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1. Introduction

T his work is concerned with the global existence, uniqueness, and asymptotic behavior of solution for
the Euler-Bernoulli viscoelastic equation

utt + ∆2u− g1 ∗ ∆2u + g2 ∗ ∆u + ut = 0, x ∈ Ω, t > 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
u = 0, ∂u

∂ν = 0, x ∈ ∂Ω, t > 0,
(1)

where Ω is a bounded domain of Rn with smooth boundary ∂Ω, and ν is the unit outer normal on ∂Ω. Here
g1 and g2 are positive functions satisfying some conditions to be specified later, and

gi ∗ χ(t) =
∫ t

0
gi(t− τ)χ(τ)dτ, i = 1, 2.

The Euler-Bernoulli equation

utt(x, t) + ∆2u(x, t) + h(ut) = f (u), (x, t) ∈ Rn × (0, ∞), (2)

describes the deflection u(x, t) of a beam (when n = 1) or a plate (when n = 2), where ∆2u := ∆(∆u) =

∑n
j=1 (∑

n
i=1 uxi uxi )xjxi

, and h and f represent the friction damping and the source respectively.
Lange and Menzala [1] considered

utt(x, t) + ∆2u(x, t) + a(t)ut(x, t) = 0 (3)

where x ∈ Rn, t ≥ 0, a(t) = m(‖∇v(·, t)‖2
L2(Rn) and the real-valued function m : [0,+∞) → [1,+∞) will be

assumed to be of class C1 satisfying the condition m(s) ≥ 1+ s for all s ≥ 0. They remarked that the imaginary
part of the solutions of Schrödinger’s equation

iwt = ∆w + im
(
‖∇(Imw)‖2

L2(Rn

)
Rew = 0,
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are precisely the solutions for (3). Then, using Fourier transform, the existence of global classical solutions
and algebraic decay rate were proved for initial data whose regularity depends on the spacial dimension n.
Messaoudi [2] studied the equation

utt(x, t) + ∆2u(x, t) + a|ut|m−2ut = b|u|p−2u, (4)

where a, b > 0, p, m > 2. He established an existence result for (4) and showed that the solution continued to
exist globally if m ≥ p. If we take the viscoelastic materials into consideration, the model (2) becomes

utt(x, t) + ∆2u(x, t)−
∫ t

0
g(t− s)∆2u(x, s)ds + h(ut) = f (u), (5)

where g is so-called viscoelastic kernel. The term
∫ t

0 g(t− s)∆2u(x, s)ds describes the hereditary properties of
the viscoelastic materials [3]. It expresses the fact that the stress at any instant t depends on the past history
of strains which the material has undergone from time 0 up to t. Tatar [4] obtained the property of the energy
decay of the model (5) for h = f = 0 and from this, we know that the term

∫ t
0 g(t− s)∆2u(x, s)ds, similar to

the friction damping, can cause the inhibition of the energy.
Messaoudi and Mukiawa [5] studied the fourth-order viscoelastic plate equation

utt(x, t) + ∆2u(x, t)−
∫ t

0
g(t− s)∆2u(x, s)ds = 0,

in the bounded domain Ω = (0, π) × (−l, l) ⊂ R2 with nontraditional boundary conditions. The authors
established the well-posedness of the solution and a decay result.
Rivera et al. [6] investigated the plate model:

utt + ∆2u− σ∆utt +
∫ t

0
g(t− s)∆2u(s)ds = 0,

in the bounded domain Ω ⊂ R2 with mixed boundary condition and suitable geometrical hypotheses on ∂Ω.
They established that the energy decays to zero with the same rate of the kernel g such as exponential and
polynomial decay. To do so in the second case they made assumptions on g, g′ and g′′ which means that
g ' (1 + t)−p for p > 2. Then they obtained the same decay rate for the energy. However, their approach can
not be applied to prove similar results for 1 < p ≤ 2.
Cavalcanti et al. [7] investigated the global existence, uniqueness and stabilization of energy of

utt + ∆2u−
∫ t

0
g(t− s)∆2u(s)ds + a(t)ut = 0

where

a(t) = M
(∫

Ω
|∇u(x, t)|2dx

)
with M ∈ C1([0,+∞)).

By taking a bounded or unbounded open set Ω where M(s) > m0 > 0 for all s ≥ 0, the authors showed
in [7] that the energy goes to zero exponentially, provided that g goes to zero at the same form.

The aim of this work is to study the global existence of regular and weak solutions of problem (1) for the
bounded domain, then for ξ : R+ → R+ a increasing C2 function such that

ξ(0) = 0, ξ ′(0) > 0, lim
t→+∞

ξ(t) = +∞, ξ ′′(t) < 0 ∀t ≥ 0. (6)

the solution features the asymptotic behavior

E(t) ≤ E(0)e−κξ(t), ∀t ≥ 0,

where E(t) is defined in (38) and κ is a positive constant independent of the initial energy E(0).
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2. Preliminaries and main results

We begin by introducing some notation that will be used throughout this work. For functions u(x, t),
v(x, t) defined on Ω, we introduce

(u, v) =
∫

Ω
u(x)v(x)dx and ‖u‖2 =

(∫
Ω
|u(x)|2dx

) 1
2

.

Define
X =

{
u ∈ H2

0(Ω); ∆2u ∈ L2(Ω)
}

Then, X is a Hilbert space endowed with the natural inner product

(u, v)X = (u, v)H2
0
+ (∆2u, ∆2v).

Now let us precise the hypotheses on g1 and g2.
(H1) g1 : R+ → R+ is a bounded function satisfying

g1(t) ∈ C2(R+) ∩ L1(R+), g1(0) > 0.

(H2) There exist positive constants α1, α2 and α3 such that

−α1g1(t) ≤ g′1(t) ≤ −α2g1(t), ∀t ≥ 0,

(H3)
0 ≤ g′′1 (t) ≤ α3g1(t), ∀t ≥ 0,

(H4) g2 : R+ → R+ is a bounded function satisfying

g2(t) ∈ C1(R+) ∩ L1(R+), g2(0) > 0.

(H5) There exist positive constants η1 and η2 such that

−η1g2(t) ≤ g′2(t) ≤ −η2g2(t), ∀t ≥ 0,

(H6)

1−
∫ t

0

(
g1(s) + λ−1

1 g2(s)
)

ds = l > 0,

where λ1 > 0 is the first eigenvalue of the spectral Dirichlet problem

∆2u = λ1u in Ω, u =
∂u
∂ν

= 0 in ∂Ω,

‖∇u‖2 ≤
1√
λ1
‖∆u‖2.

Lemma 1. For φ, ψ ∈ C1([0,+∞[,R) we have

2
∫ t

0

∫
Ω

φ(t− s)ψψ′dxds = − d
dt

(
(φ�ψ)(t)−

∫ t

0
φ(s)ds‖ψ‖2

2

)
+ (φ′�ψ)(t)− φ(t)‖φ‖2

2,

where

(φ�ψ)(t) =
∫ t

0
φ(t− s)‖ψ(t)− ψ(s)‖2

2ds.

Theorem 2. Assume that (H1)− (H6) hold, and that {u0, u1} belong to H2
0(Ω)× L2(Ω). Then, Problem (1) admits

a unique weak solution u in the class

u ∈ C0([0, ∞); H2
0(Ω)) ∩ C1([0, ∞); L2(Ω)).
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Moreover, for ξ : R+ → R+ a increasing C2 function satisfying (6) and, if ‖g1‖L1(0,∞) is sufficiently small, we have for
κ > 0

E(t) ≤ E(0)e−κξ(t), ∀t ≥ 0.

3. Existence of Solutions

In this section we first prove the existence and uniqueness of regular solutions to Problem (1). Then, we
extend the same result to weak solutions using density arguments.

3.1. Regular solutions

Let (wj) be a Galerkin basis in X, and let Vm be the subspace generated by the first m vectors w1, ..., wm.
We search for a function

um(t) =
m

∑
i=1

kim(t)wi(x), m = 1, 2, ....

satisfying the approximate Cauchy problem

(u′′m(t), v) + (∆um(t), ∆v)−
∫ t

0
g1(t− s)(∆um(s), ∆v)ds

−
∫ t

0
g2(t− s)(∇um(s),∇v)ds + (u′m(t), v) = 0, ∀v ∈ Vm, (7)

um(0) = u0m −→ u0 in X and u′m(0) = u1m −→ u1 in H2
0(Ω). (8)

By standard methods in differential equations, we can prove the existence of solutions to the problem (5)− (6)
on [0, tm) with 0 < tm < T. In order to extend the solution of (7)− (8) to the whole [0, T], we need the following
priori estimate.
Estimate 1. Taking v = 2u′m(t) in (7), we have

d
dt

[
‖u′m(t)‖2

2 + ‖∆um(t)‖2
2

]
+ 2‖u′m(t)‖2

2 − 2
∫ t

0
g1(t− s)∆um(s) · ∆u′m(t)dxds

−2
∫ t

0
g2(t− s)∇um(s) · ∇u′m(t)dxds = 0. (9)

Using Lemma 1, we obtain

−2
∫ t

0
g1(t− s)

∫
Ω

∆um(s) · ∆u′m(t)dxds

=
d
dt

{
(g1�∆um)(t)−

(∫ t

0
g1(s)ds

)
‖∆um(t)‖2

2

}
− (g′1�∆um)(t) + g1(t)‖∆um(t)‖2

2, (10)

and

−2
∫ t

0
g2(t− s)

∫
Ω
∇um(s) · ∇u′m(t)dxds

=
d
dt

{
(g2�∇um)(t)−

(∫ t

0
g2(s)ds

)
‖∇um(t)‖2

2

}
− (g′2�∇um)(t) + g2(t)‖∇um(t)‖2

2, (11)

Inserting Equations (10) and (11) into Equation (9) and integrating over [0, t] ⊂ [0, T], we obtain

‖u′m(t)‖2
2 +

(
1−

∫ t

0
g1(s)ds

)
‖∆um(t)‖2

2 + (g1�∆um)(t)−
(∫ t

0
g2(s)ds

)
‖∇um(t)‖2

2 + (g2�∇um)(t)

+2
∫ t

0
‖u′m(s)‖2

2ds−
∫ t

0
(g′1�∆um)(s)ds +

∫ t

0

∫
Ω

g1(s)|∆um(s)|2dxds−
∫ t

0
(g′2�∇um)(s)ds

+
∫ t

0

∫
Ω

g2(s)|∇um(s)|2dxds = ‖u1m(t)‖2
2 + ‖∆u0m‖2

2. (12)
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By using the fact that

(g1�∆um)(t) + (g2�∇um)(t)−
∫ t

0
(g′1�∆um)(s)ds−

∫ t

0
(g′2�∇um)(s)ds

+
∫ t

0

∫
Ω

g1(s)|∆um(s)|2dxds +
∫ t

0

∫
Ω

g2(s)|∇um(s)|2dxds ≥ 0,

and(
1−

∫ t

0
g1(s)ds

)
‖∆um(t)‖2

2 −
(∫ t

0
g2(s)ds

)
‖∇um(t)‖2

2 ≥
(

1−
∫ t

0

[
g1(s) + λ−1

1 g2(s)
]

ds
)
‖∆um(t)‖2

2

≥ l‖∆um(t)‖2
2,

Equation (12) yields

‖u′m(t)‖2
2 + l‖∆um(t)‖2

2 + 2
∫ t

0
‖u′m(s)‖2

2ds ≤ ‖u1m(t)‖2
2 + ‖∆u0m‖2

2. (13)

Taking the convergence of Equation (8) into consideration, we arrive at

‖u′m(t)‖2
2 + l‖∆um(t)‖2

2 + 2
∫ t

0
‖u′m(s)‖2

2ds ≤ L1. (14)

where L1 = ‖u1‖2
2 + ‖∆u0‖2

2.
Estimate 2. Firstly, we obtain an estimate for u′′m(0) in the L2 norm. indeed, setting v = u′′m(0) and t = 0 in
Equation (7), we obtain

‖u′′m(0)‖2
2 ≤

[
‖∆2u0m‖2 + ‖u1m‖2

]
‖u′′m(0)‖2. (15)

From Equations (8), (14) and (15), it follows that

‖u′′m(0)‖2 ≤ L2, ∀m ∈ N, (16)

where L2 is a positive constant independent of m ∈ N. Differentiating Equation (7) with respect to t, and
setting v = u′′m(t), we obtain

d
dt

[
1
2
‖u′′m(t)‖2

2 +
1
2
‖∆u′m(t)‖2

2

]
+ ‖u′′m(t)‖2

2

= −g1(0)
∫

Ω
∆2um(t)u′′m(t)dx−

∫
Ω

∫ t

0
g′1(t− s)∆2um(s)u′′m(t)dsdx

−g2(0)
∫

Ω
∆um(t)u′′m(t)dx−

∫
Ω

∫ t

0
g′2(t− s)∆um(s)u′′m(t)dsdx

= −g2(0)
∫

Ω
∆um(t)u′′m(t)dx−

∫
Ω

∫ t

0
g′2(t− s)∆um(s)u′′m(t)dsdx

−g1(0)‖∆u′m(t)‖2
2 + g1(0)

d
dt

∫
Ω

∆um(t) · ∆u′m(t)dx

+
d
dt

{∫ t

0
g′1(t− s)

∫
Ω

∆um(t) · ∆u′m(t)dxds
}
− g′1(0)

∫
Ω

∆um(t) · ∆u′m(t)dx

−
∫ t

0
g′′1 (t− s)

∫
Ω

∆um(s) · ∆u′m(t)dxds. (17)

By (H5), Hölder’s inequality and Young’s inequality give

−
∫

Ω

∫ t

0
g′2(t− s)∆um(s)u′′m(t)dsdx ≤ 1

2
‖u′′m(t)‖2

2 +
η2

1‖g2‖L1

2

∫ t

0
g2(t− s)‖∆um(s)‖2

2ds. (18)
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From Equation (14) we obtain

− g2(0)
∫

Ω
∆um(t)u′′m(t)dx ≤ 1

2
‖u′′m(t)‖2

2 +
[g2(0)]2L1

2l
(19)

and

− g′1(0)
∫

Ω
∆um(t) · ∆u′m(t)dx ≤

|g′1(0)|
2

(
‖∆um(t)‖2

2 + ‖∆u′m(t)‖2
2

)
≤
|g′1(0)|L1

2l
+
|g′1(0)|

2
‖∆u′m(t)‖2

2. (20)

From (H3), we deduce

∫
Ω

∫ t

0
g′′1 (t− s)∆um(s)∆u′m(t)dsdx ≤ 1

2
‖∆u′m(t)‖2

2 +
α2

3‖g1‖L1

2

∫ t

0
g1(t− s)‖∆um(s)‖2

2ds (21)

Inserting Equations (18)-(21) in Equation (17), we get

1
2
‖u′′m(t)‖2

2 +
1
2
‖∆u′m(t)‖2

2 ≤ ‖u′′m(0)‖2
2 + ‖∆u′1m‖2

2 + C3 + g1(0)
∫

Ω
∆um(t) · ∆u′m(t)dx

+
∫ t

0
g′1(t− s)

∫
Ω

∆um(t) · ∆u′m(t)dxds + C4

∫ t

0
‖∆u′m(s)‖2

2ds, (22)

where

C3 =

[
η2

1‖g2‖L1

2
+

[g2(0)]2L1

2l
+
|g′1(0)|L1

2l

]
T +

[
η2

1‖g2‖L1(0,∞)‖g2‖L∞(0,∞)

2
+

α2
1‖g1‖L1(0,∞)‖g1‖L∞(0,∞)

2

]
L1T

l

and

C4 =
|g′1(0)|

2
+

1
2

.

Using Hölder’s inequality, we know that, for any δ > 0,

g1(0)
∫

Ω
∆um(t) · ∆u′m(t)dx +

∫ t

0
g′1(t− s)

∫
Ω

∆um(t) · ∆u′m(t)dxds

≤ 2δ‖∆u′m(t)‖2
2 +

[g1(0)]2

4δ
‖∆um(t)‖2

2 +
α2

1
4δ
‖g1‖L1(0,∞)‖g1‖L∞(0,∞)

∫ t

0
‖∆um(s)‖2

2ds

≤ 2δ‖∆u′m(t)‖2
2 + C5, (23)

where

C5 =

[
[g1(0)]2

4δ
+

α2
1

4δ
‖g1‖L1(0,∞)‖g1‖L∞(0,∞)T

]
L1

l
.

Combining Equation (22) and Equation (23), we get

1
2
‖u′′m(t)‖2

2 +

(
1
2
− 2δ

)
‖∆u′m(t)‖2

2 ≤ ‖u′′m(0)‖2
2 + ‖∆u′1m‖2

2 + C3 + C5 + C4

∫ t

0
‖∆u′m(s)‖2

2ds, (24)

Fixing δ > 0, sufficiently small, so that 1
2 − 2δ > 0 in Equation (24), and taking into account Equations (8) and

(16), we get from Gronwall’s Lemma the second estimate,

‖u′′m(t)‖2
2 + ‖∆u′m(t)‖2

2 ≤ L3, (25)

where L3 is a positive constant independent of m ∈ N and t ∈ [0, T].
Estimate 3. Let m1 ≥ m2 be two natural numbers, and consider zm = um1 − um2 . Then, applying the same way
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as in the estimate 1 and observing that {u0m} and {u1m} are Cauchy sequence in X and H2
0(Ω), respectively,

we deduce

‖z′m(t)‖2
2 + ‖∆zm(t)‖2

2 + 2
∫ t

0
‖z′m(s)‖2

2ds→ 0, as n→ +∞, (26)

for all t ∈ [0, T].
Therefore, from Equations (24), (25) and (26), we deduce that there exist a subsequence

{
uµ

}
of {um} and u

such that
u′µ → u′ strongly in C0([0, T]; L2(Ω)), (27)

uµ → u strongly in C0([0, T]; H2
0(Ω)), (28)

u′′µ → u′′ weakly star in L∞(0, T; L2(Ω)). (29)

The above convergences (27)-(29) are enough to pass to the limit in Equation (7), to obtain

u′′ + ∆2u−
∫ t

0 g1(t− s)∆2u(s)ds +
∫ t

0 g2(t− s)∆u(s)ds + u′ = 0 in L∞(0, ∞; L2(Ω)),
u(0) = u0, u′(0) = u1.

.

Next, we want to show the uniqueness of solution of (7)-(8). Let u(1), u(2) be two solutions of (7)-(8). Then
z = u(1) − u(2) satisfies

(z′′(t), v)+ (∆z(t), ∆v)−
∫ t

0
g1(t− s)(∆z(s), ∆v)ds−

∫ t

0
g2(t− s)(∇z(s),∇v)ds+(z′(t), v) = 0, ∀v ∈ H2

0(Ω),

(30)
z(x, 0) = z′(x, 0) = 0, x ∈ Ω,

z = 0,
∂z
∂ν

= 0, x ∈ ∂Ω, t > 0.

Setting v = 2z′(t) in (30), then as in deriving (14), we see that

‖z′(t)‖2 = ‖∆z(t)‖2 = 0 for all t ∈ [0, T]. (31)

Therefore, we have the uniqueness.

3.2. Weak solutions

Let (u0, u1) ∈ H2
0(Ω)× L2(Ω). Then, since X×H2

0(Ω) is dense in H2
0(Ω)× L2(Ω) there exists (u0µ, u1µ) ⊂

X× H2
0(Ω) such that

u0µ → u0 in H2
0(Ω) and u1µ → u1 in L2(Ω). (32)

Then, for each µ ∈ N, there exists a unique regular solution uµ of Problem (1) in the class

uµ ∈ L∞(0, ∞; H2
0(Ω)), u′µ ∈ L∞(0, ∞; H2

0(Ω)), u′′µ ∈ L∞(0, ∞; L2(Ω)). (33)

In view of Equation (33) and using an analogous argument to that in Estimate 1 and Estimate 3, we find a
sequence

{
uµ

}
of solutions to Problem (1) such that

u′µ → u′ weak star in L∞(0, T; L2(Ω)), (34)

uµ → u weak star in L∞(0, T; H2
0(Ω)), (35)

uµ → u strongly in C0([0, T]; H2
0(Ω)), (36)

u′µ → u′ strongly in C0([0, T]; L2(Ω)), (37)
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The convergences (33)-(36) are sufficient to pass to the limit in order to obtain a weak solution of Problem (1),
which satisfies

u′′ + ∆2u−
∫ t

0 g1(t− s)∆2u(s)ds +
∫ t

0 g2(t− s)∆u(s)ds + u′ = 0 in L2(0, ∞; H−2(Ω)),
u(0) = u0, u′(0) = u1.

.

The uniqueness of weak solutions requires a regularization procedure and can be obtained using the standard
method of Visik-Ladyzhenskaya, c.f. Lions and Magenes [8, Chap. 3, Sec. 8.2.2].

4. Asymptotic Behaviour

In this section, we discuss the asymptotic behavior of the above-mentioned weak solutions. Let us define
the energy associated to Problem (1) as

E(t) =
1
2
‖ut(t)‖2

2 +
1
2

(
1−

∫ t

0
g1(s)ds

)
‖∆u(t)‖2

2 +
1
2
(g1�∆u)(t)

−1
2

(∫ t

0
g2(s)ds

)
‖∇u(t)‖2

2 +
1
2
(g2�∇u)(t). (38)

To demonstrate our decay result, the lemmas below are essential.

Lemma 3. For any t > 0

0 ≤ E(t) ≤ 1
2

[
‖ut(t)‖2

2 + ‖∆u(t)‖2
2 + (g1�∆u)(t) + (g2�∇u)(t)

]
.

Proof. Using the fact that ‖∇u(t)‖2
2 ≤ λ−1

1 ‖∆u(t)‖2
2, we have(

1−
∫ t

0
g1(τ)dτ

)
‖∆u(t)‖2

2 −
(∫ t

0
g2(τ)dτ

)
‖∇u(t)‖2

2

≥
(

1−
∫ t

0

[
g1(s) + λ−1

1 g2(s)
]

ds
)
‖∆u(t)‖2

2

and according to (H6) we have E(t) ≥ 0,
and

E(t) =
1
2
‖ut(t)‖2

2 +
1
2
‖∆u(t)‖2

2 +
1
2
(g1�∆u)(t) +

1
2
(g2�∇u)(t)

−1
2

{(∫ t

0
g1(s)ds

)
‖∆u(t)‖2

2 +

(∫ t

0
g2(s)ds

)
‖∇u(t)‖2

2

}
≤ 1

2

[
‖ut(t)‖2

2 + ‖∆u(t)‖2
2 + (g1�∆u)(t) + (g2�∇u)(t)

]
.

Lemma 4. The energy E(t) satisfies

E′(t) ≤ −‖ut(t)‖2
2 −

1
2

α2(g1�∆u)(t)− 1
2

η2(g2�∇u)(t)− 1
2

[
g1(0)− α1‖g1‖L1(0,∞)

]
‖∆u(t)‖2

2 ≤ 0. (39)

Proof. Multiplying the first equation in (1) by ut and integrating over Ω, we obtain

d
dt

[
1
2
‖ut(t)‖2

2 +
1
2
‖∆u(t)‖2

2

]
+ ‖ut(t)‖2

2 =
∫ t

0
g1(t− τ)∆u(τ) · ∆ut(t)dxdτ +

∫ t

0
g2(t− τ)∇u(τ) · ∇ut(t)dxdτ.
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Exploiting (10)-(11) and by (H1)− (H5), we deduce

E′(t) = −‖ut(t)‖2
2 +

1
2
(g′1�∆u)(t)− 1

2
g1(t)‖∆u(t)‖2

2 +
1
2
(g′2�∇u)(t)− 1

2
g2(t)‖∇u(t)‖2

2

≤ −‖ut(t)‖2
2 −

1
2

α2(g1�∆u)(t)− 1
2

η2(g2�∇u)(t)− 1
2

g1(t)‖∆u(t)‖2
2. (40)

From assumptions (H2) and since
∫ t

0 g′1(τ)dτ = g1(t)− g1(0), we obtain

− 1
2

g1(t)‖∆u(t)‖2
2 = −1

2
g1(0)‖∆u(t)‖2

2 −
1
2

(∫ t

0
g′1(s)ds

)
‖∆u(t)‖2

2

≤ −1
2

g1(0)‖∆u(t)‖2
2 +

α1

2
‖g1‖L1(0,∞)‖∆u(t)‖2

2

= −1
2

[
g1(0)− α1‖g1‖L1(0,∞)

]
‖∆u(t)‖2

2. (41)

Combining Equation (40) and Equation (41), we conclude that

E′(t) ≤ −‖ut(t)‖2
2 −

1
2

α2(g1�∆u)(t)− 1
2

η2(g2�∇u)(t)

−1
2

[
g1(0)− α1‖g1‖L1(0,∞)

]
‖∆u(t)‖2

2 ≤ 0.

Multiplying Equation (39) by eκξ(t) (κ > 0) and utilizing Lemma 3, we have

d
dt

(
eκξ(t)E(t)

)
≤ −eκξ(t)E(t)‖ut(t)‖2

2 −
1
2

α2(g1�∆u)(t)eκξ(t)E(t)− 1
2

η2(g2�∇u)(t)eκξ(t)E(t)

−1
2

[
g1(0)− α1‖g1‖L1(0,∞)

]
eκξ(t)E(t)‖∆u(t)‖2

2 + κξ ′(t)eκξ(t)E(t)

≤ −1
2
[
2− κξ ′(t)

]
eκξ(t)E(t)‖ut(t)‖2

2 −
1
2
[
α2 − κξ ′(t)

]
eκξ(t)E(t)(g1�∆u)(t)

−1
2
[
η2 − κξ ′(t)

]
eκξ(t)E(t)(g2�∇u)(t)

−1
2

[
g1(0)− α1‖g1‖L1(0,∞) − κξ ′(t)

]
eκξ(t)E(t)‖∆u(t)‖2

2. (42)

Using the fact that ξ ′ is decreasing we arrive at

d
dt

(
eκξ(t)E(t)

)
≤ −1

2
[
2− κξ ′(0)

]
eκξ(t)E(t)‖ut(t)‖2

2 −
1
2
[
α2 − κξ ′(0)

]
eκξ(t)E(t)(g1�∆u)(t)

−1
2
[
η2 − κξ ′(0)

]
eκξ(t)E(t)(g2�∇u)(t)

−1
2

[
g1(0)− α1‖g1‖L1(0,∞) − κξ ′(0)

]
eκξ(t)E(t)‖∆u(t)‖2

2. (43)

Choosing ‖g1‖L1(0,∞) sufficiently small so that

g1(0)− α1‖g1‖L1(0,∞) = L > 0,

and choosing κ sufficiently small in order to have

2− κξ ′(0) > 0, α2 − κξ ′(0) > 0, η2 − κξ ′(0) >, L− κξ ′(0) > 0.

from Equation (43) we arrive at
d
dt

(
eκξ(t)E(t)

)
≤ 0, t > 0. (44)

Integrating the above inequality over (0, t), it follows that

E(t) ≤ E(0)e−κξ(t), t > 0. (45)
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