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1. Introduction

P robability distributions are of paramount importance in many practical applications of statistics. In
deed, several statistical methods are applicable when the data under consideration follow certain

distributions. In a study, one may find a particular probability distribution useful in modelling a data set
while in another study a different distribution may be required. The Lindley distribution is among the widely
used distributions. It is mainly used to model lifetime data. Ghitany et al.[1] demonstrated the superiority of
the Lindley distribution over the exponential distribution in modelling waiting time data of 100 customers in
a bank. Another important application of the this distribution is the analysis of time series data. Popović et al.
[2] introduced and showed the application of the autoregressive process of order one with Lindley marginal
distribution.

Generalizations of several distributions are available in the statistical science literature. According
to Fatima et al. [3], distributions are generalized so as to provide better fits to data and obtain more
flexible models. Two common methods of generalizing distributions are the exponentiation method and
quadratic rank transmutation map method. The generalized Lindley distribution introduced by Nadarajah
et al. [4], was fitted to relief times of twenty patients and compared to Weibull, gamma, and lognormal
distribution. The authors concluded that the generalized distribution provided better fits than the other three
distributions. Merovci [5] introduced and determined properties of the transmuted Lindley distribution. His
data analysis based on this distribution and remission times of 128 cancer patients showcased the superiority
of the distribution over the exponential and Lindley distributions, which were all fitted to the data. Other
Lindley-type distributions that have been fitted to the data include a new generalization of the transmuted
Lindley distribution of Mansour et al.[6] and transmuted two-parameter Lindley distribution of Kemaloglu
et al. [7]. According to Kemaloglu et al., the latter provided better fits to the data than any of Lindley
and transmuted power Lindley distributions. Granzotto et al. [8] developed the transmuted power lindley
distribution and showed that it can provide better fits to monthly rainfall data than the Lindley, power Lindley,
weighted Lindley and transmuted Lindley distributions. In some situations, an exponentiated transmuted
distribution, which is a generalization of a baseline distribution using both exponentiation and transmutation
techniques outperforms its special cases [9–11]. On this note, we propose and study the properties of the
exponentiated transmuted Lindley distribution (ETLD). Suppose there are α transmuted Lindley variables
representing failure times of a component of a system, assumed to be independent. Another motivation for
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introducing the distribution is that it can be used to determine the probability that the system will fail before
a given time. Again, the hazard rate function of the distribution is quite flexible, assuming various shapes,
especially non monote shapes. Thus, the distribution will be of use in many practical applications of statistics.

2. The proposed distribution

From the work of Merovci [5], it is obvious that if a random variable (X) has a transmuted Lindley
distribution with parameters θ and λ, then its probability density function (pdf) is

f1(x) =
θ2

θ + 1
(1 + x)e−θx

(
1− λ + 2λ

θ + 1 + θx
θ + 1

e−θx
)

, x > 0, θ > 0,
∣∣∣λ∣∣∣ ≤ 1 (1)

Consequently, the cumulative distribution function (cdf) of the transmuted Lindley distributed random
variable may be written as

F1(x) =
(

1− θ + 1 + θx
θ + 1

e−θx
)(

1 + λ
θ + 1 + θx

θ + 1
e−θx

)
, x > 0, θ > 0,

∣∣∣λ∣∣∣ ≤ 1 (2)

Given that x > 0, α > 0, θ > 0 and
∣∣∣λ∣∣∣ ≤ 1, the cdf of the exponentiated transmuted Lindley (ETL)

distributed random variable (X) becomes

F(x) = (F1(x))α

=

[(
1− θ + 1 + θx

θ + 1
e−θx

)(
1 + λ

θ + 1 + θx
θ + 1

e−θx
)]α

(3)

Using (3), the pdf of X is found to be

f (x) =
αθ2

θ + 1
(1 + x)e−θx

(
1− λ + 2λ

θ + 1 + θx
θ + 1

e−θx
)

×
[(

1− θ + 1 + θx
θ + 1

e−θx
)(

1 + λ
θ + 1 + θx

θ + 1
e−θx

)]α−1
(4)

The ETLD is actually a generalization of each of the Lindley, transmuted Lindley and exponentiated
(generalized) Lindley distributions. When λ = 0 and α = 1, the proposed distribution is basically a Lindley
distribution. If α = 1, the distribution is the same as the transmuted Lindley distribution. The exponentiated
Lindley distribution is a special of the ETL distribution for which λ = 0. Figures 1 and 2 show that the pdf and
cdf of an exponentiated transmuted Lindley distributed variable may have various shapes, depending on the
values of θ, λ and α.

3. Quantile function

The quantile function xq satisfies the equation

F(xq) = q

⇒
[(

1−
θ + 1 + θxq

θ + 1
e−θxq

)(
1 + λ

θ + 1 + θxq

θ + 1
e−θxq

)]α

= q (5)

From (5), we have

θ + 1 + θxq

θ + 1
e−θxq =

λ− 1 +
√
(1 + λ)2 − 4λq

1
α

2λ
(6)
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Figure 1. pdf of ETLD for selected values of α, λ and θ

Figure 2. cdf of ETLD for selected values of α, λ and θ

Applying the Lambert W function and the method of Kemalogu et al. [7], we have the expression for xq as

xq = − θ + 1
θ
− 1

θ
W−1

−
λ− 1 +

√
(1 + λ)2 − 4λq

1
α

2λ

 e−(θ+1)(θ + 1)

 . (7)

In (7), W−1 stands for the negative branch of the Lambert W function.
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4. Moments and moment generating function

Given that X is an ETL random variable with parameters α, λ and θ, then

E(Xr) =
αθ2

θ + 1

∫ ∞

0
xr(1 + x)e−θx

(
1− λ + 2λ

θ + 1 + θx
θ + 1

e−θx
)

×
[(

1− θ + 1 + θx
θ + 1

e−θx
)(

1 + λ
θ + 1 + θx

θ + 1
e−θx

)]α−1
dx. (8)

To evaluate the raw moment , we may need the series representations(
1− θ + 1 + θx

θ + 1
e−θx

)α−1
=

∞

∑
i=0

(
α− 1

i

)
(−1)i

(θ + 1)i (1 + θ(1 + x))ie−θix,

(
1 + λ

θ + 1 + θx
θ + 1

e−θx
)α−1

=
∞

∑
j=0

(
α− 1

j

)
λj

(θ + 1)j (1 + θ(1 + x))je−θ jx,

(1 + θ(1 + x))i+j =
i+j

∑
k=0

(
i + j

k

)
θk(1 + x)k

and

(1 + x)k+1 =
k+1

∑
s=0

(
k + 1

s

)
xs.

Thus,

E(Xr) =
αθ2

θ + 1

∞

∑
i=0

∞

∑
j=0

i+j

∑
k=0

k+1

∑
s=0

(
α− 1

i

)(
α− 1

j

)(
i + j

k

)(
k + 1

s

)

× (−1)iλjθk

(θ + 1)i+j

∫ ∞

0
xr+se−θ(i+j+1)x

(
1− λ + 2λ

θ + 1 + θx
θ + 1

e−θx
)

dx.

The integral

∫ ∞

0
xr+se−θ(i+j+1)x

(
1− λ + 2λ

θ + 1 + θx
θ + 1

e−θx
)

dx

= (1− λ)
∫ ∞

0
xr+se−θ(i+j+1)xdx + 2λ

∫ ∞

0
xr+se−θ(i+j+2)xdx +

2λθ

θ + 1

∫ ∞

0
xr+s+1e−θ(i+j+2)xdx

=
(r + s)!
θr+s+1

(
1− λ

(i + j + 1)r+s+1 +
2λ

(i + j + 2)r+s+1 +
2λ(r + s + 1)

(θ + 1)(i + j + 2)r+s+2

)
.

Using the results obtained above, the moment becomes

E(Xr) =
αθ2

1 + θ

∞

∑
i=0

∞

∑
j=0

i+j

∑
k=0

k+1

∑
s=0

(
α− 1

i

)(
α− 1

j

)(
i + j

k

)(
k + 1

s

)

× (−1)iλjθk(r + s)!
(θ + 1)i+jθr+s+1

(
1− λ

(i + j + 1)r+s+1 +
2λ

(i + j + 2)r+s+1 +
2λ(r + s + 1)

(θ + 1)(i + j + 2)r+s+2

)
.
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The moment generating function of the ETL variable is

MX(t) = E(etX)

=
∞

∑
ω=0

tωE(Xω)

ω!

=
αθ2

1 + θ

∞

∑
ω=0

∞

∑
i=0

∞

∑
j=0

i+j

∑
k=0

k+1

∑
s=0

(
α− 1

i

)(
α− 1

j

)(
i + j

k

)(
k + 1

s

)

× (−1)iλjθk(ω + s)!tω

(θ + 1)i+jθω+s+1ω!

(
1− λ

(i + j + 1)ω+s+1 +
2λ

(i + j + 2)ω+s+1 +
2λ(ω + s + 1)

(θ + 1)(i + j + 2)ω+s+2

)
.

With the formula for finding E(Xr), the mean and variance of the ETL distribution can be determined.
The classical coefficients of skewness and kurtosis obtained using the rth raw moment formula have some
weaknesses and are now replaced by the Bowley skewness (S) [12] and Moors kurtosis (K) [13] respectively.
Consequently,

S =
Q( 3

4 )− 2Q( 2
4 ) + Q( 1

4 )

Q( 3
4 )−Q( 1

4 )

and

K =
Q( 7

8 )−Q( 5
8 ) + Q( 3

8 )−Q( 1
8 )

Q( 6
8 )−Q( 2

8 )
,

where Q(.) represents the quantile function.
In Table 1, the mean, median, variance, Bowley skewness and Moors kurtosis are presented for various

parameter values of the ETLD . We have computed these summary measures in order to examine the
relationships between them and the parameters of the ETLD.

In addition to the numerical results in Table 1, we have provided plots (Figures 3 to 8) to ensure that we
make a valid interpretation of the relationship between each of skewness (S) and kurtosis (K) and any of the
parameters when the other two parameters are fixed. From Figures 3 and 4, we conclude that both S and K are
nonincreasing functions of α if λ and θ are fixed. Figures 5 and 6 show that as a function of λ only, each of S
and K is unimodal. As shown in Figures 7 and 8, S and K are all nondecreasing functions of θ when α and λ

are fixed. If only α is held constant, Table 1 indicates that all of the mean, median and variance increase as λ

and θ jointly increase. Also, the variance increases provided each of the three parameters increases. Graphs of
S and K against two parameters are displayed in Figures 9 to 14.

Though the results in Table 1 are primarily obtained to investigate some relationships, there also useful in
examining whether the distribution is negatively skewed, symmetric or positively skewed. With the results,
we can also determine if the distribution is platykurtic, mesokurtic or leptokurtic. With regard to the results,
distribution is positively skewed and it can be platykurtic or leptokurtic, depending on the values of the
parameters.

5. Reliability analysis

The reliability function refers to the probability that an item will not fail before a given time t. In terms of
the exponentiated transmuted Lindley distribution with cdf F(x), this function may be expressed as

R(x) = 1− F(x)

= 1−
[(

1− θ + 1 + θx
θ + 1

e−θx
)(

1 + λ
θ + 1 + θx

θ + 1
e−θx

)]α

(9)

Different shapes of the reliability function are graphically shown in Figure 3. In addition to the reliability
function, one’s desire may be to examine the hazard rate function defined by
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Table 1. Some Summary Measures based on ETLD

α λ θ Mean Median Variance S K

0.1 0.2 0.5 0.5017 0.0049 1.9904 0.9637 4.2368
0.5 0.2 0.5 1.9281 1.1229 8.9714 0.3213 0.8403
0.9 0.2 0.5 2.8566 2.1517 14.8079 0.2156 0.5776
1.3 0.2 0.5 3.5361 2.8890 19.8520 0.1817 0.4875
1.7 0.2 0.5 4.0693 2.4577 24.3127 0.1648 0.4422
2.1 0.2 0.5 4.5068 3.9192 28.3241 0.1544 0.4147
2.5 0.2 0.5 4.8775 4.3073 31.9777 0.1473 0.3960
2.9 0.2 0.5 5.1986 4.6417 35.3389 0.1422 0.3825
0.5 -0.9 2.5 0.1376 0.3455 0.1102 0.2429 0.6417
0.5 -0.5 2.5 0.1069 0.2474 0.0859 0.3036 0.7859
0.5 -0.1 2.5 0.0850 0.1721 0.0649 0.3835 0.9720
0.5 0.1 2.5 0.0757 0.1451 0.0552 0.4070 1.0475
0.5 0.5 2.5 0.0591 0.1076 0.0371 0.4198 1.1111
0.5 0.9 2.5 0.0446 0.0841 0.0202 0.4083 1.0570
2 -0.1 0.1 27.4823 24.7747 978.2794 0.1305 0.3527
2 -0.1 0.5 4.9569 4.4027 33.2689 0.1351 0.3654
2 -0.1 0.9 2.5640 2.2480 9.1625 0.1418 0.3834
2 -0.1 1.3 1.6847 1.4618 4.0346 0.1482 0.4002
2 -0.1 1.7 1.2380 1.0656 2.2094 0.1535 0.4141
2 -0.1 2.1 0.9713 0.8307 1.3738 0.1579 0.4254
2 -0.1 2.5 0.7955 0.6770 0.9286 0.1613 0.4343
2 -0.1 2.9 0.6716 0.5694 0.6658 0.1640 0.4415

0.1 -0.9 2.5 0.1376 0.0051 0.1102 0.9178 2.6316
0.5 -0.5 2.5 0.4074 0.2474 0.3844 0.3036 0.7859
0.9 -0.1 2.5 0.5044 0.3590 0.4943 0.2447 0.6436
1.3 0.1 2.5 0.5751 0.4395 0.5788 0.2179 0.5786
1.7 0.5 2.5 0.5389 0.4154 0.4961 0.2201 0.5987
2.1 0.9 2.5 0.4469 0.3651 0.3145 0.1845 0.5055
0.1 0.2 0.5 0.5017 0.0049 0.9904 0.9637 4.2368
0.5 0.2 1 0.8487 0.4440 1.8900 0.3716 0.9554
0.9 0.2 1.5 0.7900 0.5455 1.2543 0.2611 0.6898
1.3 0.2 2 0.7086 0.5384 0.8852 0.2218 0.5900
1.7 0.2 2.5 0.6380 0.5089 0.6620 0.2011 0.5367
2.1 0.2 3 0.5797 0.4765 0.5171 0.1880 0.5029
0.5 -0.9 0.5 3.1806 2.4980 17.7535 0.1827 0.4921
0.5 -0.5 1 1.1941 0.7879 3.0667 0.2598 0.6845
0.5 -0.1 1.5 0.6118 0.3299 0.9479 0.3631 0.9160
0.5 0.1 2 0.3921 0.1925 0.4225 0.3999 1.0253
0.5 0.5 2.5 0.2379 0.1076 0.1723 0.4198 1.1112
0.5 0.9 3 0.1433 0.0670 0.0612 0.4113 1.0684
0.1 -0.9 0.5 0.9383 0.0535 4.2448 0.8979 2.1445
0.5 -0.5 1 1.1941 0.7879 3.0667 0.2598 0.6845
0.9 -0.1 1.5 0.9154 0.6720 1.5723 0.2271 0.5999
1.3 0.1 2 0.7450 0.5752 0.9587 0.2118 0.5629
1.7 0.5 2.5 0.5389 0.4154 0.41961 0.2201 0.5987
2.1 0.9 3 0.3609 0.2933 0.2068 0.1878 0.5147

h(x) =
f (x)
R(x)

, (10)

where f (x) and R(x) are defined in (4) and (9) respectively. Figure 4 is indicative of the effect of parameter
value combinations on the shape of the hazard rate function of the ETLD.
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Figure 3. Skewness of ETLD when λ = 0.2 and θ = 0.5

Figure 4. Kurtosis of ETLD when λ = 0.2 and θ = 0.5

Figure 5. Skewness of ETLD for α = 0.5 and θ = 2.5

6. Rényi entropy

The concept of entropy is being used to describe the amount of uncertainty in a random variable. A
popular measure of entropy is the Rényi entropy, which, for an ETL variable, is defined as

IR(δ) =
1

1− δ
log

∫ ∞

0
f δ(x)dx, δ > 0, δ 6= 1. (11)
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Figure 6. Kurtosis of ETL distribution α = 0.5 and θ = 2.5

Figure 7. Skewness of ETLD for α = 2 and λ = −0.1

Figure 8. Kurtosis of ETLD for α = 2 and λ = −0.1

After substituting into (11) the expression for f (x) as stated in (4), the following result is obtained:

IR(δ) =
1

1− δ
log

∫ ∞

0

 αθ2

1+θ (1 + x)e−θx
(

1− λ + 2λ θ+1+θx
θ+1 e−θx

)
×
[(

1− θ+1+θx
θ+1 e−θx

) (
1 + λ θ+1+θx

θ+1 e−θx
)]α−1

δ

. (12)



Open J. Math. Anal. 2019, 3(2), 1-18 9

Figure 9. Skewness of ETLD when θ = 2.5

Figure 10. Kurtosis of ETLD when θ = 2.5

Figure 11. Skewness of ETLD for λ = 0.2

To evaluate (12), we use the series representations:(
1− λ + 2λ

θ + 1 + θx
θ + 1

e−θx
)δ

= (1− λ)δ
∞

∑
a=0

(
δ

a

)(
2λ

1− λ

)a (
1 +

θx
θ + 1

)a
e−aθx;

(
1−

(
1 +

θx
θ + 1

)
e−θx

)(α−1)δ
=

∞

∑
b=0

(
(α− 1)δ

b

)
(−1)b

(
1 +

θx
θ + 1

)b
e−bθx;

(
1 + λ

(
1 +

θx
θ + 1

)
e−θx

)(α−1)δ
=

∞

∑
c=0

(
(α− 1)δ

c

)
λc
(

1 +
θx

θ + 1

)c
e−cθx.
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Figure 12. Kurtosis of ETLD for λ = 0.2

Figure 13. Skewness of ETLD for α = 0.5

Figure 14. Kurtosis of ETLD for α = 0.5

As a consequence, we obtain
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Figure 15. Kurtosis of ETLD for α = 0.5

IR(δ) =
1

1− δ
log

∫ ∞

0



(
αθ2

1+θ

)δ
(x + 1)δ(1− λ)δ ∑∞

a=0 ∑∞
b=0 ∑∞

c=0(
δ

a

)(
(α− 1)δ

b

)(
(α− 1)δ

c

)(
2λ

1−λ

)a
(−1)bλc

(1+θ(x+1))a+b+c

(θ+1)a+b+c e−(a+b+c+δ)θx

 dx (13)

With (1 + θ(x + 1))a+b+c = ∑a+b+c
d=0

(
a + b + c

d

)
θd(x + 1)d and

(x + 1)d+δ = ∑∞
u=0

(
d + δ

u

)
xu , (13) can be written as

IR(δ) =
1

1− δ
log



(
αθ2

1+θ

)δ
(1− λ)δ ∑∞

a=0 ∑∞
b=0 ∑∞

c=0 ∑a+b+c
d=0 ∑∞

u=0(
δ

a

)(
(α− 1)δ

b

)(
(α− 1)δ

c

)(
a + b + c

d

)(
d + δ

u

)
(

2λ
1−λ

)a (−1)bλcθd

(θ+1)a+b+c

∫ ∞
0 xue−(a+b+c+δ)θxdx


=

δ

1− δ
logα +

2δ

1− δ
logθ − δ

1− δ
log(θ + 1) +

δ

1− δ
log(1− λ)

+
1

1− δ
log


∑∞

a=0 ∑∞
b=0 ∑∞

c=0 ∑a+b+c
d=0 ∑∞

u=0(
δ

a

)(
(α− 1)δ

b

)(
(α− 1)δ

c

)(
a + b + c

d

)(
d + δ

u

)
(

2λ
1−λ

)a (−1)bλcθdu!
(θ+1)a+b+cθu+1(a+b+c+δ)u+1

 , (14)

where ∫ ∞

0
xue−(a+b+c+δ)θxdx =

u!
θu+1(a + b + c + δ)u+1 .

7. Estimation

The likelihood function of a random sample from the ETLD with parameters θ, λ and α is

L =
n

∏
i=1

f (xi; α, λ, θ)

=

(
αθ2

θ + 1

)n

×
n

∏
i=1

 (1 + xi)e−θxi
(

1− λ + 2λ θ+1+θxi
θ+1 e−θxi

)
×
[(

1− θ+1+θxi
θ+1 e−θxi

) (
1 + λ θ+1+θxi

θ+1 e−θxi
)]α−1
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Figure 16. Hazard rate function of ETLD for selected values of α, β and θ

The log-likelihood function can be written as

lnL = nlnα + 2nlnθ − nln(θ + 1) +
n

∑
i=1

ln(xi + 1)− θ
n

∑
i=1

xi

+
n

∑
i=1

ln
(

1− λ + 2λ
θ + 1 + θxi

θ + 1
e−θxi

)
+ (α− 1)

n

∑
i=1

ln
(

1− θ + 1 + θxi
θ + 1

e−θxi

)
+ (α− 1)

n

∑
i=1

ln
(

1 + λ
θ + 1 + θxi

θ + 1
e−θxi

)
.
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Maximum likelihood estimates (MLEs) of the three parameters θ, λ and α are determined by solving
simultaneously the equations ∂lnL

∂α = 0, ∂lnL
∂λ = 0 and ∂lnL

∂θ = 0. Consequently, the equations ∂lnL
∂α = 0, ∂lnL

∂λ = 0
and ∂lnL

∂θ = 0, are respectively given as

n
α
+

n

∑
i=1

ln
(

1− θ + 1 + θxi
θ + 1

e−θxi

)
+

n

∑
i=1

ln
(

1 + λ
θ + 1 + θxi

θ + 1
e−θxi

)
= 0; (15)

n

∑
i=1

2
(

θ+1+θxi
θ+1

)
e−θxi − 1

1− λ + 2λ θ+1+θxi
θ+1 e−θxi

+ (α− 1)
n

∑
i=1

(
θ+1+θxi

θ+1

)
e−θxi

1 + λ θ+1+θxi
θ+1 e−θxi

= 0; (16)

2n
θ
− n

θ + 1
−

n

∑
i=1

xi − 2λθ
n

∑
i=1

(θxi + xi + θ + 2) xie−θxi

(θ + 1)2
(

1− λ + 2λ θ+1+θxi
θ+1 e−θxi

)
+ θ(α− 1)

n

∑
i=1

(θxi + xi + θ + 2) xie−θxi

(θ + 1)2
(

1− θ+1+θxi
θ+1 e−θxi

)
− λθ(α− 1)

n

∑
i=1

(θxi + xi + θ + 2) xie−θxi

(θ + 1)2
(

1 + λ θ+1+θxi
θ+1 e−θxi

) = 0. (17)

Closed form solution of (15), (16) and (17) cannot be obtained. A numerical approach based on quasi-Newton
algorithm may then be used to solve these equations. Interval estimation of any of the parameters of the ETL
distribution is possible when the necessary standard error estimate is known. As n→ ∞, the MLE γ̂ = (α̂, λ̂, θ̂)′

of γ = (α, λ, θ)′ is asymptotically normally distributed with mean γ and variance-covariance matrix

V =

V11 V12 V13

V21 V22 V23

V31 V32 V33

 =

B11 B12 B13

B21 B22 B23

B31 B32 B33


−1

,

where

B11 = −∂2lnL
∂α2 , B12 = −∂2lnL

∂α∂λ
, B13 = −∂2lnL

∂α∂θ

B22 = −∂2lnL
∂λ2 , B23 = −∂2lnL

∂λ∂θ
and B33 = −∂2lnL

∂θ2 .

Hence, approximate 100(1 − η)% confidence intervals for α, λ and θ are α̂ ± z η
2

√
V̂11, λ̂ ± z η

2

√
V̂22 and θ̂ ±

z η
2

√
V̂33 respectively, where z η

2
is the upper η

2 th percentile of the standard normal distribution. The R package
is useful in obtaining the parameter estimates and their associated standard errors.

8. Order statistics

Consider a random sample X1, X2, · · · , Xn from the ETL distribution with pdf f (x) and cdf F(x). Let
X(1), X(2), · · · , X(n) be the corresponding order statistics. The pdf of the kth order statistic X(k) can be written
as

fX(k)
(x) =

n!
(k− 1)!(n− k)!

f (x)(F(x))k−1(1− F(x))n−k

=
αθ2n!

(θ + 1)(k− 1)!(n− k)!
(1 + x)e−θx

(
1− λ + 2λ

θ + 1 + θx
θ + 1

e−θx
)

×
((

1− θ + 1 + θx
θ + 1

e−θx
)(

1 + λ
θ + 1 + θx

θ + 1
e−θx

))α−1

×
((

1− θ + 1 + θx
θ + 1

e−θx
)(

1 + λ
θ + 1 + θx

θ + 1
e−θx

))α(k−1)

×
(

1−
((

1− θ + 1 + θx
θ + 1

e−θx
)(

1 + λ
θ + 1 + θx

θ + 1
e−θx

))α)n−k

.



Open J. Math. Anal. 2019, 3(2), 1-18 14

To simplify the expression for fX(k)
(x) in the equation above, we employ the binomial expansion

(
1−

((
1− θ + 1 + θx

θ + 1
e−θx

)(
1 + λ

θ + 1 + θx
θ + 1

e−θx
))α)n−k

=
n−k

∑
ω=0

(−1)ω

(
n− k

ω

)(
1− θ + 1 + θx

θ + 1
e−θx

)αω (
1 + λ

θ + 1 + θx
θ + 1

e−θx
)αω

.

Thus,

fX(k)
(x) =

αθ2n!
(θ + 1)(k− 1)!(n− k)!

(1 + x)e−θx
(

1− λ + 2λ
θ + 1 + θx

θ + 1
e−θx

)
×

n−k

∑
ω=0

(−1)ω

(
n− k

ω

)(
1− θ + 1 + θx

θ + 1
e−θx

)α(ω+k)−1 (
1 + λ

θ + 1 + θx
θ + 1

e−θx
)α(ω+k)−1

.

If k = 1, we have the pdf of the first order statistic (X(1)) defined by

fX(1)
(x) =

αθ2n
(θ + 1)

(1 + x)e−θx
(

1− λ + 2λ
θ + 1 + θx

θ + 1
e−θx

)
×

n−1

∑
ω=0

(−1)ω

(
n− k

ω

)(
1− θ + 1 + θx

θ + 1
e−θx

)α(ω+1)−1 (
1 + λ

θ + 1 + θx
θ + 1

e−θx
)α(ω+1)−1

.

Similarly, the pdf of the nth order statistic (X(n)) is

fX(n)
(x) =

αθ2n
(θ + 1)

(1 + x)e−θx
(

1− λ + 2λ
θ + 1 + θx

θ + 1
e−θx

)
×
(

1− θ + 1 + θx
θ + 1

e−θx
)α(ω+n)−1 (

1 + λ
θ + 1 + θx

θ + 1
e−θx

)α(ω+n)−1
.

9. Application of the ETLD

In this section, the usefulness of the ETLD is illustrated using two real data sets . The first data, originally
presented by Smithson et al. [14], pertain to a study on anxiety performed in a group of 166 “normal ”women
outside of a pathological clinical picture (Townsville, Queensland, Australia). The data have been used for a
numerical illustration by Bourguignon et al. [15]. They are as follows: 0.01, 0.17, 0.01, 0.05, 0.09, 0.41, 0.05, 0.01,
0.13, 0.01,0.05, 0.17, 0.01, 0.09, 0.01, 0.05, 0.09, 0.09, 0.05, 0.01, 0.01, 0.01,0.29, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.09, 0.37, 0.05,0.01, 0.05, 0.29, 0.09, 0.01, 0.25, 0.01, 0.09, 0.01, 0.05, 0.21, 0.01,0.01, 0.01, 0.13, 0.17, 0.37, 0.01,
0.01, 0.09, 0.57, 0.01, 0.01, 0.13,0.05, 0.01, 0.01, 0.01, 0.01, 0.09, 0.13, 0.01, 0.01, 0.09, 0.09, 0.37,0.01, 0.05, 0.01, 0.01,
0.13, 0.01, 0.57, 0.01, 0.01, 0.09, 0.01, 0.01,0.01, 0.01, 0.01, 0.01, 0.05, 0.01, 0.01, 0.01, 0.13, 0.01, 0.25, 0.01,0.01, 0.09,
0.13, 0.01, 0.01, 0.05, 0.13, 0.01, 0.09, 0.01, 0.05, 0.01,0.05, 0.01, 0.09, 0.01, 0.37, 0.25, 0.05, 0.05, 0.25, 0.05, 0.05,
0.01,0.05, 0.01, 0.01, 0.01, 0.17, 0.29, 0.57, 0.01, 0.05, 0.01, 0.09, 0.01,0.09, 0.49, 0.45, 0.01, 0.01, 0.01, 0.05, 0.01, 0.17,
0.01, 0.13, 0.01,0.21, 0.13, 0.01, 0.01, 0.17, 0.01, 0.01, 0.21, 0.13, 0.69, 0.25, 0.01,0.01, 0.09, 0.13, 0.01, 0.05, 0.01, 0.01,
0.29, 0.25, 0.49, 0.01,0.01.

The second data set comprising the salaries (in dollars) of 818 professional baseball players for the 2008
are reported by Oluyede et al. [16] and are as follows:

0.403, 1.75, 6, 0.4345, 4.956237, 5.5, 0.75, 0.475, 1.5,11.666666, 13, 0.4186, 2.5 ,0.406, 13.1, 1.775 ,2.7875,
0.4,0.8, 6.25, 0.404, 1, 1.0325, 0.42245, 9 ,4.05, 0.4,8.75, 1.75, 5.9 ,1.75 ,4, 0.4551, 3.125, 0.975, 5.5,1.5 ,5, 1.5, 1.7
,10, 15, 0.4073, 1.4, 8,6.25, 0.441, 3.65, 2, 0.800002, 33, 0.4, 1.98125, 0.424,0.5, 1.5, 0.4363, 3.5, 1, 15.285714, 1.25,
3.666666, 0.75,0.401, 5.5, 0.4142, 0.4275, 0.403, 5.4, 0.4115, 7, 0.4,7.5, 0.4, 1.95, 19, 0.4, 20.625, 0.5, 0.675, 0.452,3.05,
5, 4.766666, 5.5, 7, 0.432975, 0.4044, 8.25, 0.445,3.5, 4, 0.4275, 0.75, 0.414, 5 ,0.4324, 0.4333, 2.8,0.425, 6.25, 10, 2.3,
6.925, 0.4, 0.4309, 1.255, 0.475,0.7125, 7 ,10, 0.75, 4.65, 0.4, 0.4 ,0.4337, 0.425,0.43, 1.1, 7.05, 14, 3.25 ,0.405, 0.41, 0.75
,0.5,0.4115, 9 ,0.415, 0.439, 6 ,0.41, 11 ,3.25 ,2.95,2.535, 0.43, 1.625, 0.61, 0.95, 0.41, 0.675, 0.4104,5,2.525, 12.5, 1.055,
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1.5, 5, 4, 1.6875, 1.000018, 0.4,0.4225, 0.8, 9.375, 2.6 ,4.75, 0.4, 0.4, 6 ,3.325,0.4, 4.2, 0.75, 0.449, 1.6625, 0.42, 0.4005,
0.55,1.45, 0.4215, 2, 0.5, 0.4 ,11.5 ,4.625, 2.1,3.6, 7, 2, 14.811414, 0.4, 0.4, 3.5, 1.3,0.4225, 1.625, 0.401, 8, 0.426, 5.3,
1, 1.29,2 ,0.475, 3.75, 0.425, 4.25, 2.8, 0.404, 8,5 ,0.4075, 0.8, 0.4245, 0.415, 0.41, 2.9, 4.445,0.412, 3, 5.5, 1.2, 0.4075,
0.41, 0.40175, 0.4028,6.5, 13.25, 16.6 ,1.4, 12.75, 3.9, 2.75, 0.4139,1.95, 13, 0.415, 2.9, 0.447, 5 ,0.401, 1.5,2.5, 0.575,
0.75, 0.421, 2.45, 0.41, 8, 1.35,0.4375, 0.45, 9.875, 0.4155, 1.3, 0.41, 0.44, 0.4301,0.4325, 2.2, 0.402, 0.411, 0.75, 1 ,0.65,
0.435,0.42, 0.4, 0.401, 6.083333, 0.44, 4 ,4.75, 3.2,0.425, 16.65, 0.408, 2.25, 0.45, 13.5, 0.4, 0.4159,1.2375 ,17, 0.75,
1.3, 0.422, 0.4 ,0.41 ,0.4,0.425, 0.575, 0.403, 3.6, 0.4125, 0.4, 0.475, 3.75,3.375, 0.5, 0.407, 4.25, 0.4275, 3.3, 6.5 ,0.75,1,
3.5, 0.415, 0.457, 1.7, 0.41, 8, 6.2,3.45, 18.75, 0.404, 3.75, 2.5, 0.41, 0.4017, 3.06,15.5, 0.44, 4.5, 12, 7.666666, 1.1 ,9.6,
0.40807,1.85, 1.3, 3.75, 3.275, 0.525, 0.405, 0.455, 0.40662,2.825, 14, 1, 4, 0.4 ,5.475, 0.40175, 0.41,10, 0.44, 0.4, 11.4
,0.4375, 0.8, 0.40125, 0.43468,0.45, 1, 12.5, 2.7, 1.475, 0.5 ,0.4 ,1.615,8.333666, 10, 0.4, 0.425, 0.4661, 0.65, 1 ,1,2.885,
0.52, 14.383049, 0.405, 1.15, 0.46, 0.401, 0.555,15, 6, 1, 1.8, 2.75, 1.15, 0.404, 0.4055,3.7, 11.5, 0.435, 1, 0.43, 1.635,
0.48, 0.401,0.405, 0.41, 3.5 ,3.575, 10.5, 2, 9.6, 0.8,0.41, 0.75, 10, 0.437, 0.4, 5, 18.5, 0.5,0.8, 0.401, 6.3, 0.64, 11.6, 4.35,
0.419, 3.2,0.4, 5.6, 2.2, 5, 11.25, 0.405, 0.405, 0.40473,0.415, 12 ,2.8, 0.4, 0.44, 15, 9.5, 0.65,1.4, 0.4025, 0.403, 0.41,
0.43, 7.166666, 7.75, 12.868892,0.4, 4.5 ,4.25, 0.46, 4 ,12, 13.4, 0.41482,0.4, 2.65, 0.4375, 0.403, 0.95, 2.333333, 2.3,
0.41176,6.35, 0.45, 18.971596, 10, 0.44, 6.5, 1.4, 12,11.5, 0.4, 0.4, 5.775, 0.435, 12.083333, 0.8225, 0.41631,0.41, 6.25,
4.6, 8.5, 1.152, 2.5, 2.05, 0.41089,0.4, 0.55, 2.095, 15, 1.15, 8.5 ,0.413 ,0.401,7.166666, 1.225, 0.75, 18, 19.243682, 4.25,
0.405, 1,0.405, 0.405, 7, 1.6, 6.25, 0.475, 2, 1.85,4 ,13, 2.7, 0.401, 2.625, 1.625, 0.455, 13.054526,0.65, 1.325, 0.825,
0.465, 2.8, 0.835, 3.8, 2.5,1.5, 0.55, 1.3, 10, 2, 11.285714, 0.4, 0.6,0.445, 10.125, 2.275, 0.405, 12, 3.125, 0.405, 2.4,8
,0.4175, 0.75, 0.45, 1.6125, 2.5, 7.666666, 0.75,2.4, 0.42, 3.675, 10.4, 0.471, 0.4, 0.4 ,0.4087,0.42, 12.125, 10, 1.1, 2.6,
0.4085, 0.4, 3.75,0.435, 0.418, 0.735, 0.435, 0.401, 2.425, 2.25, 1.45,3.35, 0.4, 1.3, 2, 0.406, 0.402, 0.418, 14.25,0.8,
2.425, 0.4 ,3.665, 0.575, 0.4015, 0.425, 2.59,8, 5.375, 0.4 ,1.1, 0.4, 2.15, 0.42, 0.4139,0.41, 2, 0.5, 3.25, 2.2375, 2.2,
12.25, 0.64,0.85 ,0.4, 3.5, 3.8, 12, 0.4015, 18, 0.4118,8, 14 ,0.4, 0.475 ,6 ,2.3, 0.5, 0.4144,0.41, 8.5, 1.9, 5 ,2.25, 0.825,
0.4, 0.4052,2.4, 0.4, 0.42, 4.75, 0.925, 1.5, 9.85, 1.9,2.75, 0.4, 0.95, 0.465, 6.125, 0.4, 2.825, 0.4194,0.4, 1.5, 2.25, 1
,9.166666, 0.4015, 0.4 ,0.85,5 ,0.418, 1.4, 0.475, 18.876139, 7.05, 13.302583, 7.95,4.5, 0.42, 0.66, 5, 4.9, 0.4135, 0.825,
0.4037,2.5, 5.1875, 0.41, 1.825, 14, 2.5, 2.5, 0.4023,1.5 ,2 ,0.4, 0.405, 0.4095, 2.5, 0.4 ,6.4,0.5, 2.25, 0.4 ,3.1, 1.7, 0.75
,0.4, 11.625,7.8, 0.44, 2.4625, 7.5, 10.5, 0.4115, 12.137, 0.4,11.166666, 0.4375, 2.4, 3.364877, 7.75, 0.4145, 6.5, 12,0.4,
3.5, 0.4125, 0.467, 0.403075, 0.4135, 0.405, 1.1,0.476, 0.4161, 0.44, 0.404, 1.25, 6.25, 0.95, 0.4014,14, 3.35, 0.4 ,0.437,
16.5, 3.2, 7.4375, 1.015,0.4495, 0.4167, 0.404, 12.433333, 1.4 ,1.875, 3.7, 4.6875,0.4, 2.9375, 0.75, 0.465, 6, 0.4, 0.411,
1.6,0.55, 2.5, 5.5, 1.25, 0.432575, 7.4, 0.5, 2,1.5, 0.4203, 2.225, 3.9, 0.4033, 1.3, 3.3125, 1.9,0.4, 0.4, 0.4, 0.40075, 13,
0.4148, 0.4, 2.6,1, 5.5, 5.35, 2.35, 0.414, 0.4299, 7.5, 0.431,1.35, 4 ,0.4, 10, 21.6, 1.255, 14.427326, 0.4155,12.5, 0.4214,
0.4 ,23.854494, 3.75, 0.75, 0.4 ,8,0.414, 0.4461, 1.55, 15.217401, 13, 0.4, 1, 0.4155,9.25, 11.5, 14.5, 0.401, 2.125, 0.75,
0.403, 0.4,0.4155, 0.4038, 1.25, 0.4, 6.55, 0.4 ,0.43, 8,8.333333, 3 ,0.75, 0.4025, 0.4, 0.85, 0.65, 0.42.

On the basis of the two data sets, we compare fits from the ETLD with those of its sub-models,
namely, exponentiated (generalized)Lindley distribution (ELD), transmuted Lindley distribution (TLD) and
Lindley distribution (LD). Estimates of all the model parameters are found through the maximum likelihood
procedure. The criteria used for this comparison are the AIC and BIC. Given the sample size n, number of
parameters contained in a model k and estimate of the log-likelihood function (LL) which corresponds to the
maximum likelihood estimates, these criteria are defined as follows:

AIC = −2LL + 2k and BIC = −2LL + kln(n).

A distribution is said to provide the best fit to the data if among all the distributions under consideration,
it corresponds to minimum values of AIC and BIC. Maximum likelihood estimates, standard error estimates
and values of the criteria are given in Table 2 for the selected distributions and first data.

Results in Table 2 indicate that ETLD corresponds to the smallest AIC and BIC values, making it the best
among all the distributions which have been fitted to the data.

For the second data, the maximum likelihood estimates of the model parameters, their respective standard
errors and AIC and BIC values are reported in Table 3.

Table 3 clearly shows that the ETLD has the minimum values of AIC and BIC among the fitted
distributions. Thus, the ETL distribution is the best model for modelling the data among the distributions
considered in Table 3.
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Table 2. Parameter Estimates and Corresponding Values of Model Selection Criteria for the Distributions Fitted
to Data 1

Distribution Estimate Standard Error LL AIC BIC

ETL(α, λ, θ) α̂=0.7079 0.0726 245.7743 -485.5485 -476.2126
λ̂=0.4868 0.1888
θ̂=7.5782 1.1301

EL(α, θ) α̂=0.6389 0.0615 242.8272 -481.6544 -475.4304
θ̂=8.8049 0.9470

TL(λ, θ) λ̂=0.5554 0.1249 239.783 -475.5659 -469.3419
θ̂=9.4377 0.9613

L(θ) θ̂=11.8196 0.8555 230.9877 -459.9754 -456.8634

Figure 17. Graphs of the estimated pdfs and cdfs based on the first data

Table 3. Parameter Estimates and Corresponding Values of Model Selection Criteria for the Distributions Fitted
to Data 2

Distribution Estimate Standard Error -LL AIC BIC

ETL(α, λ, θ) α̂=0.5820 0.0281 1806.964 3619.928 3634.0419
λ̂=0.3918 0.0792
θ̂=0.3264 0.0170

EL(α, θ) α̂=0.5396 0.0246 1818.004 3640.008 3649.422
θ̂=0.3546 0.0151

TL(λ, θ) λ̂=0.5022 0.0482 1874.227 3752.453 3761.867
θ̂=0.4432 0.0138

L(θ) θ̂2=0.5099 0.0130 1919.938 3841.876 3846.583

10. Conclusion

In as much as the quality of the empirical results obtained by applying many parametric methods
of analysis greatly depends on how well the chosen distribution fits the data under consideration, efforts
will always be made to generalize distributions. We have introduced and studied the properties of a new
distribution called the exponentiated transmuted Lindley distribution. Specifically, we have derived the
quantile function, the expression for the raw moments, moment generating function and the pdf of the kth
order statistic based on the distribution. Through a numerical illustration, the distribution is found to be
capable of being positively skewed and platykurtic or positively skewed and leptokurtic. Under several
conditions, the relationships between each of the mean, median, variance, skewness and kurtosis of the
distribution and the parameters are studied. In particular, when only two parameters are constant, it is
interesting to know that none of skewness and kurtosis is a linear function of the other parameter. With
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Figure 18. Graphs of the estimated pdfs and cdfs based on the second data

two data sets, the applicability as well as the ability of this distribution to outperform its sub-models in many
data analysis situations is illustrated . Therefore, the model is recommended for modelling right-skewed data.
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