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Abstract: With the establishment of 200-mile territorial zone in the Bay of Bengal for most countries having
coastlines. The control of fishing in these zones has become highly regulated by these countries concerned.
In this sense, fishing in territorial waters can be considered a sole owner fishery problem. If the people of
a country are allowed to fish freely in the territorial zones, it can be termed as an open access fishery. In
an open access fishery, the exploitation of fishing opportunity is completely uncontrolled. This study deals
with the problem of harvesting in the prey-predator fishery model in the open access zones and seeks a plan
for prey for sustainable fishing, particularly in Sundarbans ecosystem which is situated in the coastal area of
the Bay of Bengal. The positive steady state of both local and global stability has been established. Optimal
harvesting strategy is also studied for these purposes.
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1. Introduction

T his study analyzes fishery management in contest of an endangered predator population competing
with human being for commercially important prey. In earlier studies, natural predators were implicitly

incorporated in the fishery model. We, however, explicitly model the predator-prey relationship thinking that
endangered predators can also be found in many fisheries where the expansion of the predator population
and the rate of harvesting are necessary. Traditionally it is impossible to control the predator population when
they are endangered. We focus on harvesting control effort over the habitat of preys for maintaining the
predator-prey relationship and protected the economic importance of the fishery.

Brauer et al. in [1] and Myerscough et al. in [2] studied a general model of prey-predator interaction
under constant harvesting and developed the dynamics model of harvesting. Dai et al. in [3] gave complete
mathematical analysis of a prey-predator model with Holling Type I predator response Holling, [4], where both
the interacting species are independently harvested. Azar et al. [5] made a comparative study between constant
catch and constant harvesting effort in a prey-predator model and examined a few significant phenomena such
as a constant catch on the predator may destabilize a system that is stable when a constant harvesting effort
is applied. Recently, Kar et al. [6] presented a mathematical model of non selective harvesting model in a
prey-predator fishery. In their work [7] they have described taxation as a control tool in their model.

Extensive and unregulated harvest of marine fishes can lead to the depletion of several fish species.
Several fish species can be depleted by irrational and un regulated harvesting of marine fishes. A possible
solution to these problems is to create of marine reserves restricting fishing and other related activities. This
study is the modified model of Dubey et al. [8] and to analyze the optimal harvesting policy.
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2. Mathematical model formulation

In a two-patch environment, we consider the following predator-prey system:

dx
dt

= r1x
(

1− x
k1

)
+ ε(y− x)− α1xz− qEx, (1)

dy
dt

= r2y
(

1− y
k2

)
+ ε(x− y)− α2yz, (2)

dz
dt

= z(−γ− δz) + c1x + c2y, (3)

x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0.

Here x(t), y(t) represents the prey population in the i-th patch, at time t ≤ 0. We consider, the patches with a
barrier only as far as the prey population is concerned and the predator population has no barriers. Thus, the
total predator population for both patches is z(t). The constitutes of Patch 2, a reserve area for the prey and
fishing is not allowed in this zone, though Patch 1 is an open-access fishery zone. We assumed that the prey
populations are migrated randomly between two patches. In the absence of predator population, the growth
rate of prey population logistically. Description of state variables and parameters is given in Table 1.

Table 1. Description of state variables and parameters

Parameter Description

r1 and r2 Intrinsic growth rates prey in the unreserved and reserved area
k1 and k2 Environmental carrying capacity unreserved and reserved area respectively

ε dispersal rate
E and q Harvesting effort and catchability coefficient
γ and δ3 Predator death rate and intra specific competition coefficients

If ε = 0, then no member of the prey population can leave its patch. From the j-th patch to the i-th patch
the net exchange is proportional to the difference x ∼ y of fish population densities in each patch.

3. Preliminary results

3.1. Boundedness

Now easily we can show that all solutions of system (1) -(3) are uniformly bounded.

Theorem 1. All the solutions (x(t), y(t), z(t)) of the system (1) -(3) in R3
+ are bounded.

Proof. To prove the theorem, we consider the following function

w(t) =
c1

α1
x(t) +

c2

α2
y(t) + z.

Therefore, time derivative is found to be

dw
dt

=
c1

α1

dx
dt

+
c2

α2

dy
dt

+
dz
dt

=
c1

α1

[
r1x
(

1− x
k1

)
+ ε(y− x)− qEx

]
+

c2

α2

[
r2y
(

1− y
k2

)
+ ε(x− y)

]
+ z(−γ− δz). (4)

For each µ > 0, the following inequality holds if computing the square separately in x and y. Therefore,

dw
dt

+ µw ≤ 1
4

[
α1k1

c1r1

{
c1

α1
(r1 − ε− qE) +

c2ε

α2
+

µc1

α1

}2
+

α2k2

c2r2

{
c2

α2
(r2 − ε) +

c1ε

α1
+

µc2

α2

}2
+

1
δ
(µ− γ)2

]
(5)

It is clear that the right-hand side of inequality (5) is bounded for all (x, y, z) ∈ <3
+, provide E is bounded.
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Therefore, we take v > 0 such that
dw
dt

+ µw ≤ v.

Using the theory of differential inequalities developed by Birkhoff et al. in [9] we obtain,

0 < w(x, y, z) <
v
µ

(
1− e−µt)+ w

(
x(0), y(0), z(0)

)
e−µt. (6)

Letting t → ∞, yields 0 < w < v
µ . Hence, all solutions of the model system (1) -(3) for all R3

+ are attained to
the region D, where

D =
{
(x, y, z) ∈ R3

+ : w =
v

mu
+ ε. for anyε > 0

}

3.2. Dissipativeness

Theorem 2. If r2 ≥ ε then the system (1) -(3) is dissipative.

Proof. By usual straight forward arguments, we can show that the solution of the system (1) -(3) always exists
and is positive, In fact from the Equations (1) -(3) of the model system that limt→∞x(t) ≤ 1 from Equations (2)
we notice that ẏ = r2y(1− y

k2
) + ε(x − y)− α2yz ≤ y(r2 − ε). By similar arguments, we have, limt→∞y(t) ≤

(r2 − ε) = ȳ where ȳ denotes an upper bound of y(t) which will be positive if r2 > ε.

4. Equilibria analysis

Theorem 3. The possible steady states of the system of Equations (1) -(3) are:

1. Trivial equilibrium point E0(0, 0, 0),
2. Axial equilibrium point E1(x1, y1, 0),
3. Interior equilibrium point E∗(x∗, y∗, z∗).

Proof. 1. Trivial equilibrium point always exists.
2. We get from (1) -(3)

r1x
(

1− x1

k1

)
+ ε(y1 − x1)− qEx1 = 0, (7)

r2y1

(
1− y1

k2

)
+ ε(x1 − y1) = 0, (8)

c1x + c2y = 0. (9)

Solving (7)-(8), we have, E1

(
−k1
c2

(
εc1
c2

+ ε− qE− r1

)
, c1k1

c2

(
εc1
c2

+ ε− qE− r1

)
, 0
)

3. We get from (1) -(3)

r1x∗
(

1− x∗

k1

)
+ ε(y∗ − x∗)− α1x∗z∗ − qEx∗ = 0, (10)

r2y∗
(

1− y∗

k2

)
+ ε(x∗ − y∗)− α1y∗z∗ = 0, (11)

z∗(−γ− δz∗) + c1x∗ + c2y∗ = 0, (12)

Solving (10) -(12) we will find interior equilibrium point.

5. Stability analysis

5.1. local stability

Now, we investigate the local asymptotically stability of the model (1) -(3) around the feasible equilibrium
points.
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5.1.1. Stability for E0

λ[λ2 − (r1 + r2 − 2ε− qE)λ + (r1 − qE)(r2 − ε)− r2ε] = 0.

The equilibrium point E0 is a saddle point with locally stable manifold in xy- plane and with locally unstable
manifold in z-direction if

1
q
(r1 + r2 − 2ε) < E <

r1r2 − (r1 + r2)ε

q(r2 − ε)
.

5.1.2. Stability for E1

The characteristic equation for E1 is given by

λ

[
λ2 +

{
r1x
k1

+
r2y
k2

+ ε
( x

y
+

y
x
)}

λ +
r1x
k1

(
r2y
k2

+ ε
x
y

)
+

r2y2

xK2

]
= 0.

Therefore, E1 is a saddle point with locally stable manifold in xy- plane and with locally unstable manifold in
the z-direction.

5.1.3. Stability for E2

The characteristic equation for E2 is given by

λ3 + aλ2 + bλ + c = 0 (13)

where,

a =
r1x∗

k1
+

r2y∗

k2
+ ε

(
y∗

x∗
+

x∗

y∗

)
+ z∗δ > 0

b = y∗δ(α− z∗δ) +
r2y∗

k2

(
r1x∗

k1
+

εy∗

x∗

)
+ (α1c1x∗ + α2c2y∗)z∗ +

εr1x∗2

k1y∗
> 0

c = z∗
[

y∗
(

r1x∗

k1
+

εy∗

x∗

)
+

(
r2δ

k2
+ α2c2

)
+ c1α1x∗

(
r2x∗

k2
+

εy∗

x∗

)
+

εr1δx∗2

k1y∗
+ ε(α2c1y∗ + α1c2x∗)

]
> 0.

We see that all eigenvalues of Equation (13) have negative real parts if and only if a > 0, c > 0 and ab− c > 0
which satisfies the Routh-Hurwitz criterion. Here, a > 0, c > 0 and it is easy to examined that ab− c > 0.
Hence, E∗(x∗, y∗, z∗) is locally asymptotically stable.

5.2. Global stability analysis

From the point of view of ecological managers it may be found an equilibrium point where the model
system is globally asymptotically stable in order to plan harvesting strategy and keep sustainable ecological
development. Therefore, in the interior equilibrium point E∗(x∗, y∗, z∗), we have discussed the global stability.

Theorem 4. The model system (1) -(3) is globally asymptotically stable in the positive equilibrium point E∗(x∗, y∗, z∗)

if ε
(√ σ1

x∗ −
√

σ2
y∗
)2

< 2
√

σ1σ2
r1r2
k1k2

.

Proof. Using the standard Lyapunov function we have,

V(x, y, z) = σ1

(
x− x∗ − xln

x
x∗
)
+ σ2

(
y− y∗ − yln

y
y∗

)
+ σ3

(
z− z∗ − zln

z
z∗
)

. (14)
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Along a solution, the derivative of (1) -(3) takes the form:

V̇ = σ1(x− x∗)
(

r1 −
r1

k1
x− α1z + E

y− x
x

)
+ σ2(y− y∗)

(
r2 −

r2

k2
y− α2z + ε

x− y
y

)
+ σ3(z− z∗)(−γ− δz + c1x + c2y)

= −σ1
r1

k1
(x− x∗)2 + σ2(y− y∗)2 − (z− z∗){σ1α1(x− x∗) + σ2α2(y− y∗)}

− σ3δ(y− y∗){c1(x− x∗) + c2(y− y∗)} − εΓ(x, y),

where

Γ(x, y) = σ1y
(x− x∗)

xx∗
+ σ2x

(y− y∗)
yy∗

−
(σ1

x
+

σ2

y
)
(x− x∗)(y− y∗)

If we choose σ1 = c1
α1

σ2 = c2
α2

, σ3 = 1, then we have

V̇ = −σ1
r1

k1
(x− x∗)2 + σ2

r2

k2
(y− y∗)2 − δ(z− z∗)2 − εΓ(x, y).

Now it is easy to show that

Γ(x, y) ≥
(

2
√

σ1σ2

x∗y∗
− σ1

x∗
− σ2

y∗

)
(x− x∗)(y− y∗) = −

(√
σ1

x∗
−
√

σ2

y∗

)2

(x− x∗)(y− y∗).

Thus we have,

V̇ = −σ1
r1

k1
(x− x∗)2 + σ2(y− y∗)2 − δ(z− z∗)2 − ε

(√
σ1

x∗
−
√

σ2

y∗

)2

(x− x∗)(y− y∗).

Therefore ε
(√

σ1
x∗ −

√
σ2
y∗

)2
< 2

√
σ1σ2

r1r2
k1k2

. then for δ > 0 and (x, y, z) 6= (x∗, y∗, z∗), V̇ < 0. Therefore, we

say that, E∗(x∗, y∗, z∗) is globally asymptotically stable.

6. Bionomic equilibrium and and optimal harvesting policy

The bionomic equilibrium is said to be achieved when the total revenue is earned by the difference of
pricing and harvesting cost. Let us consider the constant fishing cost per unit effort is c and the constant price
per unit landed fish in the open access area is p. Therefore, the economic rent is given as follows

Π(x, y, z, E) = (pqx− c)E (15)

Now, if c > pqx, i.e., if the fishing cost exceeds the revenue, then the economic rent obtained from the fishery
becomes negative and the fishery will be closed. Therefore, the bionomic equilibrium existence, it is assumed
that c > pqx. The positive bionomic equilibrium solutions of ẋ = ẏ = ż = Π = 0 is (x∞, y∞, z∞, E∞). Solving
these equations we get,

x∞ =
c

pq

y∞ =

[
α2

(
−γ + cc1

pq

)
+ δ(ε− r2)

]
+

√[
α2(−γ + cc1

pq + δ(ε− r2))2 + 4r2εc
pq (α2c2 +

δr2
k2
)
]

2(α2c2 +
δr2
k2
)

z∞ =
1
δ

(
−γ +

cc1

pq
+ c2y∞

)
and

E∞ =
1
δ

[
r1

(
1− c

k1 pq

)
− ε− α1

δ

(
−γ +

cc1

pq

)
+
( εpq

c
− α1c2

δ

)
y∞

]
.
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If E > E∞ , then the total harvesting cost the fish population will exceed the total amount of revenues collected
from the fishery. Therefore, we assumed that some fishermen will face loss and withdraw themselves from
fishing. Hence E > E∞ is possible to be maintained indefinitely. The fishery is more profitable when dλ1

dt =

− ∂H
∂x and hence in an open access fishery it would be attracted more and more fishermen which increasing

the harvesting. Hence E < E∞ is not possible to maintain indefinitely. Now our objective is to maximizes
the present value of a continuous time-stream of revenues. We select a harvesting strategy. Consider σ be the
instantaneous annual discount rate,

J =
∫ ∞

0
e−σt(pqx− c)Edt (16)

The problem (16), subject to the Equations (1)-(3), by applying Pontryagin’s maximum Principle with control
constant 0 < E < Emax can be solved. The feasible upper limit on the harvesting effort Emax. Then the
Hamiltonian problem is given by

H = eσt(pqx− c)E + λ1

[
r1x
(

1− x
k1

)
+ ε(y− x)− α1xz− qEx

]
+λ2

[
r2y
(

1− y
k2

)
+ ε(x− y)− α2yz

]
+ λ3[z(−γ− δz) + c1x + c2y], (17)

where λ1, λ2 and λ3 are adjoint variables and µ(t) = (eσt(pqx − c)E) − λ1qx is called the switching
function. The optimal control E(t) the maximizes the linear control variable of Hamiltonian H must satisfying
conditions:

1. E = Emax when µ(t) > 0 i.e., when λ1(t)eσt < p− c
qx ;

2. E = 0 when µ(t) < 0 i.e., when λ1(t)eσt > p− c
qx ;

λ1(t)eσt is the traditional shadow price and p-is the net economic revenue on a unit harvest which shows
that E = Emax according as the shadow price is less than or greater than the net economic revenue on a unit
harvest. Economically, the first condition is that after passing all the expenses if the profit is positive, then it
is beneficial to harvest up to the limit of available effort and second condition is that when the shadow price
exceeds the fishermen’s net economic revenue on a unit harvest, then the fishermen will not exert any effort.
When µ(t) = 0 , i.e., when the shadow price on a unit harvest equals the net economic revenue, then the
Hamiltonian H of the control variable E(t) i.e., ∂H

∂E = 0 becomes independent. It is the necessary condition
to be optimal over the control set 0 < E∗ < Emax for the singular control E∗(t). Thus the optimal harvesting
policy is

E(t) =


Emax, µ(t) > 0,

0, µ(t) < 0,

E∗, µ(t) = 0.

(18)

Again µ(t) = 0, implies that

λ1qx = e−σt(pqx− c) = e−σt ∂Π
∂E

(19)

This implies at the steady state effort level, the total user harvesting cost per unit effort must be equal to the
discounted value of the future profit. Now, we have the adjoint equations as follows:

dλ1

dt
= −∂H

∂x
= −

[
pqEeσt + λ1{r1

(
1− 2x

k1

)
− ε− α1z− qE}+ λ2ε + λ3zc1

]
dλ2

dt
= −∂H

∂y
= −

[
λ1ε + λ2{r2

(
1− 2y

k2

)
− ε− α2y}+ λ3zc2

]
dλ3

dt
= −∂H

∂z
= −[−λ1α1y− λ2α2y− λ3δz].
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Here x, y, z and E can be treated as constants to find optimal equilibrium solution of the system. Therefore,
adjoint equations are given as follows:

dλ1

dt
= −

[
pqEe−σt + λ1

(
− r1x

k1
− ε

y
x

)
+ λ2ε + λ3zc1

]
(20)

dλ2

dt
= −

[
λ1ε + λ2

(
− r2y

k2
− ε

x
y

)
+ λ3zc2

]
(21)

dλ2

dt
= −[−λ1α1y− λ2α2y− λ3δz] (22)

Now from Equations (20),(21) and (22) eliminating λ2 and λ3 we get
D3 − [ r1x

k1
+ r2y

k2
+ ε( x

y + y
x ) + δz]D2 + [

( r2y
k2

+ ε x
y + δz

)
{ r1x

k1
+ ε( y

x + c1
c2
)} + {δ( r2y

k2
+ ε x

y )} + α1c1x + α2c2y −
εδ c1

c2
}z − ε c1

c2
( r2y

k2
+ ε x

y ) − ε2]D − [{δz( r2y
k2

+ ε x
y ) + α2c2yz}{ r1x

k1
+ ε( y

x + c1
c2
)} + { c1

c2
( r2y

k2
+ ε x

y ) + ε}(α1c2x −
εδ)z] = Meσt,
where M = −pqE[σ2 + σ( r2y

k2
+ ε x

y )(1 + y) + (δ2 + α2c2y)z]. The auxiliary equation is

m3 − [ r1x
k1

+ r2y
k2

+ ε( x
y + y

x ) + δz]m2 + [
( r2y

k2
+ ε x

y + δz
)
{ r1x

k1
+ ε( y

x + c1
c2
)} + {δ( r2y

k2
+ ε x

y )} + α1c1x + α2c2y −
εδ c1

c2
}z − ε c1

c2
( r2y

k2
+ ε x

y ) − ε2]m − [{δz( r2y
k2

+ ε x
y ) + α2c2yz}{ r1x

k1
+ ε( y

x + c1
c2
)} + { c1

c2
( r2y

k2
+ ε} x

y ) + ε(α1c2x −
εδ)z] = 0.
Consider the root of the above equation are m1, m1 and m3, then the general solution becomes λ1(t) =

A1em1t + A2em2t + A3em3t + M
N e−σt, where

N = −σ3 − [ r1x
k1

+ r2y
k2

+ ε( x
y + y

x ) + δz]σ2 + [
( r2y

k2
+ ε( x

y + δz
)
{ r1x

k1
+ ε( y

x + c1
c2
)} + {δ( r2y

k2
+ ε x

y )} + α1c1x +

α2c2y − εδ c1
c2
}z − ε c1

c2
( r2y

k2
+ ε x

y ) − ε2]σ − [{δz( r2y
k2

+ ε x
y ) + α2c2yz}{ r1x

k1
+ ε( y

x + c1
c2
)} + { c1

c2
( r2y

k2
+ ε x

y ) +

ε}(α1c2x− εδ)z] 6= 0.
The shadow price λ1(t)eσt remains bounded as t → ∞ if and only if A1 = A2 = A3 = 0 and then
λ1(t)eσt = M

N = constant. Now substituting λ1(t) in (19) we get,

M
N

= p− c
qx

. (23)

Together with equation ẋ = ẏ = ż = 0 and Equation (23), gives the optimal equilibrium populations
x = x∞, y = y∞ and z = z∞, when σ → ∞, Equation (23) leads to obvious result pqx∞ = c that implies
Π(x∞, y∞, z∞, E∞) = 0. This shows that infinite discount rate leads to a economic revenue which is completely
dissipation. Using (23), we have Π = (pqx− c)E = MqxE

N . Since M is of O(σ) where N is O(σ2) we see that Π is
O(σ−1. Thus, the decreasing function of σ(≤ 0) is Π. Therefore, we conclude that σ = 0 leads to maximization
of Π.

7. Numerical simulation

Analytical studies can never be completed without numerical verification of the derived results. In this
section, we present computer simulations of some solutions of the system (1) -(3). Beside verification of our
analytical findings, these numerical simulations are very important from practical point of view. We use four
different set of numerical values for support of analytical results mentioned in Table 2.

Table 2. Set of parameter values for numerical simulations; S ≡Parameter sets

r1 r2 k1 k2 ε α1 α2 γ1 δ c1 c2 E q

3 1.5 50 40 0.5 0.2 0.2 0.6 0.05 0.03 0.04 2 0.01

From the theory established earlier the interior equilibrium point E2(19.50, 10.20, 7.86) is globally
asymptotically stable. From the Figure 1, we may conclude that the steady state E2(19.50, 10.20, 7.86) is globally
asymptotically stable. Hence the theory established earlier is verified.
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Figure 1. Stability behaviour of model the system around the equilibrium position E∗ with the initial conditions
and the set of parameter values S, (a) Time series (b) Phase portrait.

8. conclusion

This research deals with the harvesting problem in a prey-predator fishery model the reserved zone for
prey species in the Sundarban. The positive steady state of both local and global stability has been established.
To get global stability, it is necessary that the dispersal rate to be bounded above by related constant. In the
exploited model system, we have examined the possibilities of the existence of bionomic equilibria. By using
Pontryagin’s maximum principle, we have optimized the harvesting policy. We have found that the shadow
prices satisfy the transversality condition when they are constant. The total user cost of harvest per unit effort
is equal to the steady state effort. We have shown that zero discounting maximizes the economic revenue and
that an infinite discount rate is completely dissipate.
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