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Abstract: We study the existence and uniqueness of positive solutions of the nonlinear fractional differential
equation with integral boundary conditions Dα

1 x (t) = f (t, x (t)) , 1 < t ≤ e, x (1) = λ
∫ e

1 x (s) ds + d,
where Dα

1 is the Caputo-Hadamard fractional derivative of order 0 < α ≤ 1. In the process we convert the
given fractional differential equation into an equivalent integral equation. Then we construct an appropriate
mapping and employ the Schauder fixed point theorem and the method of upper and lower solutions to
show the existence of a positive solution of this equation. We also use the Banach fixed point theorem to
show the existence of a unique positive solution. Finally, an example is given to illustrate our results.
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1. Introduction

F ractional differential equations with and without delay arise from a variety of applications including
in various fields of science and engineering such as applied sciences, practical problems concerning

mechanics, the engineering technique fields, economy, control systems, physics, chemistry, biology, medicine,
atomic energy, information theory, harmonic oscillator, nonlinear oscillations, conservative systems, stability
and instability of geodesic on Riemannian manifolds, dynamics in Hamiltonian systems, etc. In particular,
problems concerning qualitative analysis of linear and nonlinear fractional differential equations with and
without delay have received the attention of many authors, see [1–15] and the references therein.

Zhang in [16] investigated the existence and uniqueness of positive solutions for the nonlinear fractional
differential equation {

Dαx (t) = f (t, x(t)), 0 < t ≤ 1,
x (0) = 0,

where Dα is the standard Riemann Liouville fractional derivative of order 0 < α < 1 and f : [0, 1]× [0, ∞) →
[0, ∞) is a given continuous function. By using the method of the upper and lower solution and cone
fixed-point theorem, the author obtained the existence and uniqueness of a positive solution.

The nonlinear fractional differential equation{
CDαx (t) = f (t, x(t)) +C Dα−1g (t, x (t)) , 0 < t ≤ T,
x (0) = θ1 > 0, x′ (0) = θ2 > 0,

has been investigated in [5], where CDα is the standard Caputo’s fractional derivative of order 1 < α ≤ 2,
g, f : [0, T]× [0, ∞) → [0, ∞) are given continuous functions, g is non-decreasing on x and θ2 ≥ g (0, θ1). By
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employing the method of the upper and lower solutions and Schauder and Banach fixed point theorems, the
authors obtained positivity results.

In [2], Abdo, Wahash and Panchat discussed the existence and uniqueness of positive solutions of the
following nonlinear fractional differential equation with integral boundary conditions{

CDαx (t) = f (t, x (t)) , 0 < t ≤ 1,
x (0) = λ

∫ 1
0 x (s) ds + d,

where 0 < α ≤ 1, λ ≥ 0, d > 0 and f : [0, 1]× [0, ∞) → [0, ∞) is a given continuous function. By using the
method of the upper and lower solutions and Schauder and Banach fixed point theorems, the existence and
uniqueness of solutions has been established.

Ahmad and Ntouyas in [4] studied the existence and uniqueness of solutions to the following boundary
value problem 

Dα
1

(
D

β
1 u(t)− g (t, ut)

)
= f (t, ut), t ∈ [1, b],

u(t) = φ(t), t ∈ [1− r, 1],

D
β
1 u(1) = η ∈ R,

where Dα
1 and D

β
1 are the Caputo-Hadamard fractional derivatives, 0 < α, β < 1. By employing the fixed point

theorems, the authors obtained existence and uniqueness results.
In this paper, we are interested in the analysis of qualitative theory of the problems of the positive

solutions to fractional differential equations with integral boundary conditions. Inspired and motivated by
the works mentioned above and the papers [1–15] and the references therein, we concentrate on the positivity
of the solutions for the nonlinear fractional differential equation with integral boundary conditions{

Dα
1 x (t) = f (t, x (t)) , 1 < t ≤ e,

x (1) = λ
∫ e

1 x (s) ds + d,
(1)

where Dα
1 is the Caputo-Hadamard fractional derivative of order 0 < α ≤ 1, λ ≥ 0, d > 0, f : [1, e]× [0, ∞) →

[0, ∞) is a given continuous function. To show the existence and uniqueness of positive solutions, we transform
(1) into an integral equation and then by the method of upper and lower solutions and use the Schauder and
Banach fixed point theorems.

This paper is organized as follows. In Section 2, we introduce some notations and lemmas, and state
some preliminaries results needed in later sections. Also, we present the inversion of (1) and the Banach and
Schauder fixed point theorems. For details on the Banach and Schauder theorems we refer the reader to [15].
In Sections 3 and ??, we give and prove our main results on positivity and we provide an example to illustrate
our results.

2. Preliminaries

Let X = C ([1, e]) be the Banach space of all real-valued continuous functions defined on the compact
interval [1, e], endowed with the maximum norm. Define the cone

E = {x ∈ X : x(t) ≥ 0, ∀t ∈ [1, e]} .

We introduce some necessary definitions, lemmas and theorems which will be used in this paper. For
more details, see [10,14].

Definition 1 ([10]). The Hadamard fractional integral of order α > 0 for a continuous function x : [1,+∞)→ R
is defined as

Iα
1 x(t) =

1
Γ(α)

∫ t

1

(
log

t
s

)α−1
x(s)

ds
s

, α > 0.
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Definition 2 ([10]). The Caputo-Hadamard fractional derivative of order α > 0 for a continuous function
x : [1,+∞)→ R is defined as

Dα
1 x(t) =

1
Γ(n− α)

∫ t

1

(
log

t
s

)n−α−1
δn(x)(s)

ds
s

, n− 1 < α < n,

where δn =
(

t d
dt

)n
, n ∈ N.

Lemma 3 ([10]). Let n− 1 < α ≤ n, n ∈ N and x ∈ Cn ([1, T]). Then

(Iα
1D

α
1 x) (t) = x(t)−

n−1

∑
k=0

x(k)(1)
Γ(k + 1)

(log t)k.

Lemma 4 ([10]). For all µ > 0 and ν > −1,

1
Γ(µ)

∫ t

1

(
log

t
s

)µ−1
(log s)ν ds

s
=

Γ(ν + 1)
Γ(µ + ν + 1)

(log t)µ+ν.

The following lemma is fundamental to our results.

Lemma 5. Let x ∈ C ([1, e]), x′ exists, then x is a solution of (1) if and only if

x (t) =
1

Γ(α)

∫ t

1

(
log

t
s

)α−1
f (s, x (s))

ds
s
+ λ

∫ e

1
x (s) ds + d, 1 ≤ t ≤ e. (2)

Proof. Suppose x satisfies (1), then applying Iα
1 to both sides of (1), we have

Iα
1D

α
1 x (t) = Iα

1 f (t, x (t)) .

In view of Lemma 3 and the integral boundary condition, we get

x (t) =
1

Γ(α)

∫ t

1

(
log

t
s

)α−1
f (s, x (s))

ds
s
+ λ

∫ e

1
x (s) ds + d, 1 ≤ t ≤ e.

Conversely, suppose x satisfies (2), then applying Dα
1 to both sides of (2), we obtain

Dα
1 x (t) = Dα

1

(
1

Γ(α)

∫ t

1

(
log

t
s

)α−1
f (s, x (s))

ds
s
+ λ

∫ e

1
x (s) ds + d

)

= Dα
1I

α
1 f (t, x (t)) +Dα

1

(
λ
∫ e

1
x (s) ds + d

)
= f (t, x (t)) .

Moreover, the integral boundary condition x (1) = λ
∫ e

1 x (s) ds + d holds.

Lastly in this section, we state the fixed point theorems which enable us to prove the existence and
uniqueness of a positive solution of (1).

Definition 6. Let (X, ‖.‖) be a Banach space and A : X → X. The operator A is a contraction operator if there
is an λ ∈ (0, 1) such that x, y ∈ X imply

‖Ax−Ay‖ ≤ λ ‖x− y‖ .

Theorem 7 (Banach [15]). Let K be a nonempty closed convex subset of a Banach space X and A : K → K be a
contraction operator. Then there is a unique x ∈ K with Ax = x.
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Theorem 8 (Schauder [15]). Let K be a nonempty bounded, closed and convex subset of a Banach space X and A :
K → K be a completely continuous operator. Then A has a fixed point in K.

3. Existence of positive solutions

In this section, we consider the results of existence problems for many cases of (1). We express (2) as

x (t) = (Ax) (t) , (3)

where the operators A : E → X is defined by

(Ax) (t) =
1

Γ(α)

∫ t

1

(
log

t
s

)α−1
f (s, x (s))

ds
s
+ λ

∫ e

1
x (s) ds + d.

We need the following lemmas to establish our results.

Lemma 9. Assume that f : [1, e] × [0, ∞) → [0, ∞) is continuous. Then, the operator A : E → E is completely
continuous.

Proof. By taking into account that f is continuous nonnegative function, we get that A : E → E is continuous.
The function f : [1, e]× Bη → [0, ∞) is bounded, then there exists ρ > 0 such that

0 ≤ f (t, x (t)) ≤ ρ,

where Bη = {x ∈ E , ‖x‖ ≤ η}. We obtain

|(Ax) (t)| =
∣∣∣∣∣ 1
Γ(α)

∫ t

1

(
log

t
s

)α−1
f (s, x (s))

ds
s
+ λ

∫ e

1
x (s) ds + d

∣∣∣∣∣
≤ 1

Γ (α)

∫ t

1

(
log

t
s

)α−1

| f (s, x (s))| ds
s
+ λ

∫ e

1
|x (s)| ds + d

≤ ρ

Γ (α)

∫ t

1

(
log

t
s

)α−1 ds
s
+ λ (e− 1) η + d

≤ ρ (log t)α

Γ (α + 1)
+ λ (e− 1) η + d.

Thus,
‖Ax‖ ≤ ρ

Γ (α + 1)
+ λ (e− 1) η + d.

Hence, A(Bη) is uniformly bounded.
Now, we will prove that A(Bη) is equicontinuous. Let x ∈ Bη , then for any t1, t2 ∈ [1, e], t2 > t1, we have

|(Ax) (t2)− (Ax) (t1)| =

∣∣∣∣∣ 1
Γ (α)

∫ t2

1

(
log

t2

s

)α−1
f (s, x (s))

ds
s
− 1

Γ (α)

∫ t1

1

(
log

t1

s

)α−1
f (s, x (s))

ds
s

∣∣∣∣∣
≤ 1

Γ (α)

∫ t1

1

∣∣∣∣∣
(

log
t2

s

)α−1
−
(

log
t1

s

)α−1
∣∣∣∣∣ | f (s, x (s))| ds

s

+
1

Γ (α)

∫ t2

t1

(
log

t2

s

)α−1

| f (s, x (s))| ds
s

≤ ρ

Γ (α)

∫ t1

1

(
log

t1

s

)α−1
−
(

log
t2

s

)α−1 ds
s
+

ρ

Γ (α)

∫ t2

t1

(
log

t2

s

)α−1 ds
s

≤ ρ

Γ (α + 1)

(
(log t1)

α +

(
log

t2

t1

)α

− (log t2)
α +

(
log

t2

t1

)α)
≤ 2ρ

Γ (α + 1)

(
log

t2

t1

)α

.
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As t1 → t2 the right-hand side of the previous inequality is independent of x and tends to zero. Thus that
A(Bη) is equicontinuous. So, the compactness of A follows by Ascoli Arzela’s theorem.

Now for any x ∈ [a, b] ⊂ R+, we define respectively the upper and lower control functions as follows

H (t, x) = sup
a≤y≤x

f (t, y) , h (t, x) = inf
x≤y≤b

f (t, y) .

It is clear that these functions are nondecreasing on [a, b].

Definition 10. Let x, x ∈ E , a ≤ x ≤ x ≤ b, satisfying

x (t) ≥ 1
Γ (α)

∫ t

1

(
log

t
s

)α−1
H (s, x (s))

ds
s
+ λ

∫ e

1
x (s) ds + d, 1 ≤ t ≤ e,

and

x (t) ≤ 1
Γ (α)

∫ t

1

(
log

t
s

)α−1
h (s, x (s))

ds
s
+ λ

∫ e

1
x (s) ds + d, 1 ≤ t ≤ e.

Then the functions x and x are called a pair of upper and lower solutions for the equation (1).

Theorem 11. Assume that f : [1, e]× [0, ∞) → [0, ∞) is continuous, and x and x are respectively upper and lower
solutions of (1), then the problem (1) has at least one positive solution.

Proof. Let
K = {x ∈ E , x (t) ≤ x (t) ≤ x (t) , t ∈ [1, e]} .

As K ⊂ E and K is a nonempty bounded, closed and convex subset. By Lemma 9, A : K → E is completely
continuous. Next, we show that if x ∈ K, we have Ax ∈ K. For any x ∈ K, we have x ≤ x ≤ x, then

(Ax) (t) =
1

Γ (α)

∫ t

1

(
log

t
s

)α−1
f (s, x (s))

ds
s
+ λ

∫ e

1
x (s) ds + d

≤ 1
Γ (α)

∫ t

1

(
log

t
s

)α−1
H (s, x (s))

ds
s
+ λ

∫ e

1
x (s) ds + d

≤ x (t) , (4)

and

(Ax) (t) =
1

Γ (α)

∫ t

1

(
log

t
s

)α−1
f (s, x (s))

ds
s
+ λ

∫ e

1
x (s) ds + d

≥ 1
Γ (α)

∫ t

1

(
log

t
s

)α−1
h (s, x (s))

ds
s
+ λ

∫ e

1
x (s) ds + d

≥ x (t) . (5)

Thus, from (4) and (5), we obtain that Ax ∈ K. We now see that all the conditions of the Schauder fixed point
theorem are satisfied. Thus there exists a fixed point x inK. Therefore, the problem (1) has at least one positive
solution x in K.

Corollary 12. Assume that λ = 0 and f : [1, e]× [0, ∞)→ [0, ∞) is continuous, and there exist λ1, λ2 > 0 such that

λ1 ≤ f (t, x) ≤ λ2, (t, x) ∈ [1, e]× [0,+∞) . (6)

Then the problem (1) has at least one positive solution x ∈ E , moreover

x (t) ≥ λ1
(log t)α

Γ (α + 1)
+ d, (7)
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and

x (t) ≤ λ2
(log t)α

Γ (α + 1)
+ d. (8)

Proof. From (6) and the definition of control functions, we have

λ1 ≤ h (t, x) ≤ H (t, x) ≤ λ2. (9)

Now, let
Dα

1 x (t) = λ2, x (1) = d. (10)

The above equation (10) has a positive solution

x (t) =
λ2

Γ (α)

∫ t

1

(
log

t
s

)α−1 ds
s
+ d = λ2

(log t)α

Γ (α + 1)
+ d.

Taking into account (9), we have

x (t) =
λ2

Γ (α)

∫ t

1

(
log

t
s

)α−1 ds
s
+ d ≥ 1

Γ (α)

∫ t

1

(
log

t
s

)α−1
H (s, x (s))

ds
s
+ d.

It is clear that x is the upper solution of (1). Now, let

Dα
1 x (t) = λ1, x (1) = d.

which has also a positive solution

x (t) =
λ1

Γ (α)

∫ t

1

(
log

t
s

)α−1 ds
s
+ d = λ1

(log t)α

Γ (α + 1)
+ d.

By (9) and the same way that we used to search the upper solution, we conclude also that x is the lower solution
of (1). Therefore, from Theorem 11, we conclude that the problem (1) has at least one positive solution x ∈ E
which verifies the inequalities (7) and (8).

4. Uniqueness of positive solutions

In this section, we shall prove the uniqueness of positive solutions using the contraction mapping
principle.

Theorem 13. Assume that f : [1, e]× [0, ∞)→ [0, ∞) is continuous and there exists L > 0 such that

| f (t, x1)− f (t, x2)| ≤ L |x1 − x2| for any t ∈ [1, e] , x1, x2 ∈ [0, ∞) , (11)

with
L

Γ (α + 1)
+ λ (e− 1) < 1. (12)

Then the problem (1) has a unique positive solution x ∈ K.

Proof. From Theorem 11, it follows that (1) has at least one positive solution in K. Hence, we need only to
prove that the operator A defined in (3) is a contraction on K. In fact, since for any x1, x2 ∈ K, (11) and (12)
are verified, then we have

|(Ax1) (t)− (Ax2) (t)| ≤
1

Γ (α)

∫ t

1

(
log

t
s

)α−1

| f (s, x1 (s))− f (s, x2 (s))|
ds
s
+ λ

∫ e

1
|x1 (s)− x2 (s)| ds

≤ (log t)α

Γ (α + 1)
L ‖x1 − x2‖+ λ (e− 1) ‖x1 − x2‖ ≤

(
L

Γ (α + 1)
+ λ (e− 1)

)
‖x1 − x2‖ .
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Thus,

‖Ax1 −Ax2‖ ≤
(

L
Γ (α + 1)

+ λ (e− 1)
)
‖x1 − x2‖ .

Hence, the operator A is a contraction mapping by (12). Therefore, by the contraction mapping principle, we
conclude that the problem (1) has a unique positive solution x ∈ K.

Now, we give an example to illustrate our results.

Example 1. We consider the following nonlinear fractional differential equation D
2
5
1 x (t) =

1
3 + t

(
t− 1

x (t) + 1
+ 2
)

, 1 < t ≤ e,

x (1) = 1,
(13)

where α = 2/5, λ = 0, d = 1 and f (t, x) =
1

3 + t

(
t− 1
x + 1

+ 2
)

. Since f is continuous and

2
3 + e

≤ f (t, x) ≤ 1
2

,

for (t, x) ∈ [1, e]× [0, ∞), then by Corollary 12, (13) has a positive solution which verifies x (t) ≤ x (t) ≤ x (t)
where

x (t) =
1
2
(log t)2/5

Γ (7/5)
+ 1 and x (t) =

2
3 + e

(log t)2/5

Γ (7/5)
+ 1,

are respectively the upper and lower solutions of (13). Also, we have

L
Γ (α + 1)

' 0.339 < 1,

then by Theorem 13, (13) has a unique positive solution which is bounded by x and x.

5. Conclusion

In this paper, the existence and uniqueness of positive solutions for nonlinear Caputo-Hadamard
fractional differential equations with integral boundary conditions were obtained using the Schauder fixed
point theorem and the Banach contraction mapping principle. The obtained results extend some known results
in the literature. An example is introduced to illustrate the main results of this paper.
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