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Abstract: In this article, we prove the existence and uniqueness of solutions for the Navier problem
Alwy (x)|AulP72Au + v (x) [Au|T72Au] — div[ws (x)|[VulP~2Vu + v, (x)|Vuls2Vu] = f(x) — div(G(x)), in
Q, with u(x) = Au = 0, in 9Q), where Q) is a bounded open set of RN for N > 2, wiz € U’/(Q, wy) and

, N
¢ e[ m)
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1. Introduction

T he main purpose of this paper (see Theorem 7) is to establish the existence and uniqueness of solutions
for the Navier problem

where

Lu(x) = Al (x) | DulP "2 Au+ vy (x) [Au]T2Au] — div[wa(x)|VulP 72 Vu + vy (x) [Vul V)],

/ G
L eL? (O, wp), — €
w» 1%)
(i.e., w; and v;, i = 1,2 are locally integrable functions on RN such that 0 < w;(x),v;(x) < oo a.e. x€RN), Ais
the Laplacian operator, 1 < q,s < p <oo,1/p+1/p’=1land1/s+1/s' =1.

For degenerate partial differential equations, i.e., equations with various types of singularities in the

Q C RV is a bounded open set, [L® ' (Q, )]V, w1, wy, v1 and v, are four weight functions

coefficients, it is natural to look for solutions in weighted Sobolev spaces (see [1-8]). The type of a weight
depends on the equation type.

A class of weights, which is particularly well understood, is the class of A, weights that was introduced
by B.Muckenhoupt in the early 1970’s (see [7]). These classes have found many useful applications in harmonic
analysis (see [9] and [10]). Another reason for studying A,-weights is the fact that powers of the distance to
submanifolds of RN often belong to A, (see [8] and [11]). There are, in fact, many interesting examples of
weights (see [6] for p-admissible weights).

In the non-degenerate case (i.e. with w(x) = 1), for all f € LP(Q)) the Poisson equation associated with
the Dirichlet problem

{ —Au = f(x), inQ
u(x) =0, in 00}

is uniquely solvable in W*?(Q)) N Wg 7(Q) (see [12]), and the nonlinear Dirichlet problem

{ —Apu = f(x), in Q
u(x) =0, in 9Q
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is uniquely solvable in W&’p (Q) (see [13]), where Apu = div(|Vu|” “2Vu) is the p-Laplacian operator. In the
degenerate case, the degenerated p-Laplacian has been studied in [11].

The paper is organized as follow. In Section 2 we present the definitions and basic results. In Section 3 we
prove our main result about existence and uniqueness of solutions for problem (P).

2. Definitions and basic results

Let () be an open set in R”. By the symbol W(Q)) we denote the set of all measurable, a.e. in () positive
and finite functions w = w(x), x € Q. Elements of W(Q)) will be called weight functions. Every weight w
gives rise to a measure on the measurable subsets of RN through integration. This measure will be denoted by

Hew- Thus, ue, (E) = / w(x) dx for measurable sets E C RN,
E

Definition 1. Let 1 < p < co. A weight w is said to be an Ap-weight, if there is a positive constant C = C(p, w)
such that, for every ball BC RN

p—1
/(1—p < .
(|B|/ dx><|B|/w dx) <C, if p>1,
1/ )( 1 ) .
— [ w(x)dx )| esssu <C, if p=1,
(a1 Jyeot ReET)

where |.| denotes the N-dimensional Lebesgue measure in RY.

If 1 < g<p, then A; C A, (see [5,6,8] for more information about A,-weights). As an example of an
Ap-weight, the function w(x) = |x|*, x RV, isin Ay if and only if —N < a < N(p — 1) (see [8], Chapter IX,
Corollary 4.4). If p € BMO(RN), then w(x) = e~ ?(¥) € A, for some a > 0 (see [9]).

() =iefo

for all measurable subsets E of B (see 15.5 strong doubling property in [6]). Therefore, 1, (E) = 0 if and only if
|E| = 0; so there is no need to specify the measure when using the ubiquitous expression almost everywhere
and almost every, both abbreviated a.e..

Remark 1. If w € Ap, 1 < p < oo, then

Definition 2. Let w be a weight. We shall denote by LP (Q), w) (1 < p < c0) the Banach space of all measurable
functions f defined in () for which

1/p
”f”LP(Qw = (/ |f (x)]Pew( )dx) < 0.
We denote [LP (Q, w)]N = LP(Q, w) x...x LP(Q, w).

Remark 2. If w€ Ap, 1 < p < oo, then since w /(=1 is locally integrable, we have LP(Q,w) C L}, (Q) (see
[8], Remark 1.2.4). It thus makes sense to talk about weak derivatives of functions in LP (Q), w).

Definition 3. Let O C RN be a bounded open set, 1 < p < o, k be a nonnegative integer and w € Ap,. We shall
denote by WK? (Q), w), the weighted Sobolev spaces, the set of all functions u € L (Q), w) with weak derivatives
D*u € LP(Q,w), 1< |a| <k. The norm in the space W*(Q), w) is defined by

1l er) = </| Dfe@de+ ¥ [ Dtut el >dx)w. M

1<|a| <k

We also define the space Wg’p(ﬂ, w) as the closure of C§°(Q2) with respect to the norm (1). We have that
the spaces W*? (Q), w) and Wg’p (O, w) are Banach spaces (see Proposition 2.1.2 in [8]).
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The dual space of W&’p(Q,w) is the space [Wé’p(ﬂ,w)]* =W '(Q,w),

WP (Q,w) = {T = f—div(G) : G = (g1, gn), L, 5L € LV (O, )}

T
w w

It is evident that a weight function w which satisfies 0 < C; <w(x) <Gy, for a.e. x € (), gives nothing new
(the space W*P(Q), w) is then identical with the classical Sobolev space W*?(Q)). Consequently, we shall
be interested in all above such weight functions w which either vanish somewhere in (Q U d() or increase to
infinity (or both).

We need the following basics results.

Theorem 4. (The weighted Sobolev inequality) Let O C RN be a bounded open set and let w be an Ap-weight, 1 < p <
0. Then there exists positive constants Cqy and d such that for all ue W&’p(Q, w)and 1<y <N/(N—-1)+/¢

[l v (0,00) < Calll Vel o,w)- 2)

Proof. Its suffices to prove the inequality for functions u € C{°(Q)) (see Theorem 1.3 in [4]). To extend the
estimates (2) to arbitrary u € W&’p(Q,w), we let {u,,} be a sequence of C°(Q)) functions tending to u in

W&’p (O, w). Applying the estimates (2) to differences u;;, — 1,,, we see that {u,,} will be a Cauchy sequence
in LP(Q), w). Consequently the limit function u will lie in the desired spaces and satisfy (2). [

Lemma 5. (a) Let 1 < p < oo, then exists a constant C, > 0 such that for all §,n € RN,
_2 ) _
18P = InlP | < Cp lE = nICIg] + [P ~>.
(b) Let 1 < p < oo. There exist two positive constants a,, and By, such that for every &,n € RN (N >1)
- 2 -2 -2 -
ap([2]1+ 1P 218 = nl” < CIG1P7¢ = P ~*n, & =) < Bp(I2] + InhP21E — 1],
where {.,.) denotes here the Euclidian scalar product in RN,

Proof. See Proposition 17.2 and Proposition 17.3 in [13]. O

3. Weak Solutions

Let wy,wp€Ap and v, 1,eW(Q), 1 < g5 < p < oco. We denote by X the space
X = W2P(Q,wy) N W&’p(ﬂ, wy) with the norm

1/p
il = (|, Vul? wadx+ [ P andz)
Q Q

In this section we prove the existence and uniqueness of weak solutions u € X to the Navier problem

Lu(x) = f(x) —div(G(x)), in Q,
(P) { u(x) = Au =0, in 0Q),

where Q) is a bounded open set of RN (N >2), f € LP (Q,w,) and UE elL* ()N, G = (g1,...8N)-

ws 2
Definition 6. We say that u € X is a weak solution for problem (P) if
/ |Au|P 2 Au Ag wy dx + / |Au|T2Au A1y dx + / (VulP~2(Vu, Vo) wy dx
Q Q Q

+/Q\Vu|572<Vu,Vgo>vzdx:/qumlir/Q(G,V(p) dx, (3)
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for all ¢ € X, with f/w, € LP'(Q, wy) and G /15 € [L5' (O, 1)}, where (.,.) denotes here the Euclidean scalar
product in RN.

Remark 3. (a) Since 1 < ¢, < p < oo and if L—l e L/ (P=1(Q), w,) and ZTZ e L/ (P=9)(Q, w,), there exist two
1 2
constants My, My > 0 such that

H”||m(0,u1) < Ml””HLP(Q,wl) and ||MHLS(Q,u2) SMZH”HLP(QM)

" (p=a)/pq vy (p=s)/ps
/Q (>w1 dx} and M, = [/Q ( >w2 dx} . In fact, since1 < g,s < p < o,

w1 w2
wehaver =p/q>1land? =p/(p—q),

/ \u|qv1dx:/ |u|’7ﬂw1dx
(@) Q w1
1/r r! 1/r’
(/ |u|‘7rw1dx> (/ (m) wldx>
O 0O \ w1
q/p v \ P/ =0 (p=a)/p
(/ |u|pa)1dx) (/ () w1dx)
Q 0O \ w1

Hence, [[ut]|19(0,,) < M1 [|ul| 1y (0 ,0,)- Analogously, we obtain |[ul|ps(q,u,) < Ma [[4]]1p(w,)-
(b) Using the estimate in (a) we have

where M; =

T

IN

) /Q |Au|T 2 Au A1y dx

< /Q |AulT [ Ag| vy dx

, 1/q’ 1/q
(/Q|Au|(q1)q vy dx) (/Q|A<pq1/1 dx)

<

(a-1)/q 1/
= (/ |Au|qv1dx) (/QA€0|qV1dX)
= HAuHLq Q1) ||A4’||Lq(0,v1)
< MU (6 o) M1 IBQ] (o)
< M lullxllelx.

and, analogously, we also have

7R T T g vads| < M Julx gl
Theorem 7. Let w; € Ap, v; € W( )(i=1,2),1<g,s < p < co. Suppose that
()w e LP/r=9)(q, wl)and GLP/(” O, w,);
(b) f/wz € LP (Q,a)g) and G/Vz € [LS (Q,I/Z)] .

Then the problem (P) has a unique solution u € X and

f

w2

Gl

V2

+ M;

7

]1/(171)

lully < [cg

P (Qws) Ls' (Q)

where Cqy is the constant in Theorem 4 and M, is the constant in Remark 3 (a).

Proof. (I) Existence. By Theorem 4 (with 7 = 1), we have that

< (/Q f P/dex>1/p/</Q|¢|pw2dx>

)

1/p

‘/qu)dx
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f

wy

V@l lzr (00 < Ca

||fI’HX/

LP (Qws) ' (Qw)

and by Remark 3 (a)

G, V) dx|d g/G,v dg/GVd:/'—v d
G Tasar < [16,glar< [ I6Voldx = [ CliTolvads
|G| |G|
< |l Vol s cyuy <Ma |12 v
< ™ Ls’(Q,U2)||| 9| HL(Q,VZ) 20, LS/(Q,VZ)W 9| HLP(Q,wz)
G
< mflS g,
2 L' (Q,w)
Define the functional | : X — R by
Jo) = = [ 1aglwidxs [ aglivdx
p Jo 9 Jo

1 1
- vpdf/vsbi—/ d—/G,Vd.
5y IVoPwadxt o [ Voludr— [ fodr— [ (G, Vg)dx

P pr'
Using (4), (5), Remark 3(a) and Young’s inequality (a b < % + ?), we have that

1 1 1 1
> gl wndxt - [laglindx+ o [ Vel wrdx+ o [ [Vl ad
Ho) = o [ aglwndxt s [ agl vidr o [ Vgl wad+ 2 [ [Vl radr
G|
— =L \V4 s
o P PO ) L
> o [ Vglrwdxt ¢ [ Vo vadr-cof L 11991
pJo 5 /0 W2l (Qw;) o
G
1= \V/ .
o IR LA [T
chlr
> /\v(p|r’w2dx+ /|V(p\sv dx— ol L
W21 (Q,w5)

IGI||° 1 s
|\|w|||W2 = oy 119 )
e A . Y el
p’|lw2 LY (Q,w,) s'|| v2 L (Qv,)

that is, ] is bounded from below. Let {1, } be a minimizing sequence, that is, a sequence such that

J(un) — inf J(¢).

peX

Then for n large enough, we obtain

1 1 1 1
0>J(uy) = —/ |Aun|pw1dx+f/0|Aun|‘7v1dx+E/Q\Vun|pw2dx+g /Q|Vun\s1/2dx

/fundx—/ (G, Vuy)dx,

and we have

;19/0|Aun|’”w1dx+;/O|Vun|pw2dx

(4)

©)
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gl/ |Aun|pw1dx+1/ |Aun|‘7v1dx+1/ |Vun\pw2dx+1/ |Viy|® vo dx

pJo qJa pJo s Jo

< d +/ G, ity) dx. 6
< [ fundx+ [ (Gun)dx ©)

Hence, by Theorem 4 (with 7 = 1), Remark 3(a) and (6), we obtain

lunlly = [ 18wl wndx+ [ [Funl? wrdx
Q Q

<p(/fundx+/ <G,Vun>dx)

|G
<p (H ity + || 1190
LY (Qw;) V2 L' ()
<p(cq v M |G| v
<p [ 1Vun| | (o) + M2 , V] [ Lr (00)
LP Qw2 L (Q,Vz)
G
<p(ca H |G )nunnx.
LY (Qyw,) 2 L7 (Qu)
Hence,
Iel 1/(p-1)
|Mn||X§[P(CQ — + M || — ” .
W2 1ILr" (Oywp) V2 L ()

Therefore {u,} is bounded in X. Since X is reflexive, there exists a subsequence, still denoted by {u,}, and a
function u € X such that u,— u in X. Since,

X5 i—)/ d+/G,Vd
@ quvx O< @) dx

and
X3¢ = 180170 T 1801 000 + 1 VO 0y + VO s (0

are continuous then | is continuous. Moreover since 1 < q,5 < p < co we have that | is convex and thus lower
semi-continuous for the weak convergence. It follows that

J(u) < iming [ (,) = inf J(g),

and thus u is a minimizer of | on X (see Theorem 25.C and Corollary 25.15 in [14]). For any ¢ € X the function
A l/ |A(u+)\q))|”w1dx+1/ [A(u+ Ae)|Tvydx + 1/ IV(u+A@)|P wydx
pJa q/0 pJa
1 n n
o /Q IV (1t + Ag) |* va dx — /Q(u+/\q))fdxf /Q (G, V(u+ A ) dx

has a minimum at A = 0. Hence,

=0, VpeX.
A=0

j(](uw%qv))

We have p
13 (ITG A @2 ) =p (T4 AP 2(T0, V) + A V) an

and
d _
1 ( Au+Ae)? wl) = p|Au+ AA@|P 2 (Au+ AAg) A wy,

and we obtain

0 = ;<I(u+7\¢))

1
= (7 [ IVt 2P (T8, g) 4 A VP wn
A=0  LP Q
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—i—p/Q|Au+)\A(p[”_2(Au—i—)\Aq))Aqoande)+:<S/Q|V(u+/\go)|s2(<Vu,Vq0)+/\|qu|2)v2dx>

-l-l(q/ |Au+AAgo|q2(Au+/\A(p)A(pv1dx>—/ (pfdx—/ (G,V@dx]
q Q Q Q A=0
= / |Au|p_2AuA(pw1dx+/(‘)|Vu|’”_2 <Vu,Vgo)wzdx+/Q\Au|‘7_2Aqu)v1dx
0 .
Vul 2 (Vu, Vo) adx — [ fodx— [ (G,Vg)dx
+ [ 192 (Vu, Vo) vadr— [ fodx— [ (G, Vg)dx
Therefore
/\Au|p72AuA(pw1dx+/Q|Vu|p72<VuV(p>w2dx+/Q|Au|q72AuA<p1/1dx+/Q|Vu|s*2(Vu,V(p>v2dx
0
= dx+ [ (G, Vg)dx,
./quv x+ | (G Vg)dx

for all ¢ € X, that is, u € X is a solution of problem (P).
(II) Uniqueness. If u1, up € X are two weak solutions of problem (P), we have

/O |Aur [P 72 Auy Ag wy dx + /Q |Au |72 Auy Ay dx + /Q |Vup|P~2 (Vuy, Vo) wo dx
+ /Q (Vi [* 72 (Vuy, Vo) vodx = /Qfgodx + /Q (G, Vo)dx,
and
/Q |Au2|”_2Au2 A wydx + /Q |Au2|q_2Au2 Apvydx + /Q |Vup|P~2 (Vuy, Vo) wy dx
+ /Q \Vu2|572 (Vuy, Vo) vpdx = /Qfgodx + /Q (G, Vo) dx,
for all ¢ € X. Hence
/Q <|Au1|p_2Au1 — |Au2|p_2Au2>Agoa)1 dx + /Q <|Au1|’7_2Au1 — Au2|q_2Au2>Agov1 dx
+/Q <|Vu1|”2(Vu1,V<p> — |Vu2|”2(Vu2,V<p>> wydx + /Q <|Vu1|52(Vu1,V<p)
—|Vuy|*"2(Vuy, Vgo))vz dx =0.
Taking ¢ = uq — up, and using Lemma 5 (b) there exist positive constants ay,, &y, a4, &s such that
0 = /Q (|Au1|p_2Au1 — |Au2|p_2Au2>(Au1 — Aup) wy dx
+ /Q <|Au1|q2Au1 — |Au2|q2Au2> (Auqy — Aup) vy dx
+ /Q <|Vu1|p2(Vu1,Vu1 — Vup) — [Vus|P~2(Vuy, Viq — Vu2>> wy dx
+ /Q <|Vu1|52<Vu1,Vu1 — Vup) — | Vs 2(Vuy, Vg — Vu2>> vy dx
= /O <|Au1|’”—2Au1 — |Au2|p_2Au2>(Au1 — Aup) wy dx
+ /Q <|Au1|q2Au1 — |Au2|q2Au2> (Auy — Aup) vy dx

+ /Q < |VM1|P_2VM1 — |Vu2|”‘2Vu2, Vu, — VM2> woy dx
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+ ,/Q < |VM1‘S_ZVM1 — \Vu2|s_2Vu2, Vu, — VM2> vy dx

p
> zxp/o<|Au1|+|Au2|>
s—2

q—2 .
+¢xq/Q(Au1|+Auz|) |Auy — Aup|? vy dx + a /Q (|w1|+|w2|) Vity — Vit v dx

-2 2

p—
|Au1 — Au2|2w1 dx + &p/ﬂ (|Vu1| + |Vu2|> \Vul — Vu2|2a)2dx

p—2

p—2
> ocp/ﬂ<|Au1|+|Au2|> |Au1Au2|2w1dx+ﬁcp/Q(Vu1+|Vu2|> Vg — Vug|? w; dx.

Therefore Auj; = Auy and Vuy = Vuy a.e. and since ug, up € X, then 17 = uy a.e. (by Remark 1).
(I) Estimate for ||u/|x.
In particular, for ¢ = u € X in Definition 6 we have

/ |Au|pw1dx+/ |Au|qv1dx+/ \Vu|pw2dx+/ |Vu|51/7_dx:/ fudx+/ (G,Vu) dx.
0 0 0 0 0 0

Then, by Theorem 4 and Remark 3(a), we obtain

)t = /]Au|pw1dx+/ IVul? wp dx
Q Q
< /|Au|pw1dx+/ |Au|qv1dx+/ |Vu|”w2dx—|—/ |Vul® vy dx
o) Q Q Q
_ d +/ G, Vu)d
/qu x Q( u) dx
f G|
< = Nl r ) || = IVl ll1sq
sz LY (Q,ws) L (O V2 ILs' () On)
G
< oo £ 198l ) + M| 1] .
@2 ILr" Q) V2 L ()
< (cal L + | €] )l
W2 [ 1r' (Q,w,) V2 s (1)
Therefore,
1/(p-1)
G
lullx< (ol £ S =L I
W2 llLr’ (O,w)) V2 1" ()
O

Corollary 8. Under the assumptions of Theorem 7 with2 < g,s < p < oo. If uy,uy € X are solutions of

<p>{ Luy(x) = f(x) ~ divo(G(x)), in O,
' ur(x) = Aui(x) =0, in 9Q),

and }
(P) Luy(x) = f(x) —div(G(x)), in Q,
2 up(x) = Aup(x) =0, in 9Q),
then 1/(p-1)
_f _G pP=
||u1—u2||X§1/(1_1)<CQ‘ff +M2H|GG ) ,
Y W2 ILr' () V2 s ()

where 7y is a positive constant, Cq and My are the same constants of Theorem 7.

Proof. If u; and u; are solutions of (P1) and (P2) then for all ¢ € X we have

/Q|Au1\p72Au1A(pw1dx+/Q|Au1\q72Au1A(pv1dx+/Q\Vul\pQ(Vul,V@wzdx
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+/ IViur |2 (Vuy, V) vy dx — </ |Auy P2 Auy Ag wy dx—i—/ |Aup |72 Auy Ag vy dx
Q Q Q

-I—/Q\Vul\pQ(Vuz,V@wzdx—i—/Q|Vu2\572 (Vuy, Vo) vzdx> :/(.l(f—f)godx%—/()(G—G,V(p) dx.
@)

In particular, for ¢ = 11 — up, we obtain in (7).
(i) By Lemma 5(b) and since 2 < g,s < p < oo, there exist two positive constants a) and a4 such that

/Q (|Au1|P—2Au1 - |A2|p_2Au2> A(uy —up) wydx > ap /Q <|Au1| + |Au2|>p2 |Auy — Aup|? wy dx
> ap /Q |Auy — Aun |P 72| Auq — Aup | wy dx = ap /Q |A(u1 — up)|P wy dx,
and analogously
/Q <|Au1|q2Au1 — Au2|q2Au2> Ay —ug) vy dx > oy /Q |A(uy — up)|Tvy dx > 0.

(ii) Since 2 <g,s < p < o0 and by Lemma 5(b), there exit two positive constants &, and as such that

S~

A <|Vu1|p2<Vu1,V(u1 —up)) — |Vu2|p72(Vu2,V(u1 — uz))) woy dx

/Q <|Vu1|p72Vu1 - |Vu2|p72Vu2,V(u1 — u2)> Wy dx

v

&, /('2(|w1| 4 Vin|)P 2|V — Vi 2w, dx

vV
=

p/O Vg — Vi [P 72 |V — Vo[> wy dx = Eap/n |V (11 — up)|¥ wydx,
and analogously,
/Q (Vu1]SZ<Vu1,V(u1 —1up)) — |Vup | 2 (Vup, V(ug — uz))> vy dx> ag /Q |V (11 — up)|°vpdx > 0.

(iii) By Remark 3 (a) we have

/Q(f—f) (u1—uz>dx+/Q<G—G,V(u1—u2)>dx
< <CQ f-f

wy
Hence, with ¢ = min{a,, &, }, we obtain

G-G
+MZH| |
) V2

>Hm—uﬂx

L' (Quw, L' (1)

v |lusg —u2||f(§ocp/Q|A(u1 —up) | wq dx—i—EcP/Q|V(u1 —up)|F wydx

—f G-G
< (CQ‘ =1 | | ) [ty — |-
2 Ls,(Q,Uz)

Wy 1%
)1/(P1)
Ls' (Q1) '

+ M, H
LP' (Qws)

Therefore,
f—f

wy

|G~ G
v

+M2H

1
a1 — uslly < (qﬂ
A1/ (p=1) L (Qw,)
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Corollary 9. Assume 2<q,s < p < oo. Let the assumptions of Theorem 7 be fulfilled, and let { f,, } and {G,,} be
G = G|

” —0asm — oo. Ifup,eXisa
2

Ls" Q)

sequences of functions satisfyin f m f in LP' O, w»y) and
q g wz

solution of the problem

Luy(x) = fm(x) — div(Gpm(x)), in Q,
(Pr) { Uy (x) = Ay (x) =0, in 9Q),

then u,— w in X and u is a solution of problem (P).

Proof. By Corollary 8 we have

fmn = fr

wy

0 |G =C

)1/(P1)
Ls' (Q1) '

Therefore {u,,} is a Cauchy sequence in X. Hence, there is u € X such that u,, — u in X. We have that u is a

1
it — e € (CQ
,Yl/(p—l) LV/(Q,OJZ)

solution of problem (P). In fact, since u,, is a solution of (Py,), for all ¢ € X we have

/Q|Au\p72Aqu)w1dx+/O\Au|q72Aqu0V1dx+/Q|Vu|p72<Vu,Vq)>w2dx+/Q|Vu|572<Vu,Vq)>v2dx

:/Q <|Au|p_2Au— |Am|p_2Aum) Ap wy dx—l—/Q <|Au|‘7_2Au— |Aumq_2Aum)Aq)v1 dx
-l-/Q (|Vu|p2(Vu,Vgo> — |Vum|p2<Vum,Vgo>> wo dx
—l—/ﬂ (|Vu|s_2<Vu,ch> - Vum|s_2(Vum,V(p>) v dx
+/ | At [P 2 Aty Ag dx+/ |Att |72 sty Ay dx+/Q|Vum|p_2(Vum,Vq)> wy dx
+/ Vit |* ™2 (Vit, V@) v5 dx

= hth+b+l+ [ fapdrt [ (G Vo)dx

11+12—|—I3+I4+/f(pdx+/ (G, V) dx+/ (pdx—i—/ _G,Vg)d

where
L = f Q

(|Au”2Au — |Aum|p2Aum> Ag wy dx,
L= [, (|Auq_2Au - |Aum|q_2Aum>A(p vy dx,

L= [ ([VulP(Vu, Vo) - Vum|p_2<Vum,Vgo>> w, dx,
L= fQ (|Vus_2<Vu,V(p> - |Vum|s_2<Vum, V(P>> vy dx.
We have that:

(1) By Lemma 5 (a) there exists C, > 0 such that

W] [ 18uP 80— BB [Ag] wr dx

IN

C, /Q At — Aty (|Au] + [ At )P ~2 | g 0y dx.

Letr = p/(p —2). Since ;17 + ;19 + % = 1, by the Generalized Holder inequality we obtain

1/p 1/p
L] < CP</QAu—Aum|pw1dx) (/Q|A(p|pw1dx) </Q(|Au|+|Aum)(p2)rw1dx>

1/r

8)
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2
< Cpllu = unmllx plll1Aul + Al 3 -

Now, since u,,— u in X, then exists a constant M > 0 such that ||u,,||x < M. Hence,
Au] + [Aum || po,0p) < N1l x + lum | x <2M. )
Therefore,

Ihl < Cp M) |lu — umllx lgllx = Cu llu — tmllx l9llx-

Analogously, there exists a constant C3 such that

1] < Callu — umllx 9l x-

(2) By Lemma 5 (a) there exists a positive constant C; such that

L] < /()||Au|q72Au—|Aum\q72Aum]\Aq)|1/1dx

<0y [ 1w A (18u] + | A1) A vy dx

Leta =q/(q—2) (if 2 < g < p < o). Since ‘11 + ; + % =1, by the Generalized Holder inequality we obtain

1/q 1/q
Cq(/ |Au—Aum|qV1dx> (/ |Aq)|‘7v1dx) (/(Au|+|Aum|)(‘7_2)“v1dx>

= Cqldu— A”mHLq(Qvl ||A§9HM(QV1 (|| Aul + |A“M|||Lq(gvl)

1/«
|2

IA

Now, by Remark 3(a) and (9) we have

IN

2
| 12| Co Mu[|Aut — Btt| 1 (,00) M1 189 ]|y o MT Il A0] + |Aum|||Lp (1)
Cq Ml — um xllolx (2M)72

Co [ = umllx 9l x-

IN

Analogously, if 2 < s < p < oo, there exists a positive constant C4 such that

[La < Cyllu = umllx ol x-

In case g = 2 and s = 2, we have |L|, |Ls| < M? ||u — up||x | @]l x-
Therefore, we have I3, I, I3, I3;— 0 when m— co.

(3) We also have
(e
when m— oo.

Therefore, in (8), we obtain when m— oo that

fmn—f

w2

G — G|

ol

‘/ godx+/ G, V) dx >||¢||X—>O,

LP' (Q,ws) L' (1)

/ |Au|p_2AquoaJ1dx+/ |Au\q_2AuA(pv1dx+/ (VulP~2(Vu, Vo) w, dx
0 0 0
+ [ Va2 (VU Vg)vadx = [ fodx+ [ (GVe)d

[ (942, Ve)ads = [ fodes [ (G Vg dx

i.e., u is a solution of problem (P). O
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Example 1. Let Q = {(x,y) €R? : x>+ % < 1}, wi(x,y) = (x> +v*) V2, wi(x,y) = (32 +y?) V4 (w; € Ay,
p=dandg=s=3),n(5y) = (2+ ) nlny) = (2+ PV f(xy) = D) and Glx,y) =

(x2 +y2)1/6
sin(x + ) sin(xy)
((x2 ) (216 ) By Theorem 7, the problem

A {(x2 +y2) V2| AuFAu + (x2 +y2)_1/3|Au|Au]

_div {(xz +12) VA VPV + (2 +y2)—1/8|w|v4

= f(x) —div(G(x)), in O
u(x) = Au =0, in aQ

has a unique solution u € W24(Q, w1) N W3'4(Q, wy).
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