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1. Introduction

F unctional differential equations are not only an extension of ordinary delay differential equations but also
provide good models in many fields including Biology, Mechanics, Economics and bio-mathematics.

For example, in population dynamics [1], since a growing population consumes more (or less) food than a
matured one, depending on individual species, this leads to delay functional equations. Positive periodic
solutions of differential equations have been studied extensively in recent times. We refer to the references
[1–22] in this article and references therein for a wealth of information on this subject.

In this paper, we study the existence of positive periodic solutions of a system of neutral differential
equations. The study on the functional differential equations is more intricate than ordinary delay differential
equations. That is why comparing plenty of results on the existence of positive periodic solutions for various
types of first-order or second-order ordinary delay differential equations or studies on positive periodic
solutions for delay differential equations are relatively less, and most of them are confined to first-order delay
differential equations, see [1] which are studied by using some techniques of the Mawhin coincidence degree
theory.

In this paper, we consider the following class of nonlinear neutral differential system with several delays

dx (t)
dt

= βx′ (t− τ (t)) + f (x (t− τ (t))) + g (u (t− τ (t))) + p (t) , (1)

du (t)
dt

= −a (t) u (t) +
d
dt

F (t, u (t− σ (t))) + c (t) G (t, x (t− τ (t)) , u (t− σ (t))) , (2)

where β > 0 is a parameter, G ∈ C
(
R3,R

)
, F ∈ C

(
R2,R

)
, f ∈ C (R,R) and a, c, p ∈ C (R,R+). All of the above

functions are continuous, T–periodic with T > 0 is a constant. Here, we obtain various sufficient conditions for
the existence of positive periodic solutions for the problem (1)–(2) by employing two available operators and
by applying the coincidence degree theorem and the fixed point theorem. Special cases of (1)–(2) have been
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considered and investigated by many other authors. For example, very recently, in [2], Huo and Li discussed
the existence of a positive periodic solutions of the delay differential system

dx (t)
dt

= ±x (t) G (t, x (t− τ1 (t)) , ..., x (t− τn (t)) , u (t− δ (t))) ,

du (t)
dt

= −a (t) u (t) + b (t) x (t− σ (t)) ,

where all of the above functions are T–periodic functions with T > 0 is a constant and G satisfies some specific
conditions. The main tool employed in their study is based on some techniques of the Mawhin coincidence
degree. For details on the Mawhin technique, we refer the reader to Gaines and Mawhin [16].

2. Periodic solutions

Let us give some known notions and notations used in the theory of coincidence degree theorem which
are taken from [16–18] and which we will apply in the present part. We seek conditions under which there
exists a T–periodic function x which can be solution of (1) for all function u ∈ X. Otherwise speaking, our
result here of existence of T–periodic solutions of equation (1) doesn’t depend on the choice of u ∈ X. For
that end some preparations and notations are needed. For that purpose, let T > 0 and let X be the set of all
continuously differentiable scalar functions x, periodic in t of period T. Take

Z : = {x ∈ C (R,R) : x (t + T) = x (t)} .

X : =
{

x ∈ C1 (R,R) : x (t + T) = x (t)
}

,

and denote

‖x‖ = sup
t∈R
|x (t)| .

|x|0 = max {‖x‖ , ‖ẋ‖} .

Then, Z and X are Banach spaces when they are endowed with the norms ‖·‖, |·|0 respectively.
The method we use, for proving existence, in this paper involves the applications of the continuous

theorem of coincidence degree (see Gaines and Mawhin [16]). This theorem needs some introduction. So,
let X and Z be two Banach spaces. Consider the operator equation

Lx = λN (x, λ) , λ ∈ (0, 1) ,

where L : X ∩ DomL → Z is a linear operator and λ is a parameter. Let P and Q denote two projectors such
that

P : X ∩ DomL→ ker L and Q : Z → Z/ImL.

Recall that a linear mapping L : X ∩ DomL → Z with ker L = L−1 (0) and ImL = L (DomL), will be called a
Fredholm mapping if the following two conditions hold;

(i) ker L has a finite dimension;
(ii) ImL is closed and has a finite codimension.
Recall also that the codimension of ImL is the dimension of Z/ImL, i.e., the dimension of the cokernel

co ker L of L. When L is a Fredholm mapping, its index is the integer Ind (L) = dim ker L− co dim ImL. We
shall say that a mapping N is L–compact on Ω if the mapping QN : Ω̄→ Z is continuous, QN (Ω̄) is bounded,
and KP (I −Q) N : Ω̄ → X is compact, i.e., it is KP is continuous and KP (I −Q) N (Ω̄) is relatively compact,
where KP : ImL→ DomL ∩ ker P is the inverse of the restriction LP of L to DomL ∩ ker P, so that LKP = I and
KPL = I − P.

Now, we state the continuous theorem of coincidence degree (Gaines and Mawhin [16]) which enables us
to prove the existence of periodic solutions to (1). For its proof we refer the reader to [16].
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Lemma 1. Let X and Z be two Banach spaces and L a Fredholm mapping of index zero. Assume that N : Ω̄× [0, 1]→ Z
is L–compact on Ω̄× [0, 1] with Ω open bounded in X. Furthermore, we assume that

(a) for each λ ∈ (0, 1), x ∈ ∂Ω ∩ DomL,
Lx 6= λN (x, λ) ,

(b) for each x ∈ ∂Ω ∩ ker L,
QNx 6= 0,

and
deg {QNx, Ω ∩ ker L, 0} 6= 0.

Then the equation Lx = N (x, 1) has at least one solution in Ω̄.

As a first case, we consider the following nonlinear neutral equation with delay

d
dt

x (t) = βx′ (t− τ (t)) + f (x (t− τ (t))) + g (u (t− σ (t))) + p (t) , x ∈ X, t ∈ R, (3)

where
p (t + T) = p (t) , (4)

and
τ (t + T) = τ (t) , σ (t + T) = σ (t) . (5)

All of the above functions are continuous, T–periodic functions and T > 0 is a constant. Here β > 0 is a
parameter. Before we state the main results we make the following basic assumptions on the delay function
τ (t) of (3).

(H0) The inverse of t− τ (t) exists and we denote it by r (t) such that

τ′ (t) 6= 1 for t ∈ [0, T] .

Lemma 2. Assume the condition (H0) holds. Suppose that in (1) the following conditions hold

(H1) there exists constants K such that |g (x)| ≤ K for all x ∈ R
(H2) x f (x) > 0 and there exists a constant M > 0 such that when ‖x‖ ≥ M, then we have

| f (x)| > K + ‖p‖+ Rβ ‖x‖ ,

with,

R = sup
t∈[0,T]

∣∣∣∣ 1
1− τ′ (t)

∣∣∣∣ and R0 = sup
t∈[−τ(0),T−τ(T)]

1

[1− τ′ (r (t))]2
.

(H3) There exists a positive constant H > 0 such that

lim
x→−∞

f (x)
x
≤ H,

Then, the equation (1) has at least one T–periodic solution if 1 > 2βR0 + 2H (T + 1).

Proof. In order to apply Lemma 1. Set

Lx (t) =
dx (t)

dt
= ẋ (t) , x ∈ X, t ∈ R,

N (x, λ) = λβx′ (t− τ (t)) + f (x (t− τ (t))) + λg (u (t− σ (t))) + λp (t) ,

for all x ∈ X and t ∈ R,



Open J. Math. Anal. 2019, 3(2), 19-31 22

and

Px =
1
T

∫ T

0
x (t) dt, x ∈ X and Qz =

1
T

∫ T

0
z (t) dt, z ∈ Z.

Obviously, ker L = {x | x ∈ X, x = ξ, ξ ∈ R}, ImL =
{

y | y ∈ Z,
∫ T

0 y (t) dt = 0
}

are closed in X and
dim ker L = co dim ImL. Hence, L is a Fredholm mapping of index zero. Furthermore, the generalized inverse
(to L) KP : ImL→ ker P ∩ DomL has the form

KP (x) =
∫ t

0
x (s) ds− 1

T

∫ T

0

∫ t

0
x (s) dsdt.

One has

(QN) (x, λ) = − 1
T

∫ T

0

[
λβx′ (t− τ (t)) + f (x (t− τ (t))) + λg (u (t− σ (t))) + λp (t)

]
dt,

and

KP (I −Q) N (x, λ) = − 1
T

∫ T

0

[
λβx′ (t− τ (t)) + f (x (t− τ (t))) + λg (u (t− σ (t))) + λp (t)

]
dt.

+
1
T

∫ T

0

∫ t

0

[
λβx′ (s− τ (s)) + f (x (s− τ (s))) + λg (u (s− σ (s))) + λp (s)

]
dsdt

+

(
t
T
− 1

2

) ∫ T

0

[
λβx′ (t− τ (t)) + f (x (t− τ (t))) + λg (u (t− σ (t))) + λp (t)

]
dt.

Clearly, QN and KP (I −Q) N are continuous and, moreover, QN (Ω̄× [0, 1]),
KP (I −Q) N (Ω̄× [0, 1]) are relatively compact for any open bounded set Ω ⊂ X. Hence, N is L–compact

on Ω̄. Here Ω is any open bounded set in X. Now we reach the position to search for an appropriate open
bounded subset X for the application of Lemma 1. The corresponding differential equation for the operator
Lx = λN (x (t) , λ), λ ∈ (0, 1), takes the form

ẋ (t) = λ2βx′ (t− τ (t)) + λ f (x (t− τ (t))) + λ2g (u (t− σ (t))) + λ2 p (t) (6)

Let x ∈ X be a solution of (6) for a certain λ ∈ (0, 1). By integrating (6) over the interval [0, T], we obtain

∫ T

0

[
λβx′ (t− τ (t)) + f (x (t− τ (t))) + λg (u (t− σ (t))) + λp (t)

]
dt = 0, (7)

Thus, there is a point ξ ∈ [0, T], such that

λβx′ (ξ − τ (ξ)) + λ f (x (ξ − τ (ξ))) + λ2g (u (ξ − σ (ξ))) + λp (ξ) = 0. (8)

Moreover, in view of (H1) and (8)

| f (x (ξ − τ (ξ)))| ≤ β
∣∣x′ (ξ − τ (ξ))

∣∣+ λ2 |g (u (ξ − σ (ξ)))|+ λ |p (ξ)|

≤ β

[
sup

ξ∈[0,T]

1
|1− τ′ (ξ)|

] ∣∣(1− τ′ (ξ))x′ (ξ − τ (ξ))
∣∣

+ λ2 |g (u (ξ − σ (ξ)))|+ λ |p (ξ)|
≤ βR |ẋ (ξ − τ (ξ))|+ |g (u (ξ − σ (ξ)))|+ |p (ξ)|
≤ βR ‖ẋ‖+ K + ‖p‖ , (9)

We shall prove that there is a point t∗ ∈ [0, T] such that

|x (t∗)| ≤ ‖ẋ‖ .



Open J. Math. Anal. 2019, 3(2), 19-31 23

Otherwise, if |x (ξ − τ (ξ))| ≥ M and any u ∈ X. Conditions (H1), (H2) and (9) ensure that

βR |x (ξ − τ (ξ))|+ K + ‖p‖ < | f (x (ξ − τ (ξ)))| ≤ βR ‖ẋ‖+ K + ‖p‖ .

So that,
|x (ξ − τ (ξ))| ≤ ‖ẋ‖ .

Denote ξ − τ (ξ) = t∗ + kT, t∗ ∈ [0, T] with k being an integer. Then,

|x (ξ − τ (ξ))| = |x (t∗ + kT)| = |x (t∗)| ≤ ‖ẋ‖ , (10)

so, from (10) we have

‖x‖ ≤ |x (t∗)|+
∫ T

0
|ẋ (t)| dt < ‖ẋ‖+

∫ T

0
|ẋ (t)| dt < ‖ẋ‖ (T + 1) . (11)

For such a small ε > 0, in view of assumption (H3), we find that there must be a constant D > M, which is
independent of x, u and λ, such that

f (x)
x
≤ (H + ε) , for all x ∈ X and u ∈ X.

Now let

E1 = {t : t ∈ [0, T] , x (t− τ (t)) > D} ,

E2 = {t : t ∈ [0, T] , x (t− τ (t)) < −D} ,

E3 = {t : t ∈ [0, T] , |x (t− τ (t))| ≤ D} ,

and
fD = sup { f (x) : ‖x‖ ≤ D} .

From (7) and using condition (H1), we have

∫ T

0
f (x (t− τ (t))) dt =

(∫
E1

+
∫

E2

+
∫

E3

)
f (x (t− τ (t))) dt

≤ β
∫ T

0

∣∣x′ (t− τ (t))
∣∣ dt +

∫ T

0
|g (u (t− σ (t)))| dt +

∫ T

0
|p (t)| dt

≤ β
∫ T

0

∣∣∣∣ 1
1− τ′ (t)

∣∣∣∣ |ẋ (t− τ (t))| dt + KT + T ‖p‖

≤ β
∫ T−τ(T)

−τ(0)

∣∣∣∣ 1
1− τ′ (r (s))

∣∣∣∣ |ẋ (s)| ds + KT + T ‖p‖

≤ β

(
sup

t∈[−τ(0),T−τ(T)]

1

[1− τ′ (r (t))]2

) ∫ T

0
|ẋ (t)| dt + KT + T ‖p‖

≤ βR0

∫ T

0
|ẋ (t)| dt + T (K + ‖p‖) ,

which implies that ∫ T

0
f (x (t− τ (t))) dt ≤ βR0

∫ T

0
|ẋ (t)| dt + T (K + ‖p‖) . (12)

One can deduce from (12)∫
E1

| f (x (t− τ (t)))| dt ≤
(∫

E2

+
∫

E3

)
f (x (t− τ (t))) dt + βR0

∫ T

0
|ẋ (t)| dt + T (K + ‖p‖)

≤ T (H + ε) ‖x‖+ T fD + βR0

∫ T

0
|ẋ (t)| dt + T (K + ‖p‖) (13)
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Thus from (6), (11), (12) and (13), we have∫ T

0
|ẋ (t)| dt ≤ β

∫ T

0

∣∣x′ (t− τ (t))
∣∣ dt +

∫ T

0
| f (x (t− τ (t)))| dt +

∫ T

0
|g (u (t− τ (t)))| dt +

∫ T

0
|p (t)| dt

≤ βR0

∫ T

0
|ẋ (t)| dt +

∫
E1

| f (x (t− τ (t)))| dt +
(∫

E2

+
∫

E3

)
| f (x (t− τ (t)))| dt + T (K + ‖p‖)

≤ βR0

∫ T

0
|ẋ (t)| dt +

∫
E1

| f (x (t− τ (t)))| dt + T (H + ε) ‖x‖+ T fD + T (K + ‖p‖)

≤ 2βR0

∫ T

0
|ẋ (t)| dt + 2 [T (H + ε) ‖x‖+ T fD + T (K + ‖p‖)] ,

we deduce that
‖ẋ‖ T (1− 2βR0 − 2 (H + ε) (T + 1)) ≤ T [2 fD + K + ‖p‖]

that is

‖ẋ‖ ≤ [2 fD + K + ‖p‖]
(1− 2 [βR0 + (H + ε) (T + 1)])

:= J1. (14)

Substituting (14) in (11), we obtain

‖x‖ ≤ (T + 1) [2 fD + K + ‖p‖]
(1− 2 [βR0 + (H + ε) (T + 1)])

:= J2. (15)

Take

J = max {J1, J2}
Ω1 = {x ∈ X| |x|0 ≤ J} .

Notice first that Ω1 is a closed convex bounded subset of a Banach space. So Ω1 satisfies the condition (a) of
the Lemma 1. When x ∈ ∂Ω1 ∩ ker L = ∂Ω1 ∩R, x is a constant in R with |x|0 = J. Then,

(QN) (x, 0) = − 1
T

∫ T

0
f (x (t− τ (t))) dt

= − 1
T

∫ T

0
f (±J) dt 6= 0.

Finally, consider the mapping

Ψ (x, λ) = θx +
1− θ

T

∫ T

0
f (x) dt, θ ∈ [0, T] .

Since for every θ ∈ [0, 1] and x in the intersection of ker L and ∂Ω1, we have

xΨ (x, θ) = θx2 +
(1− θ)

T

∫ T

0
x f (x) dt > 0.

It follows from the property of invariance under a homotopy that

deg {QN (x, 0) , Ω1 ∩ ker L, 0} = deg {− f (x) , Ω1 ∩ ker L, 0}
= deg {−x, Ω1 ∩ ker L, 0}
= deg {−x, Ω1 ∩R, 0} 6= 0.

We know that Ω1 verifies all the requirements of Lemma 1. Then (1) has at least one T–periodic solution
x ∈ Ω1. The proof is complete.

Lemma 3. Suppose the conditions (H1) (H2) of Lemma 2 and (H0) hold. Suppose further that

(H4) there exists a positive constant Q > 0 such that
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lim
x→+∞

f (x)
x
≤ Q.

Then, the equation (1) has at least one T–periodic solution if 1 > 2βR0 + 2H (T + 1).

Proof. By straightforward modification of the proof of Lemma 2 we may apply the argument in the proof of
Lemma 2 to obtain Lemma 3.

It is obvious that the existence problem of T–periodic solution of (1)-(2) is equivalent to that of T–periodic
solutions of the equation (2).

In fact equation (1) has a T–periodic solution for all T-periodic function u ∈ X. So in this connection we
offer existence criteria for the periodic solutions of the (2).

Next recall that the problem of existence T–periodic solution with feedback control system (1)–(2), then
from the results of the previous sections we derive what follows

d
dt

u (t) = −a (t) u (t) +
d
dt

F (t, u (t− σ (t))) + c (t) G (t, x (t− τ (t)) , u (t− σ (t)))

In this part we use a different method which relies on the hybrid theorem of Krasnoselskii to establish the
existence of periodic solutions of (2). To get round this, we will introduce some notations to simplify notations.
We ask that a (t) satisfies the average condition

∫ T

0
a (v) dv > 0, (16)

Define the function Φ by

Φ (t, s) :=
e−
∫ t

s a(v)dv

1− e−
∫ T

0 a(v)dv
, t ∈ [0, T] , s ∈ [0, t] . (17)

In addition to (16)–(17), suppose

m :=
µ

1− µ
≤ Φ (t, s) ≤ 1

1− µ
:= M, (18)

where

µ = exp
(
−
∫ T

0
a (v) dv

)
.

Assume also that the functions a (t) , c (t) , σ (t) , F (t, u) and G (t, x, u) are continuous and periodic in t with
period T, that is,

a (t + T) = a (t) , c (t + T) = c (t) , σ (t + T) = σ (t) , (19)

and
F (t, u) = F (t + T, u) , G (t, x, u) = G (t + T, x, u) . (20)

Recall that the Equation (2) can be rewritten as

d
dt

[u (t)− F (t, u (t− σ (t)))] = −a (t) [u (t)− F (t, u (t− σ (t)))]− a (t) F (t, u (t− σ (t)))

+ c (t) G (t, x (t− τ (t)) , u (t− σ (t))) . (21)

Let u ∈ X be a solution of (2), multiply both sides of (21) with e
∫ t

0 a(s)ds and then integrate from t− T to t to
obtain∫ t

t−T

{
[u (s)− F (s, u (s− σ (s)))] e

∫ s
0 a(v)dv

}′
ds = −

∫ t

t−T
e
∫ s

0 a(v)dv [a (s) F (s, u (s− σ (s)))] ds

+
∫ t

t−T
e
∫ s

0 a(v)dvc (s) G (s, x (s− τ (s)) , u (s− σ (s))) ds.
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Which implies that

[u (t)− F (t, u (t− σ (t)))]
[
e
∫ t

0 a(s)ds − e
∫ t−T

0 a(s)ds
]

=
∫ t

t−T
e
∫ s

0 a(v)dv [c (s) G (s, x (s− τ (s)) , u (s− σ (s)))− a (s) F (s, u (s− σ (s)))] ds.

Dividing both sides of the above equation by e
∫ t

0 a(s)ds and due to the fact that u (t) = u (t− T) and by
conditions (19) and (20) we conclude that that the solution of (2) is given by

u (t) = F (t, u (t− σ (t))) +
∫ t

t−T
Φ (t, s) [c (s) G (s, x (s− τ (s)) , u (s− σ (s)))− a (s) F (s, u (s− σ (s)))] ds.

(22)

Now, define a mapping A by

(Aϕ) (t) = F (t, ϕ (t− σ (t))) +
∫ t

t−T
Φ (t, s) [c (s) G (s, x (s− τ (s)) , ϕ (s− σ (s)))− a (s) F (s, ϕ (s− σ (s)))] ds.

(23)

Due to the periodicity conditions (19) and (20), one can easily check that (Aϕ) (t) is periodic of T. Lastly in
this section, we state the Krasnoselskii Fixed point theorem which enables us to prove the existence of positive
periodic solutions to (2). For the proof of the Krasnoselskii fixed point theorem we refer the reader to [22].

Theorem 4. Let Ω be a closed bounded convex nonempty subset of a Banach space (X, ‖·‖). Suppose that A1 and A2

map Ω into itself satisfying

(i) x, y ∈ Ω, implies A1x + A2y ∈ Ω
(ii) A1 is completely continuous,

(iii) A2 is a contraction mapping.

Then there exists z ∈ Ω with z = A1z + A2z.

To apply Theorem 4, we need to define a Banach space X, a closed convex subset Ω2 of X and construct
two mappings, one is a contraction and the other is compact. So, we let (X, ‖·‖) and Ω2 = {ϕ ∈ X : l ≤ ϕ ≤ L},
where l is non-negative constant and L is positive constant. We express equation (23) as

(Aϕ) (t) := (A1 ϕ) (t) + (A2 ϕ) (t) (24)

where A1, A2 : Ω2 → X are defined as follows

(A1 ϕ) (t) :=
∫ t

t−T
Φ (t, s) [c (s) G (s, x (s− τ (s)) , ϕ (s− σ (s)))− a (s) F (s, ϕ (s− σ (s)))] ds, (25)

and
(A2 ϕ) (t) := F (t, ϕ (t− σ (t))) . (26)

Comparing (24) to (22), it is easy to see that the existence of periodic solutions for (2) is equivalent to the
existence of solutions u ∈ Ω2 for the operator equation

u = A1u + A2u.

In this section we obtain the existence of a periodic solution of (2) by considering the two cases; F (t, u) ≥ 0
and F (t, u) ≤ 0 for all t ∈ R, u ∈ Ω2. We assume that function F (t, u) is locally Lipschitz continuous in u.
That is, there exists a positive constant α such that

|F (t, u)− F (t, y)| ≤ α ‖u− y‖ for all t ∈ [0, T] , u, y ∈ Ω2. (27)
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In the case F (t, u) ≥ 0, we assume that there exist a non-negative constant k1 and positive constant k2 such
that

k1u ≤ F (t, u) ≤ k2u for all t ∈ [0, T] , u ∈ Ω2, (28)

k2 < 1, (29)

and for all u ∈ Ω2, ‖x‖ ≤ J

l (1− k1)

Tm
≤ c (t) G (t, x, u)− a (t) F (t, u) ≤ L (1− k2)

MT
for all t ∈ [0, T] . (30)

Lemma 5. Suppose that the conditions (19), (20) and (28)–(30) hold. Then A1 : Ω2 → X is completely continuous.

Proof. Let ϕ ∈ Ω2. Obviously, A1 ϕ is continuous and it is easy to show that (A1 ϕ) (t + T) = (A1 ϕ) (t). For
t ∈ [0, T] and for ϕ ∈ Ω2, we have

|(A1 ϕ) (t)| =
∣∣∣∣∫ t

t−T
Φ (t, s) [c (s) G (s, x (s− τ (s)) , ϕ (s− σ (s)))− a (s) F (s, ϕ (s− σ (s)))] ds

∣∣∣∣
≤ TM

L (1− k2)

TM
= L (1− k2) .

Thus from the estimation of |(A1 ϕ) (t)| we have

|(A1 ϕ) (t)| ≤ L (1− k2) .

This shows that A1 (Ω2) is uniformly bounded. To show that A1 (Ω2) is equicontinuous, let {ϕn} ∈ Ω2 where

n is a positive integer. Next we calculate
d
dt

(A1 ϕn) and show that it is uniformly bounded. By making use of
(19) and (20) we obtain by taking the derivative in (25) that

d
dt

(A1 ϕn) (t) = −a (t) (A1 ϕn) (t)

+ [Φ (t, t)−Φ (t, t− T)] [c (t) G (t, x (t− τ (t)) , ϕn (t− σ (t)))− a (t) F (t, ϕn (t− σ (t)))] .

Consequently, by invoking (30), we obtain∣∣∣∣ d
dt

(A1 ϕn) (t)
∣∣∣∣ ≤ ‖a‖ L (1− k2) +

∣∣∣∣ 1
1− µ

− µ

1− µ

∣∣∣∣ L (1− k2)

MT

≤ ‖a‖ L (1− k2) +
L (1− k2)

MT
≤ ξ,

for some positive constant ξ. Hence the sequence (A1 ϕn) is equicontinuous. The Ascoli-Arzela theorem
implies that a subsequence

(
A1 ϕnk

)
of (A1 ϕn) converges uniformly to a continuous T–periodic function. Thus

A1 is continuous and A1 (Ω2) is contained in a compact subset of X.

Lemma 6. Suppose that (27) holds. If A2 is given by (26) with

α < 1. (31)

Then A2 : Ω2 → X is a contraction.

Proof. Let A2 be defined by (26). Obviously, A2 ϕ is continuous and it is easy to show that (A2 ϕ) (t + T) =

(A2 ϕ) (t). So, for any φ, ϕ ∈ Ω2 we have

|(A2 ϕ) (t)− (A2φ) (t)| ≤ |F (t, φ (t− σ (t)))− F (t, ϕ (t− σ (t)))|
≤ α ‖φ− ϕ‖ .

This yields ‖A2 ϕ− A2φ‖ ≤ α ‖φ− ϕ‖. Thus A2 : Ω2 → X is a contraction by (31).
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Lemma 7. Under the hypotheses of Lemmas 5 and 6. Then, equation (2) has at least one positive T–periodic solution u
in the subset Ω2 of X.

Proof. By Lemma 5, the operator A1 : Ω2 → X is compact and continuous. Also, from Lemma 6, the operator
A2 : Ω2 → X is a contraction. Moreover, let φ, ϕ ∈ Ω2 then

(A1 ϕ) (t) + (A2φ) (t) =
∫ t

t−T
Φ (t, s) [c (s) G (s, x (s− τ (s)) , ϕ (s− σ (s)))− a (s) F (s, ϕ (s− σ (s)))] ds

+ F (t, φ (t− σ (t)))

≤ L (1− k2) + k2 ‖φ‖ ≤ L (1− k2) + k2L = L

On the other hand,

(A1 ϕ) (t) + (A2φ) (t) =
∫ t

t−T
Φ (t, s) [c (s) G (s, x (s− τ (s)) , ϕ (s− σ (s)))− a (s) F (s, ϕ (s− σ (s)))] ds

+ F (t, φ (t− σ (t)))

≥ l (1− k1) + k1l = l.

Clearly, all the hypotheses of the Krasnoselskii theorem are satisfied. Thus there exists a fixed point u ∈ Ω2

such that u = A1u + A2u. By (21), (22) and (23) we claim that this fixed point is a solution of (2) for all
continuous T–periodic functions ‖x‖ ≤ J.

In the case F (t, u) ≤ 0, we substitute conditions (28)-(30) with the following conditions respectively. We
assume that there exist a negative constant k3 and a non-positive constant k4 such that

k3u ≤ F (t, u) ≤ k4u for all t ∈ [0, T] , u ∈ Ω (32)

− k3 < 1 (33)

and for all u ∈ Ω2 and ‖x‖ ≤ J

l − k3L
Tm

≤ c (t) G (t, x, u)− a (t) F (t, u) ≤ L− k4l
MT

for all t ∈ [0, T] , (34)

Note that the proof of Lemmas 7 and 8 differ only by conditions (16)–(20) and (32)–(33). So the treatment is the
same as in the first case. So, we have the following lemma which can be proved by a similar argumentation.

Lemma 8. Assume that (16)–(20) and (32)–(33) hold. Then equation (2) has a positive T–periodic solution u ∈ Ω2.

Theorem 9. Assume that either all hypotheses of Lemmas 2 and 7 or, 2 and 8 or, 3 and 7 or, 3 and 8 hold true. Then,
system (1)–(2) has at least one T–periodic solution (x (t) , u (t)) ∈ Ω1 ×Ω2.

Example 1. Suppose that
1

(6 + 4 (π + 1))
> β > 0 and let K be a positive constant. Consider the following the

neutral differential system equation

dx (t)
dt

= βx′ (t− τ (t)) + f (x (t− τ (t))) + Ke−u2(t−σ(t)) + p (t) (35)

du (t)
dt

= −a (t) u (t) +
d
dt

F (t, u (t− σ (t))) + c (t) G (t, x (t− τ (t)) , u (t− σ (t))) , (36)

where
τ (t) = σ (t) = 0.4 cos2 (t) ,
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and the functions a, p, c, f , F and G are defined as follows a (t) = 1
2 sin2 (t), p (t) = 1+cos(2t)

4 , c (t) = 1
2 sin2 (t)+

1
5 , F (t, u (t− σ (t))) = 0.4 sin (u (t− σ (t))) ,

G (t, x (t− τ (t)) , u (t− σ (t))) =
1
5

cos (u (t− σ (t)) x (t− τ (t))) + 2
u2 (t− σ (t)) + 1

+ sin u (t− σ (t)) ,

and

f (x) =



1
3 + 2 (π + 1)

x + K +
1
2
+ arctan x, x > 1,

1
3 + 2 (π + 1)

+ K +
1
2
+

π

4
, |x| ≤ 1,

1
3 + 2 (π + 1)

x− K− 1
2
+ arctan x, x < −1.

Then system (35)-(36) has a π-periodic solution.

To show this, we first remark that H =
1

3 + 2 (π + 1)
. A simple calculation yields

R0 = sup
t∈[−τ(0),T−τ(T)]

1

[1− τ′ (r (t))]2
≤ 1

[1− 0.4]2
= 2.7778 < 2

√
2 (37)

R = sup
t∈[0,π]

∣∣∣∣ 1
1− τ′ (t)

∣∣∣∣ ≤ 1
1− 0.4

= 1.6667 ≤ 2. (38)

In fact β <
1

6 + 4 (π + 1)
and from (37) we obtain

β4
√

2 +
2 (π + 1)

3 + 2 (π + 1)
<

4
√

2
6 + 4 (π + 1)

+
2 (π + 1)

3 + 2 (π + 1)
=

2
√

2 + 2 (π + 1)
3 + 2 (π + 1)

< 1.

Thus
1 > 2βR0 + 2H (π + 1) .

Moreover, for all ‖x‖ ≥ 1 we have

| f (x)| ≥ 1
3 + 2 (π + 1)

x + K +
1
2
> K + ‖p‖+ 2β ‖x‖ ≥ K + ‖p‖+ Rβ ‖x‖ .

Consequently, for a any positive number K, we can choose J > 0 so that

J :=
(π + 1)

[
3K +

2
3 + 2 (π + 1)

+
π + 1

2
+ 1
]

1−
(

β4
√

2 +
2 (π + 1)

3 + 2 (π + 1)

) .

On the other hand since the function sin (u) is a strictly increasing on [0, π/2] ⊃ [0.1, 1.5] we have

|F (t, u)− F (t, y)| ≤ α ‖u− y‖ for all t ∈ [0, π] , u, y ∈ Ω with α = 0.4

and 0.1u ≤ F (t, u) ≤ 0.4u with 0.4 = k2 ,k1 = 0.1. Also

2.1 ≥ m =
µ

1− µ
≥ 2 and 3.1 ≥ M =

1
1− µ

≥ 3

where µ is given by µ = exp
(
−
∫ π

0 a (t) dt
)
= exp

(
−
∫ π

0
1
2 sin2 (t) dt

)
.

Let Ω2 = [0.1, 1.5]. We have

k1u ≤ F (t, u) ≤ k2u for all t ∈ [0, π] , u ∈ Ω2, k2 < 1,
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and for all u ∈ Ω2, ‖x‖ ≤ J,

c (t) G (t, x, u)− a (t) F (t, u) = 0.4
(

1
2

sin2 (t) +
1
5

)(
1
5

cos (u (t− σ (t)) x (t− σ (t))) + 2
u2 (t− σ (t)) + 1

)
+ 0.4

1
5

sin u (t− σ (t)) .

Thus, we deduce that
0.039987 ≤ c (t) G (t, x, u)− a (t) F (t, u) ≤ 0.062.

Furthermore,

l (1− k1)

mπ
≤ 0.1 (1− 0.1)

2π
= 0.01432 4

0.092413 =
1.5 (1− 0.4)

3.1π
≤ L (1− k2)

Mπ
.

These calculations, prove that

l (1− k1)

mπ
≤ c (t) G (t, x, u)− a (t) F (t, u) ≤ L (1− k2)

Mπ
.

Thus, under these hypotheses on the system (35)-(36), all the conditions of Theorem 9 are satisfied. Hence, the
system (35)-(36) has at least one positive π–periodic solution.
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