiction. This
completes the proof.

Now, we present an example of Cn which does not involve a convex subset.

Example 1. Take H = R2, and a sequence of mappings Tn : R2 → R2 given by Tn : (t1, t2) 7→ ( 1
8 t1, t2),

∀(t1, t2) ∈ R2, ∀n ≥ 0.
It is clear that {Tn} satisfies the desired definition of with F = {(t1, 0) : t1 ∈ (−∞,+∞)} common fixed point
set. Take x0 = (4, 0), a0 = 6

7 , we have
y0 = 1

7 x0 +
6
7 T0x0 = (4× 1

7 + 4
8 ×

6
7 , 0) = (1, 0).

Take 1 + (L0 − 1)a0 =
√

5
2 , we have

C0 = {z ∈ R2 : ‖y0 − z‖ ≤
√

5
2‖x0 − z‖}.

It is easy to show that z1 = (1, 3), z2 = (−1, 3) ∈ C0. But
z
′
= 1

2 z1 +
1
2 z2 = (0, 3)∈C0,

since ‖y0 − z‖ = 2, ‖x0 − z‖ = 1. Therefore C0 is not convex.

Corollary 6. Assume that αn ∈ (0, 1], and βn ∈ [0, 1] for all n ∈ N. Then {xn} generated by

x0 ∈ C = Q0, choosen arbitrarily,
yn = (1− αn)Txn + αnTzn, n ≥ 0,
zn = (1− βn) + βnTxn, n ≥ 0,
Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖} ∩ A, n ≥ 0,
Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,
xn+1 = PCn∩Qn x0,

converges strongly to PF(T)x0.

Proof. Take Tn ≡ T, Ln ≡ 1 in Theorem 5, in this case, Cn is convex and closed and , for all n ≥ 0, by using
Theorem1.9, we obtain our desired result.

Corollary 7. Assume that αn ∈ (0, 1], and βn ∈ [0, 1] for all n ∈ N. Then {xn} generated by

x0 ∈ C = Q0, choosen arbitrarily,
yn = (1− αn)Txn + αnTzn, n ≥ 0,
zn = (1− βn) + βnTxn, n ≥ 0,
Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖} ∩ A, n ≥ 0,
Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,
xn+1 = PCn∩Qn x0,

converges strongly to PF(T)x0.



Open J. Math. Anal. 2019, 3(1), 1-6 5

3. Application

Here, we give an application of our result for the following case of finite family of asymptotically
quasi-nonexpansive mappings {Tn}N−1

n=0 . Let

‖T j
i x− p‖ ≤ ki,j‖x− p‖, ∀x ∈ C, p ∈ F,

where F is common fixed point set of {Tn}N−1
n=0 ,limj → ∞ki,j = 1 for all 0 ≤ i ≤ N − 1. The finite family of

asymptotically quasi-nonexpansive mappings {Tn}N−1
n=0 is uniformly L− Lipschitz, if

‖T j
i x− T j

i y‖ ≤ Li,j‖x− y‖, ∀x, y ∈ C
for all i ∈ {0, 1, 2, ..., N − 1}, j ≥ 1, where L ≥ 1.

Theorem 8. Let {Tn}N−1
n=0 : C → C be a finite uniformly L-Lipschitz family of asymptotically quasi-nonexpansive

mappings with nonempty common fixed point set F. Assume that αn ∈ (0, 1], and βn ∈ [0, 1] for all n ∈ N. Then {xn}
generated by 

x0 ∈ C = Q0, choosen arbitrarily,
yn = (1− αn)T

j(n)
i(n) xn + αnT j(n)

i(n) zn, n ≥ 0,

zn = (1− βn) + βnT j(n)
i(n) xn, n ≥ 0,

Cn = {z ∈ C : ‖yn − z‖ ≤ ki(n),j(n)
(1 + (ki(n),j(n) − 1)αnβ)‖xn − z‖} ∩ A, n ≥ 0,

Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,
xn+1 = PcoCn∩Qn x0,

converges strongly to PFx0.

We can drive the prove from the following two conclusions.

Conclusion 9. {TN−1
n=0 }∞

n=0 is a uniformly closed asymptotically family of countable quasi-Ln-Lipschitz mappings from
C into itself.

Conclusion 10. F =
⋂N

n=0 F(Tn) =
⋂∞

n=0 F(T j(n)
i(n) ), where F(T) denotes the fixed point set of the mappings T.

Corollary 11. Let T : C → C be a L-Lipschitz asymptotically quasi-nonexpansive mappings with nonempty common
fixed point set F. Assume that αn ∈ (0, 1], and βn ∈ [0, 1] for all n ∈ N. Then {xn} generated by

x0 ∈ C = Q0, choosen arbitrarily,
yn = (1− αn)Tnxn + αnTnzn, n ≥ 0,
zn = (1− βn) + βnTnxn, n ≥ 0,
Cn = {z ∈ C : ‖yn − z‖ ≤ kn(1 + (kn − 1)αnβ)‖xn − z‖} ∩ A, n ≥ 0,
Qn = {z ∈ Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0}, n ≥ 1,
xn+1 = PcoCn∩Qn x0,

converges strongly to PFx0.

Proof. Take Tn ≡ T in Theorem 8, we get the desired result.
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