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1. Introduction

I n this article, we consider the following non-autonomous strongly damped wave equation with linear
memory on an unbounded domain:

utt − β4u− α4ut −
∫ ∞

0
µ(s)4 (u(t)− u(t− s)) ds + f (u) = g(x, t) + cu ◦ dW(x, t)

dt
, (1)

with initial data
u(τ, x) = uτ(x) , ut(τ, x) = u1,τ(x), x ∈ Rn, τ ∈ R. (2)

Let ε, α, β > 0, c is a positive constant and µ(s) ≤ 0 for every s ∈ R+, where4 is the Laplacian with respect to
the variable x ∈ Rn with n = 3, u = u(t, x) is a real function of x ∈ Rn, (n = 3),and t ≥ τ , τ ∈ R. The function
g(x, t) ∈ Ł2

b(R, L2(Rn)) is time-dependent external force, and W(x, t) is an independent two sided real-valued
wiener processes of probability space.

Following a well-established procedure first devised by [1], we introduce a Hilbert " history " space Rµ =

L2
µ(R+, H1(Rn)) with the inner product and new variants.


(η1, η2)µ,1 =

∫ ∞

0
µ(s)(∇η1(s),∇η2(s))ds,

η(x, t, s) = u(x, t)− u(x, t− s),

ηt =
∂

∂t
η , ηs =

∂

∂s
η.

(3)

Then the Equation (1) can be transformed into the following system utt − β4u− α4ut −
∫ ∞

0
µ(s)4η(s)ds + f (u) = g(x, t) + cu ◦ dW(x, t)

dt
,

ηt = −ηs + ut,
(4)
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with the initial-boundary conditions
u(τ, x) = uτ(x),

ut(τ, x) = u1τ(x) , x ∈ Rn, τ ∈ R,

ητ(x, τ, s) = ητ = uτ(x)− uτ(x− s) , x ∈ Rn, τ ∈ R, s ∈ R+.

(5)

The following conditions are necessary to obtain our main results.

1. concerning the memory kernel µ, it is required to satisfy the following hypotheses:{
µ ∈ C1(R+) ∩L1(R+), µ(s) ≥ 0, µ′(s) ≤ 0 , ∀s ∈ R+,

µ′(s) + δµ(s) ≤ 0 , ∀s ∈ R+and δ > 0,
(6)

and denote
k0 :=

∫ ∞

0
µ(s)ds < ∞. (7)

2. for the nonlinear term f (u), we assume that f ∈ C1(R) with f (0) = 0 ,and it satisfies the following
growth conditions. There exist constant C1 > 0 such that

| f ′(u)| ≤ C1(1 + |u|p) , ∀ u ∈ R, 0 ≤ p ≤ 4, when n = 3. (8)

And there exists constants k > 0 and ν1 > such that for any ν ∈ (0, ν1), there exist Cν > 0 satisfying

kF(u)− νu2 + Cγ ≤ u f (u), ∀ u ∈ R, (9)

and

lim sup
|u|→∞

f (u)
u
≤ 0 , ∀ u ∈ R, (10)

where F(s) =
∫ s

0 f (r)dr.

About the time-dependent forcing g(x, t) term we assume that g(x, t) ∈ Ł2
b(R, L2(Rn)),

where space of translation -bounded function Ł2
b(R, L2(Rn)) = {g(x, t) ∈ Ł2

loc(R, L2(Rn)) :
supt∈R

∫ t+1
t (

∫
Rn |g(·, r)|2dx)dr < ∞} with the norm

‖g(x, t)‖2 = sup
t∈R

∫ t+1

t

∫
Rn
|g(x, r)|2dxdr < ∞, ∀r ∈ R. (11)

Finally, we introduce the product Hilbert space

E = H1(Rn)× L2(Rn)×Rµ.

In recent years, there have many results on the dynamics of a variety of systems related to Equation (1).
The deterministic hyperbolic equations with memory have been studied to possess global attractors which,
despite being subsets of an infinite-dimensional phase space, are finite-dimensional objects, see[1–12]. For
instance, Borini and Pata [13] proved the existence of a Uniform attractor for a strong damping wave equation
with linear memory on a bounded domain. Qiaozhen Ma,Chengkui Zhong[7] obtained the strong global
attractors, and Ghidaglia, and Marzocchi [14] showed global attractors and their finite Dimension. Crauel and
Flandoli [15–18] studied the random attractors for a stochastic dynamical system. Recently, many authors have
established the existence of random attractors for other equations (see[13,19–34]). For Equation (1), there are
fewer results and most previous authors have concentrated to the deterministic case, but there are no results
of random attractors for the Equation (1).

In general, to prove the existence of random attractors for (1) in E, we must establish the pullback
asymptotic compactness of solutions. Since Sobolev embedding are not compact on Rn, we cannot get the
desired asymptotic compactness directly from the regularity of solutions. We were overcome the difficulty by
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using uniform estimates on the tails of solutions outside a bounded ball in Rn and decomposing the solutions
in a bounded domain as in [2,6,21,29].

The rest of the article is organized as follows. In Section 2 we recall some basic concepts related to RDS
and a random attractor for the random dynamical system. In Section 3, we devote to uniform estimates and the
existence of bounded absorbing sets for the solutions and pullback compactness. In Section 4, the compactness
of the RDS is established by the decomposition of a solution of the random differential equation into two
parts. In Section 5, we prove the asymptotic compactness of the solutions, finally existence and uniqueness of
a random attractor in E.

2. Preliminaries

In this Section, we recall some basic concepts related to RDS and a random attractor for RDS in [16,17],
which are important for getting our main results. Let (Ω,F , P) be a probability space and (X, d) is a Polish
space with the Borel σ-algebra B(X).The distance between x ∈ X and B⊆ X is denoted by d(x, B). If B⊆ X
and C⊆ X, the Hausdorff semi-distance from B to C is denoted by d(B, C) = supx∈B d(x, C).

Definition 1. (Ω,F , P, (θt)t∈R) is called a metric dynamical system if θ : R × Ω −→ Ω is (B(R) ×
F ,F )-measurable, θ0 is the identity on Ω, θs+t = θt ◦ θs, for all s,t ∈ R and θ0P = P for all t∈ R.

Definition 2. A mapping Φ(t, τ, ω, x) : R+ ×R×Ω× X → X is called continuous cocycle on X over R and
(Ω,F , P, (θt)t∈R), if for all τ ∈ R, ω ∈ Ω and t, s ∈ R+, the following conditions are satisfied:

1. Φ(t, τ, ω, x) : R+ ×R×Ω× X → X is a (B(R+)×F ,B(R)) measurable mapping
2. Φ(0, τ, ω, x) is identity on X.
3. Φ(t + s, τ, ω, x) = Φ(t, τ + s, θsω, x) ◦Φ(s, τ, ω, x)
4. Φ(t, τ, ω, x) : X → X is continuous.

Definition 3. Let 2X be the collection of all subsets of X, set valued mapping (τ, ω) 7→ D(t, ω) : R×Ω 7→ 2X

is called measurable with respect to F in Ω if D(t, ω) is a(usually closed ) nonempty subset of X and the
mapping ω ∈ Ω 7→ d(X, B(τ, ω)) is (F ,B(R)) -measurable for every fixed x ∈ X and τ ∈ R. Let B =

B(t, ω) ∈ D(t, ω) : τ ∈ R, ω ∈ Ω is called a random set.

Definition 4. A random bounded set B = {B(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D of X is called tempered with respect
to {θ(t)}t∈Ω, if for p-a.e ω ∈ Ω ,

lim
t 7→∞

e−βt d(B(θ−tω)) = 0, ∀ β > 0,

where
d(B) = sup

x∈B
‖x‖X .

Definition 5. Let D be a collection of random subsets of X and K = {K(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, then K is
called an absorbing set of Φ ∈ D, if for all τ ∈ R, ω ∈ Ω and B ∈ D , there exists, T = T(τ, ω, B) > 0 such that.

Φ(t, τ, θ−tω, B(τ, θ−tω)) ⊆ K(τ, ω), ∀ t ≥ T

Definition 6. Let D be a collection of random subsets of X, then Φ is said to be D a-pullback asymptotically
compact in X, if for p-a.e ω ∈ Ω , {Φ(tn, θ−tn ω , xn)}∞

n=1 has a convergent subsequence in X when tn 7→ ∞ and
xn ∈ B(θ−tn ω) with {B(ω)}ω∈Ω ∈ D.

Definition 7. Let D be a collection of random subsets of X and A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, then A
is called a D-random attractor (or D-pullback attractor ) for Φ, if the following conditions are satisfied, for all
t ∈ R+, τ ∈ R and ω ∈ Ω

1. A(τ, ω) is compact, and ω 7→ d(x,A(ω)) is measurable for every x ∈ X
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2. A(τ, ω) is invariant, that is

Φ(t, τ, ω,A(τ, ω)) = A(τ + t, θtω), ∀ t ≥ τ.

3. A(τ, ω) attracts every set in D, that is for every B = {B(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D,

lim
t 7→∞

dX(Φ(t, τ, θ−tω, B(τ, θ−tω)),A(τ, ω)) = 0.

Where dX is the Hausdorff semi-distance given by

dX(Y, Z) = sup
y∈Y

inf
z∈Z
‖y− z‖X

for any Y ∈ X and Z ∈ X.

Lemma 8. Let D be a neighborhood-closed collection of (τ, ω)- parameterized families of nonempty subsets of X and Φ
be a continuous cocycle on X over R and (Ω,F , P, (θt)t∈R). Then Φ has a pullback D-attractor A in D if and only if
Φ is pullback D-asymptotically compact in X and Φ has a closed, F -measurable pullback D-absorbing set K ∈ D, the
unique pullback D-attractor A = A(τ, ω) is given A(τ, ω) =

⋂
r≥0
⋃

t≥rΦ(t, τ, θ−tω, K(τ, θ−tω)) τ ∈ R , ω ∈ Ω.

3. Existence and uniqueness of solutions

In this section, we present the existence and uniqueness of solutions for the system (1)-(2). It is well known
that the operator A = −4 with the domain D(A) = H2(Rn).

We recall some important results, let H0 = L2(Rn), H1 = H1(Rn) and H2 = Rµ = L2
µ(R+, H1(Rn)). And

denote H∗1 = H−1(Rn) the dual space of H1, as usual, we identify H∗0 , the dual space of H0. Then we get

(u, v) =
∫
Rn

uvdx, ‖u‖ = (u, u)
1
2 , ∀u, v ∈ L2(Rn),

((u, v)) =
∫
Rn
∇u∇vdx, ‖∇u‖ = ((u, u))

1
2 , ∀ u, v ∈ H1(Rn),

(η, ζ)µ,1 =
∫ ∞

0
µ(s)(∇η(s),∇ζ(s))ds,

‖η‖2
µ,1 = (η, η)µ,1 =

∫ ∞

0
µ(s)(∇η(s),∇η(s))ds.

(12)

E = E(Rn) = H0 × H1 × H2 = H1(Rn)× L2(Rn)×Rµ, endowed with the usual norms on E,

‖’‖2
E = ‖ϕ‖2

H1(Rn)×L2(Rn)×Rµ
.

Due to the Ornstein-Uhlenbeck process deducing by the Brownian motion, which holds the Itô differential
equation

dz + δzdt = dw, δ > 0 (13)

and hence the solution is given by

θtω(s) = ω(t + s)−ω(t),
z(θtω) = z(t, ω) = − δ

∫ 0
−∞ eδs(θtω)sds, s ∈ R, ω ∈ Ω.

(14)

Where the random variable |z(ω)| is tempered and there is an invariant set Ω̄ ⊆ Ω of full P measure such that
z(θtω) = z(t, ω) is continuous in t for every ω ∈ Ω̄. This equation has a random fixed point in the sense of
random dynamical systems generating a stationary a solution is known as the stationary Ornstein-Uhlenbeck
process (see [16,17,29,35] for more details).

Next we need to transform the stochastic system into deterministic with a random parameter, then show
that it generates a random dynamical system. In fact, we define a cocycle for problem (12)-(14). Let
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v =
du
dt

+ εu− cuz(θtω), (15)

by (15 ) and (4), (5), we can obtain the following random evolution equation

ut + εu− v = cuz(θtω),

vt + ε(ε− αA)u + βAu− (ε− αA)v +
∫ ∞

0
µ(s)Aη(s)ds

= − f (u) + g(x, t) + cz(θtω) (v + εu− αAu + cuz(θtω)) ,

ηt + ηs + εu− v = cuz(θtω),

(16)

with the initial-boundary conditions
u(τ, x) = uτ(x),

ut(τ, x) = u1,τ(x), x ∈ Rn, τ ∈ R,

ητ(x, s) = uτ(x)− uτ(x, τ − s), x ∈ Rn, τ ∈ R, s ∈ R+.

(17)

Which, in contrast to the stochastic differential Equation (1)-(2), can by analysis pathwise with deterministic
calculus, define

ϕ =

 u
v
η

 ,

Lϕ =

 εu− v
ε(ε− αA)u + βAu− (ε− αA)v +

∫ ∞
0 µ(s)Aη(s)ds

εu− v + ηs


and

Q (ϕ, ω, t) =

 cuz(θtω)

cu(ε− αA)z(θtω) + c2uz2(θtω) + cvz(θtω)− f (u) + g(x, t)
cuz(θtω)


Then the following equation is equivalent to the system (15)-(17){

ϕ′ + Lϕ = Q(ϕ, t, ω)

ϕτ = (uτ(x), u1τ(x) + εuτ(x)− cuτz(θtω), ητ(x, s))>.
(18)

In line with [36], we know that -L is the infinitesimal generator of C0 semigroup e−Lt on E for t > 0, by
the assumptions (6)-(11). It is easy to check Q(ϕ, t, ω) : E → E is locally Lipschitz continuous with respect
to ϕ, by the classical semigroup theory concerning the (local) existence and uniqueness solutions of evolution
differential equation, we have the following theorem.

Theorem 9. Under the condition (6)-(11) and for each τ ∈ R, ω ∈ Ω and for any ϕτ ∈ E, there exists T > 0 such that
(18) has a unique mild function ϕ(t, τ, ω, ϕτ) ∈ C([τ, τ + T); E) and ϕ(t) satisfies the integral equation

ϕ(t, τ, ω, ϕτ) = e−L(t−τ)ϕτ(ω) +
∫ t

τ
e−L(t−r)Q(ϕ, r, ω)dr, (3.8)

ϕ(t, τ, ω, ϕτ) is jointly continuous into t and measurable in ω.

From Theorem 9, we know that for P-a.s. each ω ∈ Ω, the following results hold for all T > 0

1. if ϕτ(ω) ∈ E then ϕ(t, ω, ϕτ(τ)) ∈ C([τ, τ + T); E),
2. ϕ(t, τ, ω, ϕτ) is jointly continuous into t and measurable in ϕτ(ω),
3. the solution mapping of (18) satisfies the properties of continuous cocycle.
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We notice that a unique solution ϕ(t, τ, ω, ϕτ) of (18) can define a continuous random dynamical system over
R and (Ω,F , P, (θt)t∈R). Hence the solution mapping

Φ̄(t, ω) : R×Ω× E 7→ E, t ≥ τ,
ϕ(τ, ω) = (uτ , vτ , ητ)> 7→ (u(t, ω), v(t, ω), η(t, ω))> = ϕ(t, ω),

(19)

generates a random dynamical system. Moreover,

Φ(t, ω) : ϕ(τ, ω) + (0, εz(θτω), 0)> 7→ ϕ(t, ω) + (0, εz(θtω), 0)>. (20)

We also define the following transformation:

ψ1 = u, ψ2 = ut + εu. (21)

Similar to (18), we get that {
ψ′ + Hψ = Q(ψ, t, ω)

ψτ = (uτ , vτ , ητ)
> = (uτ , u1τ + εuτ , ητ)

>,
(22)

where

ψ =

 u
v
η

 ,

Hψ =

 εu− v
ε(ε− αA)u + βAu− (ε− αA)v + η

εu− v + ηs


and

Q(ψ, ω, t) =

 0
cvz(θtω)− f (u) + q(x, t)

0


We introduce the isomorphism TεY = (u, ut, η)> , Y = (u, v, η)> ∈ E which has inverse isomorphism

T−εY = (u, v− εu, η)>, it follows that (θ, ψ) with mapping

Ψ = TεΦ(t, ω)T−ε = Ψ(t, ω) (23)

is a random dynamical system from a above discussion, we show that the two RDS are equivalent.

4. Random absorbing set

In this section, we will show the existence of a random absorbing set for the RDS ϕ (t, τ, ω, ϕτ(ω)) , t ≥ 0
in the space E. Let ϕ = (u, v, η)> = (u, ut + εu− cuz(θtω), η)>, where ε is chosen as

ε =
αλ1 + β1

4 + 2(αλ1 + β1)α + β2
2/λ1

. (24)

Lemma 10. For any ϕ = (u, v, η)> ∈ E we have

(Lϕ, ϕ)E ≥
ε

2

(
‖u‖2

1 + ‖v‖
2
)
+

α

2
‖v‖2 +

ε

4
‖η‖2

µ,1 . (25)

Proof. This is easily obtained by simple computation.

Lemma 11. Assume that (6)-(11) hold, then for each τ ∈ R, ω ∈ Ω, there exists tempered random absorbing ball
B0(τ, ω) = {ϕ ∈ E : ‖ϕ(τ, τ − t, θ−τω, ϕτ−t(θ−τω))‖E ≤ M(τ, ω)}, BE(M(τ, ω)) ∈ D(E), such that for any
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set B ∈ D(E), there exists TB = TB(τ, ω, B) > 0 , τ ∈ R, ω ∈ Ω, B ∈ D, so as ∀t ≥ TB and ϕτ−t(θ−τω) ∈
B(τ − t, θ−tω), the solution of a system (4.7) satisfies

‖ϕ(τ, τ − t, θ−τω, ϕτ−t(θ−τω))‖2
E ≤ M2(τ, ω) (26)

that is
Φ(τ, τ − t, θ−τω, B(τ − t, θ−tω)) ⊆ B0(τ, ω)), ∀ t ≥ τ. (27)

Proof. For any τ ∈ R, ω ∈ Ω, t ≥ τ, let ϕ(τ, τ − t, θ−τω, ϕτ−t(θ−τω)) = (uτ , vτ , ητ) ∈ E, be a mild solution of
(18) with initial value ϕτ−t.
Taking the inner product (·, ·)E of (18) with ϕ(τ), we find that

1
2

d
dt
‖ϕ‖2

E +
ε

2
(‖u‖2

1 + ‖v‖2) +
α

2
‖v‖2 +

ε

4
‖η‖2

µ,1 ≤ (Q(ϕ, t, ω), ϕ). (28)

Let us estimate the right hand side of (28)

(Q(ϕ, ω, t), ϕ) = ((cuz(θtω), u)) + (cu(ε− αA)z(θtω) + c2uz2(θtω) + cvz(θtω)

− f (u) + g(x, t), v) + (cuz(θtω), η)µ,1. (29)

By the Cauchy-Schwartz inequality, we find that

((cuz(θtω), u)) ≤ |c||z(θtω)|‖∇u‖2 ≤ |c||z(θtω)|‖u‖2
1, (30)

ε(cuz(θtω), v) ≤ ε|c||z(θtω)|‖u‖‖v‖ ≤ ε|c||z(θtω)|
2
√

λ0
(‖u‖2

1 + ‖v‖2), (31)

(c2uz2(θtω), v) ≤ 1√
λ0
|c|2|z(θtω)|2‖u‖1‖v‖ ≤

2|c|4|z(θtω)|4
ελ0

+
ε

8
(‖u‖2

1 + ‖v‖2), (32)

(cvz(θtω), v) ≤ |c||z(θtω)|
2

‖v‖2, (33)

α(c∇uz(θtω),∇v) ≤ α|c||z(θtω)|‖u‖‖v‖ ≤ α
√

λ1|c||z(θtω)|
2

(‖u‖2
1 + ‖v‖2), (34)

(cuz(θtω), η)µ,1 ≤ |c||z(θtω)|‖u‖1‖η‖µ,1 ≤
|c||z(θtω)|

2
(‖u‖2

1 + ‖η‖2
µ,1), (35)

(g(x, t), v) ≤ ‖g(x, t)‖ ‖v‖ ≤ 2
(4α + ε)

‖g(x, t)‖2 +
(4α + ε)

8
‖v‖2, (36)

here we estimate nonlinear term (29), by (6)-(10) and the Hölder inequality, we get that

( f (u), v) =
(

f (u),
du
dt

+ εu− cuz(θtω)

)
≥ d

dt

∫
Rn

F(u)dx + ε ( f (u), u)− ( f (u), cuz(θtω)) (37)

Due to (4),(6), (1-8) and poincarè inequality, there exists positive constant µ1, µ2 such that

( f (u), u)− kF̃(u) + µ1‖u‖1 + µ2 ≥ 0, (38)

it follows from (10) for each given µ3 > 0

( f (u), u) ≥ µ2‖u‖1 + µ3, (39)

( f (u), v) ≤ d
dt

F̃(u) + εkF̃(u)− (µ1ε + µ3cz(θtω))‖u‖1 − εµ2 − cµ3 |c||z(θtω)|, (40)
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where F̃(u) =
∫
Rn F(u)dx. Collecting (30)-(40) and (29), we show that

(Q(ϕ, ω, t), ϕ) ≤ − d
dt

F̃(u)− εkF̃(u) +
ε

4
(‖u‖2

1 + ‖v‖2) + µ4|c| |z(θtω)|(‖u‖2
1 + ‖v‖2 + ‖η‖2

µ,1)

+εµ2 + cµ3 |c| |z(θtω)|2 + 2|c|4|z(θtω)|4
ελ0

+
2

(4α + ε)
‖g(x, t)‖2 +

α

2
‖v‖2, (41)

where µ4 depends on µ3, ε
2
√

λ0
, α
√

λ0
2 . Then substituting all together into (28) yield

1
2

d
dt
(‖u‖2

1 + ‖v‖2 + ‖η‖2
µ,1 + 2F̃(u)) ≤ −

( ε

4
− µ4|c||z(θtω)|)

)
(‖u‖2

1 + ‖v‖2 + ‖η‖2
µ,1)− εkF̃(u)

+εµ2 + µ3|c| |z(θtω)|2 + 2|c|4|z(θtω)|4
ελ0

+
2

(4α + ε)
‖g(x, t)‖2. (42)

Since σ = min[ ε
4 , εk

2 ] and ‖ϕ‖2 = (‖u‖2
1 + ‖v‖2 + ‖η‖2

µ,1), then we have the following equivalent system

1
2

d
dt
(‖ϕ‖2

E + 2F̃(u)) ≤ (µ4|c||z(θtω)| − σ) (‖ϕ‖2
E + F̃(u)) + εµ2 + cµ3 |c| |z(θtω)|2

+
2|c|4|z(θtω)|4

ελ0
+ ελ0 +

1
(2α + ε)

‖g(x, t)‖2. (43)

Let Γ(ω) = σ − µ4|c||z(θtω)| and |z(θtω)| is tempered, by (13) and (14), we can choose the following
inequality

$(t, ω) = β(1 + |c|2|z(θtω)|2 + 2|c|4|z(θtω)|4
ελ0

+ ‖g(x, t)‖2),

where β > 0 depend only on µ2, cµ3 , C, ε, α, λ0. By applying Gronwall’s inequality to (43) over [τ − t, τ] and
replacing ω to θ−τω, we have

‖ϕ(τ, τ − t, θ−τω, ϕτ−t(θ−τω))‖2
E ≤

(
‖ϕ(τ, τ − t, θ−τω, ϕτ−t(θ−τω))‖2

E + 2F̃(u(τ, τ − t, θ−τω, uτ−t)
)

≤
(
‖ϕτ−t(θ−τω)‖2

E + 2F̃(uτ−t)
)

e−2Γt +
∫ 0

−t
$(r− τ, θr−τω)e2Γ(r−τ,ω)dr. (44)

Suppose that

y (τ, τ − t, θ−τω, ϕτ−t(θ−τω)) =
(
‖ϕ(τ, τ − t, θ−τω, ϕτ−t(θ−τω))‖2

E + 2F̃(u(τ, τ − t, θ−τω, uτ−t))
)

≥ ‖ϕ(τ, τ − t, ω, ϕτ−t(θ−τω))‖2
E

≥ 0 (45)

Using (8) and Young inequality, the embedding theorem, we have for any bounded set B of E, where
supϕ∈B ‖ϕ‖E ≤ M(τ, ω), if ϕ(τ) ∈ B, then

2F̃(u) ≤ k
∫
Rn
( f (u) + 1)udx ≤ k

∫
Rn
( f (u)udx + C4

∫
Rn

udx

≤ k‖u‖2 + k‖u‖P+1
H1 ≤ k‖u‖2 + k‖u‖P+1

H1 ≤ µ6r1(ω). (46)

For any set {B(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, ϕτ = (uτ(x), u1,τ(x) + εuτ(x)− cuτz(θtω))> ∈ {B(τ, ω) : τ ∈
R, ω ∈ Ω} ∈ D(E).
We have

lim
t→∞

sup
(
‖ϕτ(θ−τω)‖2

E + 2C8

(
‖uτ‖2 + ‖uτ‖P+2

H1

))
e−2σt = 0,

∫ 0

−t
$(r− τ, θr−τω)e2Γ(r−τ,ω)dr < ∞. (47)
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When g(x, t) is only satisfied (11) which is a tempered random variable, then by (46)-(47), there exists
B0(ω) = {ϕ ∈ E : ‖ϕτ(θ−τω)‖E ≤ M2(τ, ω)} is closed measurable absorbing ball in D(E) and T =

T(τ, B, ω) > 0 such that ϕ(τ, τ − t, θ−τω, ϕτ−t) = ϕτ ∈ B0(ω) satisfy the following result p-a.s ω ∈ Ω

‖ϕ(τ, τ − t, θ−τω, ϕτ−t)‖2
E ≤ M2(τ, ω).

Next, we conduct uniform estimates on the tail parts of the solutions for large space variables when the
time is sufficiently large in order to prove the pullback asymptotic compactness of the cocycle associated with
equation (15) on the unbounded domain Rn. We first, choose a smooth function ρ defined on R+ such that
0 ≤ ρ(s) ≤ 1 for all s ∈ R and

ρ(s) =

{
0 , ∀ 0 < |s| ≤ 1,

1 , ∀ |s| ≥ 2.
(48)

Then there exist constants µ7 and µ8 such that |ρ′(s)| ≤ µ1, |ρ′′(s)| ≤ µ2 for any s ∈ R, given r ≥ 1, denote
by Hr = {x ∈ Rn : |x| < r} and {Rn\Hr} the complement of Hr. To prove asymptotic compactness of the
random dynamical system we prove the following Lemma.

Lemma 12. Under conditions (6)-(11) and B={B(τ, ω)}τ∈R,ω∈Ω ∈ D and ϕτ(ω) ∈ B. Then there exist T̃ =

T̃(τ, B, ω) > 0 and R = R(τ, B, ω) > 1 so that the solution ϕ(t, τ, θ−tω, ϕτ(θ−tω)) of (15) satisfies for P-a.e
ω ∈ Ω, ∀ t ≥ T̃, r ≥ R

‖ϕ (t, τ, θ−tω, ϕτ(θ−tω))‖2
E(Rn\Hr)

≤ ε . (49)

Proof. Multiplying the second term of (15) with ρ
[
|x|2
r2

]
v in L2(Rn) and integrating over Rn, we obtain

1
2

d
dt

∫
Rn

ρ

[
|x|2
r2

]
|v|2 dx = ε

∫
Rn

ρ

[
|x|2
r2

]
|v|2 dx + α

∫
Rn
(∇v)ρ

[
|x|2
r2

]
vdx− |ε|2

∫
Rn

ρ

[
|x|2
r2

]
uvdx

+(αε− β)
∫
Rn

(4u) ρ

[
|x|2
r2

]
vdx +

∫
Rn

∫ ∞

0
µ(s)(4η(s))ρ

[
|x|2
r2

]
vdsdx

+3|c| |z(θtω)|
∫
Rn

ρ

[
|x|2
r2

]
uvdx− |c|2 |z(θtω)|2

∫
Rn

ρ

[
|x|2
r2

]
uvdx

−|c| |z(θtω)|
∫
Rn

ρ

[
|x|2
r2

]
|v|2 dx + α|c| |z(θtω)|

∫
Rn

(4u) ρ

[
|x|2
r2

]
vdx

+
∫
Rn

ρ

[
|x|2
r2

]
g(x, t)vdx−

∫
Rn

ρ

[
|x|2
r2

]
f (u)vdx. (50)

In order to estimate the left hand side, we must substituting v in the first term of (15), then we obtain the
following results

∫
Rn

ρ

[
|x|2
r2

]
uvdx =

∫
Rn

ρ

[
|x|2
r2

]
u
[

du
dt

+ εu− cuz(θtω)

]
dx

≤
∫
Rn

ρ

[
|x|2
r2

] [
1
2

d
dt
|u|2 + ε|u|2 − |c||u|2|||z(θtω)|

]
dx, (51)

∫
Rn

(−4u) ρ

[
|x|2
r2

]
vdx =

∫
Rn
(∇u)∇

[
ρ

[
|x|2
r2

] [
du
dt

+ εu− cuz(θtω)

]]
dx

=
∫
Rn
∇u

[
2x
r2 ρ′

[
|x|2
r2

]
v
]

dx +
∫
Rn
(∇u)

[
ρ

[
|x|2
r2

]
∇
[

1
2

du
dt

+ εu− cuz(θtω)

]]
dx

≤
√

2
r

µ7

(
‖∇u‖2 + ‖v‖2

)
+

1
2

d
dt

∫
Rn

ρ

[
|x|2
r2

]
|∇u|2 dx

+ε
∫
Rn

ρ

[
|x|2
r2

]
|∇u|2dx− |c|

∫
Rn

ρ

[
|x|2
r2

]
|∇u|2|∇z(θtω)|dx. (52)
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By second Equation (4), we have

∫
Rn

∫ ∞

0
µ(s)(−4η(s))ρ

[
|x|2
r2

]
vdsdx ≤

∫
Rn

∫ ∞

0
µ(s)∇η(s)∇

[
ρ

[
|x|2
r2

] [
du
dt

+ εu− cz(θtω)

]]
dsdx

=
∫

r<|x|<2
√

2r

2x
r2 µ1

∫ ∞

0
µ(s)∇η(s)vdsdx +

∫
Rn

∫ ∞

0
µ(s)ρ

[
|x|2
r2

]
|∇η(s)||∇ut|dsdx

+ε
∫
Rn

∫ ∞

0
µ(s)ρ

[
|x|2
r2

]
|∇η(s)||∇u|dsdx− c

∫
Rn

∫ ∞

0
µ(s)ρ

[
|x|2
r2

]
|∇η(s)||∇u||∇z(θtω)|dsdx. (53)

Integrating by parts, assumption (4),(6) and (7) and Young inequality, we can show that

∫
Rn

∫ ∞

0
µ(s)ρ

[
|x|2
r2

]
∇η(s)∇utdsdx ≤ 1

2
d
dt

∫
Rn

ρ

[
|x|2
r2

]
|η(s)|2µ,1dx +

δ

2

∫
Rn

ρ

[
|x|2
r2

]
|η(s)|2µ,1dx, (54)

then

ε
∫
Rn

∫ ∞

0
µ(s)ρ

[
|x|2
r2

]
∇η(s)∇udsdx ≤ δ

2

∫
Rn

ρ

[
|x|2
r2

]
|η(s)|2µ,1dx +

2m0ε2

δ

∫
Rn

ρ

[
|x|2
r2

]
|∇u|2dx, (55)

and

c
∫
Rn

∫ ∞

0
µ(s)ρ

[
|x|2
r2

]
(∇η(s))(∇u)z(θtω)dsdx ≤ δ|c||z(θtω)|

2

∫
Rn

ρ

[
|x|2
r2

]
|η(s)|2µ,1dx

+
2m0|c||z(θtω)|

δ

∫
Rn

ρ

[
|x|2
r2

]
|∇u|2dx, (56)

by (54), (55) and (56), it follows that

∫
Rn

∫ ∞

0
µ(s)(−4η(s))ρ

[
|x|2
r2

]
vdsdx ≤

√
2

r
µ7(‖∇η‖2

µ + ‖v‖2) +
1
2

d
dt

∫
Rn

ρ

[
|x|2
r2

]
|η(s)|2µ,1dx

+δ
∫
Rn

ρ

[
|x|2
r2

]
|η(s)|2µ,1dx +

2m0ε2

δ

∫
Rn

ρ

[
|x|2
r2

]
|∇u|2dx− δ|c||z(θtω)|

2

∫
Rn

ρ

[
|x|2
r2

]
|η(s)|2µ,1dx

−2m0|c||z(θtω)|
δ

∫
Rn

ρ

[
|x|2
r2

]
|∇u|2dx, (57)

and ∫
Rn
(−4v)ρ

[
|x|2
r2

]
vdx =

∫
Rn
∇v∇

[
ρ

[
|x|2
r2

]
v
]

dx

≤
∫
Rn
∇v

(
2x
r2 ρ′

[
[
|x|2
r2

]
v
)

dx +
∫
Rn

ρ

[
|x|2
r2

]
|∇v|2dx

≤
∫

r<|x|<
√

2r

2x
r2 µ7|∇v||v|dx +

∫
Rn

ρ

[
|x|2
r2

]
|∇v|2dx

≤
√

2
r

µ7(‖∇v‖2 + ‖v‖2) +
∫
Rn

ρ

[
|x|2
r2

]
|∇v|2dx. (58)

For the nonlinear term, according to (9), (10), (40) and applying Young inequality, after detailed computations,
we obtain

−
∫
Rn

ρ

[
|x|2
r2

]
f (u)vdx ≥ − d

dt

∫
Rn

ρ

[
|x|2
r2

]
F(u)dx− εk

∫
Rn

ρ

[
|x|2
r2

]
F(u)dx

+
(µ1ε + µ3|c||z(θtω)|)

2λ0

∫
Rn

ρ

[
|x|2
r2

]
|∇u|2 dx +

(
µ2ε− cµ3 |c||z(θtω)|

) ∫
Rn

ρ

[
|x|2
r2

]
dx. (59)

By the Cauchy-Schwartz inequality, the Young inequality and ‖∇v‖2 ≥ λ1‖v‖2, we deduce that
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∫
Rn

ρ

[
|x|2
r2

]
g(x, t)vdx ≤

∫
Rn

ρ

[
|x|2
r2

]
|g(x, t)|2

4αλ1
dx + α

∫
Rn

ρ

[
|x|2
r2

]
|∇v|2dx, (60)

cz(θtω) (3ε− cz(θtω))
∫
Rn

ρ

[
|x|2
r2

]
uvdx ≤ cz(θtω) (3ε + cz(θtω))

∫
Rn

ρ

[
|x|2
r2

]
|u||v|dx

≤ 1
2

(
3ε|c||z(θtω)|+ c2|z(θtω)|2

) ∫
Rn

ρ

[
|x|2
r2

] [
|u|2 + |v|2

]
dx, (61)

αcz(θtω)
∫
Rn
(−4u)ρ

[
|x|2
r2

]
vdx ≤ α|c||z(θtω)|

∫
Rn
(∇u)∇

[
ρ

[
|x|2
r2

]
v
]

dx

= α|c||z(θtω)|
∫
Rn

2|x|
r2 ρ′

[
|x|2
r2

]
|∇u|vdx + α|c||z(θtω)|

∫
Rn

ρ

[
|x|2
r2

]
|∇u||∇v|dx

≤ α|c||z(θtω)|
√

2
r

µ7(‖∇u‖2 + ‖v‖2) +
α|c||z(θtω)|

2

∫
Rn

ρ

[
|x|2
r2

]
|v|2dx

+
αλ1|c||z(θtω)|

2

∫
Rn

ρ

[
|x|2
r2

]
|∇u|2dx. (62)

Combining with (50)-(62) and (50), we see that

1
2

d
dt

∫
Rn

ρ

[
|x|2
r2

] (
|v|2 + ε2|u|2 + (β− αε)|∇u|2 + |η(s)|2µ,1 + 2F̃(u)

)
dx

≤ ε
∫
Rn

ρ

[
|x|2
r2

] [
|v|2 − ε2|u|2 − (β− αε− ε (2m0 − µ1δ)

δ
)|∇u|2

]
dx

−εk
∫
Rn

ρ

[
|x|2
r2

]
F̃(u)dx− δ

∫
Rn

ρ

[
|x|2
r2

]
|η(s)|2µ,1dx

+|c||z(θtω)|
∫
Rn

ρ

[
|x|2
r2

] [
− (α + 1)

2
|v|2 + ε2|u|2

]
+|c||z(θtω)|

∫
Rn

ρ

[
|x|2
r2

] [
(β− αε− αλ1ε

2
− ε (2m0 − µ3δ)

δ
)|∇u|2 + δ|η(s)|2µ,1

]
dx

+

√
2

r
µ7

[
α(‖∇v‖2 + ‖v‖2) + (β− αε)(‖∇u‖2 + ‖v‖2)

]
+

√
2

r
µ7

[
α|c||z(θtω)(‖∇u‖2 + ‖v‖2 + ‖η‖2

µ,1 + ‖v‖2
]

+
1
2

(
3ε|c||z(θtω)|+ c2|z(θtω)|2

) ∫
Rn

ρ

[
|x|2
r2

] [
|u|2 + |v|2

]
dx

+
∫
Rn

ρ

[
|x|2
r2

]
|g(x, t)|2

4αλ1
dx +

(
µ2ε− cµ3 |c||z(θtω)|

) ∫
Rn

ρ

[
|x|2
r2

]
dx.

Letting (provided ε is small enough)

σ = min[ε, εk, δ],
(α + 1)

2
≥ α

4
,

β− αε− ε (2m0 − µ1δ)

δ
≥ β− αε,

β− αε− αλ1ε

2
− ε (2m0 − µ3δ)

δ
≥ β− αε,

σ2 = min

√
2

k
µ1(β− αε, α, δ),

Υ(t, ω) =
|g(x, t)|2

4αλ1
dx + (µ2ε− µ3|c||z(θtω)|) .

(63)
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By all the above inequality, we can write that

d
dt

∫
Rn

ρ

[
|x|2
r2

] [
|v|2 + ε2|u|2 + (β− αε)|∇u|2 + |η(s)|2µ,1 + 2F̃(u)

]
dx

≤ −σ + |c||z(θtω)
∫
Rn

ρ

[
|x|2
r2

] [
|v|2 + ε2|u|2 + (β− αε)|∇u|2 + F̃(u) + |η(s)|2µ,1

]
dx

+σ2

[
‖∇v‖2 + ‖∇u‖2 + ‖η‖2

µ,1 + ‖v‖2
]

+
1
2

(
3ε|c||z(θtω)|+ c2|z(θtω)|2

) ∫
Rn

ρ

[
|x|2
r2

] [
|u|2 + |v|2

]
dx +

∫
Rn

ρ

[
|x|2
r2

]
Υ(t, ω)dx. (64)

Setting

X(t, τ, ω,Xτ(ω)) = |v(t, τ, ω, vτ(ω))|2 + ε2|u(t, τ, ω, uτ(ω))|2

+(β− αε)|∇u(t, τ, ω, uτ(ω))|2 + |η(t, τ, ω, ητ(ω), s)|2µ,1, (65)

then it follows that

d
dt

∫
Rn

ρ

[
|x|2
r2

] [
|X(t, τ, ω,Xτ(ω))|+ F̃(u)

]
dx

≤ −2
[

σ− 1
2

(
3ε|c||z(θtω)|+ c2|z(θtω)|2

)] ∫
Rn

ρ

[
|x|2
r2

] [
|X(t, τ, ω,Xτ(ω))|+ F̃(u)

]
dx

+σ2

[
‖∇v‖2 + ‖∇u‖2 + ‖η‖2

µ,1 + ‖v‖2
]
+
∫
Rn

ρ

[
|x|2
r2

]
Υ(t, ω)dx. (66)

Integrating (66) over [τ, t], we find that, for all t ≥ τ

∫
Rn

ρ

[
|x|2
r2

] [
|X(t, τ, ω,Xτ)|2E + 2F̃(u(t, τ, ω, uτ)

]
dx

≤ e2σ1(t−τ)
∫
Rn

ρ

[
|x|2
r2

] [
|Xτ |2E + F̃(uτ))

]
dx + σ2

∫ t

τ
e2σ1(r−t)

(
‖∇v(s, τ, ω, vτ)‖2 + ‖∇u(s, τ, ω, uτ)‖2

+‖η(t, τ, s, ω, ητ)‖2
µ,1 + ‖v(s, τ, ω, vτ)‖2

)
dr + C

∫ t

τ
e2σ1(r−t)

∫
Rn

ρ

[
|x|2
r2

]
Υ(r, θrω)dxdr, (67)

where σ1 = σ− 1
2
(
3ε|c||z(θtω)|+ c2|z(θtω)|2

)
. By replacing ω by θ−tω, we have

∫
Rn

ρ

[
|x|2
r2

] [
|X(t, τ, θ−tω,Xτ(θ−tω))|2E + 2F̃(u(t, τ, θ−tω, uτ)

]
dx

≤ e2σ1(t−τ)
∫
Rn

ρ

[
|x|2
r2

] [
|Xτ(θ−tω)|2E + F̃(uτ))

]
dx + C

∫ 0

τ−t
e2σ1(r−t)

∫
Rn

ρ

[
|x|2
r2

]
Υ(r− t, θr−tω)dxdr

+σ2

∫ 0

τ−t
e2σ1(r−t)(‖∇v(r, τ, θr−tω, vτ)‖2 + ‖∇u(r, τ, θr−tω, uτ)‖2

+‖η(r, τ, s, θr−tω, ητ)‖2
µ,1 + ‖v(r, τ, θr−tω, vτ)‖2)dr. (68)

Since Xτ = (uτ , vτ , ητ)> ∈ B(τ, θ−tω), B ∈ D is tempered, by (46)-(47), we find that the first term on the
right-hand side of (68) goes to zero as t → −∞. Hence, there exist T1(τ, B, ω) > 0 and R1 = R1(τ, ω, B) such
that for all such that t ≥ T1

lim
r→−∞

e−σr
∫
Rn

ρ

[
|x|2
r2

] [
|Xτ(θ−tω)|2E + F̃(uτ)

]
≤ 2ε, (69)

by condition (11), (13)-(14) and Lemma 10, there are T2 = T2(τ, B, ω) > 0 and R1 = R1(τ, ω) ≥ 1 such that for
all t ≥ T2 and R ≥ R1

C
∫ 0

τ−t
e2σ1(r−t)

∫
Rn

ρ

[
|x|2
r2

]
Υ(r− t, θr−tω)dxdr ≤ ε. (70)
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By Lemma 10, there are T3 = T3(τ, B, ω) > 0 and R2 = R2(τ, ω) ≥ 1 such that for all t ≥ T3 and r ≥ R2

σ2

∫ 0

τ−t
e2σ1(r−t)

(
‖∇v(r− t, τ, θr−tω, vτ)‖2 + ‖∇u(r− t, τ, θr−tω, vτ)‖2

+‖η(r− t, τ, s, θr−tω, ητ)‖2
µ,1 + ‖v(r− t, τ, θr−tω, vτ)‖2

)
dr ≤ ε.

(71)

By letting {
T̃ = max{T1, T2, T3},
R = {R1,R2},

(72)

then, from (69)-(71), it follows that

‖X(t, τ, θ−tω,Xτ(θ−tω))‖2
E(Rn\Hk)

≤ 4ε. (73)

5. Decomposition of equations

In order to obtain regularity estimates later, we decompose the Equation (4) by decomposing the nonlinear
term. At first, we will give the following decomposition on nonlinearity f = f0 + f1, where f0, f1 ∈ C1 satisfy
the following conditions for some proper constant: there is a constant C > 0 such that

| f0(s)| ≤ C(|s|+ |s|5), ∀ s ∈ R,

s f0(s) ≥ 0 ,

∃k0 ≥ 1, ϑ1 ≥ 0 such that ∀ ϑ ∈ (0, ϑ1],

∃ cϑ ∈ R, k0F0(s) + ϑs2 − cϑ ≤ s f0(s), ∀ s ∈ R

(74)

and 
| f ′1(s)| ≤ C(1 + |s|p), ∀ s ∈ R, 0 < p ≤ 4,

3F1(s)− C ≤ s f2(s),

− λ

8
s2 − C ≤ F1(s), ∀ s ∈ R

(75)

where
Fi(s) =

∫ s
0 fi(r)dr, i = 0, 1.

We decompose the solution ϕ = (u, v, ηt) into the two parts

ϕ = ϕ1 + ϕ2

where ϕ1 = (ũ, ṽ, ξ),ϕ2 = (ū, v̄, ζ) solves the following equation, respectively,
ũtt − β4ũ− α4ũt −

∫ ∞

0
µ(s)4ξt(s)ds + f0(ũ) = cũz(θtω),

ξt = −ξs + ũt,

ϕ1,τ = (ũτ , ṽτ , ξτ),

(76)

and 
ūtt − β4ū− α4ūt −

∫ ∞

0
µ(s)4ζt(s)ds + f (u)− f0(ũ) = g(x, t) + cūz(θtω),

ζt = −ζs + ūt,

ϕ2,τ = (ūτ , v̄τ , ζτ).

(77)

To prove the existence of a compact random attractor for the Random Dynamical System Φ, we get the
solutions of systems (76) and (77) similar to solution of a system (25), which one decays exponentially and
another are bounded in higher regular space. In order to get the regularity estimate, we will prove some a
priori estimates for the solutions of systems (76) on Rn × [τ, ∞]
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Let ϕ(τ, τ − t, θ−τω, ϕτ−t) = Φε(t, τ, ω)ϕ(τ, ω) be the solution of (15)-(17) or (18) with ϕ(τ, ω) ∈ B0, set
ϕ = ϕ1 + ϕ2 are the basis of absorbing set Φ, suppose that T1 = T1(τ, B0, ω)

B1(τ, ω) = tt≥T1 ϕ (τ, τ − t, θ−τω, ϕτ−t)

= ϕτ ∈ B1(ω) ⊆ B0(ω), ∀ t ≥ T1,
(78)

for any τ ∈ R, ω ∈ Ω, where T1 = T(τ, B0, ω) > 0 is the pullback absorbing time in Lemma 11, then it holds
B1(τ, ω) ⊆ B0(ω) such that

Φ(τ, τ − t, θ−tω, B1(τ − t, θ−tω) = ϕ(τ, τ − t, θ−τω, B1(τ − t, θ−tω))

⊆ B1(τ, ω) ⊆ B0(ω), ∀ t ≥ 0.
(79)

Lemma 13. Assume that (74) hold. For any τ ∈ R, ω ∈ Ω, t ≥ 0, there exists M0(ω) > 0 such that ϕ1(r) =

ϕ1(r, τ − t, ω, ϕτ−t) a solution of the system (76) satisfies.

‖ϕ1(r, τ − t, ω, ϕτ−t)‖2
E ≤ M0(ω), r ≥ τ − t. (80)

Proof. Let ϕ1 = (ũ, ṽ, ξ)> = (ũ, ũt + εũ, ξ)> be a solution of system (76), then it follows that{
ϕ′1 + H̃ϕ1 = F̃(ϕ1),

ϕ1,τ = (ũτ , ṽτ , ξτ)
> = (ũτ(x), ũ1τ(x) + εũτ(x), ξτ(x, τ, s))>.

(81)

Taking the inner product of (81) in L2(Rn) with ϕ1 in E, we show that

1
2

d
dt
‖ϕ1‖2

E +
(

H̃ϕ1, ϕ1
)
+
(

F̃(ϕ1), ϕ1
)
= 0, (82)

by Lemma 10 we have (
H̃ϕ1, ϕ1

)
≥ ε

2

(
‖ũ‖2

1 + ‖ṽ‖2
)
+

α

2
‖ṽ‖2 +

ε

4
‖ξ‖2

µ,1,

where ε satisfy (29). Now we estimate the third term of (82) such that

(
F̃(ϕ1), ϕ1

)
= ( f0(ũ), ũt + εũ) =

d
dt

F̃0(ũ) + ε
∫
Rn

f0(ũ)ũdx. (83)

According to (74)2 and (74)3, we get

F0(ũ) ≥ 0 , f0(ũ)ũ ≥ 0,
d
dt F̃0(ũ) + ε

∫
Rn f1(ũ)ũdx ≥ d

dt F̃0(ũ) + k0εF0(ũ) + εϑ‖ũ‖2 − εCϑ.
(84)

Thus, combining with (81), (82) and (80), it follows that

d
dt

(
‖ϕ1‖2

E + 2F̃0(ũ)
)
+ 2σ̃

(
‖ϕ1‖2

E + 2F̃0(ũ)
)
≤ ρ, (85)

where ρ = εcϑ and σ̃ = min( ε
2 , α

2 , ε
4 , k0ε)

‖ϕ1‖2
E + 2F̃0(ũ) ≥ ‖ϕ1‖2

E ≥ 0, (86)

hence
ϕ1,τ−t = (ϕτ−t(θ−τω) + cuz(θ−τω))>

≤ (M(ω) + cuz(θtω)) = M̃(ω) ∈ B0(θ−tω).
(87)

Together (74)1, (85) and (87), using Gronwall’s inequality over [r, τ − t], such that, by definition of B0(ω) and
Lemma 11,

‖ϕ1(r, τ − t, ω, ϕ1(τ−t))‖E ≤ M0(ω). (88)
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Lemma 14. For any τ ∈ R, ω ∈ Ω and t > 0, there exist positive constant σ1 ≥ 0, such that ϕ1(r) ∈ B, r ∈ R, ω ∈
Ω, B ∈ D, the solution of system (76) satisfies

‖ϕ1(r, τ − t, ω, ϕ1,τ−t‖2
E ≤ M̄2(ω), ∀r ≥ τ − t. (89)

Proof. Let ϕ1 = (ũ, ṽ, ξ)> = (ũ, ũt + εũ, ξ)> be a solution of (76) similar to Lemma 74. Then from (74), there
exists σ̃(ω) ≥ 0 and $̄(ω) such that

F0(ũ) ≥ 0, f0(ũ)ũ ≥ 0, ∀ ũ ∈ R,

next due to (74)1 and for every u1 ∈ H1(Rn), by embedding theorem H1(Rn) ⊂ L6(Rn) ⊂ L4(Rn) ⊂ L2(Rn)

and (81), we conclude

0 ≤ F̃0(ũ) ≤
∫
Rn

F0(u1)dx ≤ C(‖ũ‖2 + ‖ũ‖6
L6) ≤ $̄(ω)‖ũ‖2

1, σ̃‖ũ‖2
1 ≥

σ̃

$̄(ω)
F̃0(ũ), ∀ ũ ∈ R, (90)

due to (81) and (90), we can obtain the following result,

d
dt
(‖ϕ1‖2

E + 2F̃0(ũ)) + 2σ̃‖ϕ1‖2
E +

σ̃

2$̄(ω)
F̃0(ũ) ≤ ρ. (91)

take σ1(ω) = min [σ̃, σ̃
2$̄(ω)

]. By Gronwall’s inequality to (91) over [r, τ − t] and replacing ω to θ−rω, we find

‖ϕ1(r, τ − t, θ−rω, ϕ1,τ−t(θ−rω)‖2
E ≤

(
‖ϕ1,τ−t‖2

E + F̃0(ũτ−t)
)

e2σ1(ω)(r+t−τ) + ρ
∫ r

τ−t
e−2σ1(s,ω)ds

≤
(

M̃(ω) + F̃0(ũτ−t)
)

e2σ1(ω)(r+t−τ) + ρ
∫ r

τ−t
e−2σ1(s,ω)ds, (92)

by (74)1, we get the following estimate

F̃0(ũ) =
∫
Rn

F0(u1)dx ≤ C(‖ũ‖2 + ‖ũ‖6
L6) ≤ C f ‖ũ‖6

H1 ≤ Cp M̃6(ω), ∀ ũ ∈ R. (93)

Thus, collecting all (87) and (92)-(93), we arrive at (89), where

M̄2(ω) =
(

M̃(ω) + Cp M̃6(ω)
)

e2σ1(ω)(r+t−τ) + ρ
∫ r

τ−t
e−2σ1(s,ω)ds.

Lemma 15. Under the conditions of (6)-(11), (74)-(75). For any (τ, r) ∈ R, ω ∈ Ω, there exists random variable radius
$2(τ, ω) > 0 such that solution of the system (77) satisfies the following estimates, for all t ≥ r, r ≥ τ − t,∥∥∥A

ν
2 ϕ2(τ, τ − t, θ−τω, ϕτ−t)

∥∥∥2

E
≤
(∥∥∥A

1+ν
2 ū
∥∥∥2

+
∥∥∥A

ν
2 v̄
∥∥∥2

+
∥∥∥A

ν
2 ζ
∥∥∥2

µ,1

)
≤ $2

2(τ, ω), (94)

where
ν = min{1

4
,

5− p
2
}, ∀ 0 ≤ p ≤ 4. (95)

Proof. Let ϕ2 = (ū, v̄, ζ)> = (ū, ūt + εū − cūz(θtω), ζ)>, then the system (77) is equivalent to the following
system with initial data 

ūt + εū− v̄ = cūz(θtω),

dv̄
dt

+ ε(ε− αA)ū + βAū− (ε− αA)v̄ +
∫ ∞

0
µ(s)Aζt(s)ds

= −( f (u)− f0(ũ) + g(x, t) + cz(θtω)(2εū− αAū + ūt),

ζt + ζs + εū− v̄ = cūz(θtω),

(96)
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thus, we can rewritten (96), by the following equation{
ϕ′2 + H̄ϕ2 = F̄2(ϕ2, ω, t),

ϕ2,τ = (ūτ , v̄τ , ζτ)
>,

(97)

where

H̄ϕ2 =

 εū− v̄
ε(ε− αA)ū + βAū− (ε− αA)v̄ + ζ

εū− v̄ + ζs

 ,

and

F̄2(ϕ2, ω, t) =

 cūz(θtω)

cū(ε− αA)z(θtω) + c2ūz2(θtω) + cv̄z(θtω)− ( f (u)− f0(ũ)) + g(x, t)
cūz(θtω)

 . (98)

Taking scalar product of (97) with Aν ϕ2(r), then positively(
ϕ′2, Aν ϕ2

)
+ (H̄ϕ2, Aν ϕ2) = (F̄2(ϕ2, ω, t), Aν ϕ2) . (99)

According to (95) and Lemma 10, we find

(H̄ϕ2, Aν ϕ2) =
ε

2

(∥∥∥A
1+ν

2 ū
∥∥∥2

+
∥∥∥A

ν
2 v̄
∥∥∥2
)
+

α

2

∥∥∥A
ν
2 v̄
∥∥∥2

+
ε

4

∥∥∥A
ν
2 ζ
∥∥∥2

µ,1
, (100)

next, we will estimate the right-hand side of (99), yield

(F̄2(ϕ2, ω, t), Aν ϕ2) = ((cūz(θtω), Aνū)) + (cū(ε− αA)z(θtω) + c2ūz2(θtω) + cv̄z(θtω)− ( f (u)− f0(ũ))

+g(x, t), Aνv̄) + (cūz(θtω), Aνζ)µ,1. (101)

From (30)-(36) and (97) one by one, we get,

((cūz(θtω), Aνū)) ≤ |c||z(θtω)|‖A
ν+1

2 ū‖2, (102)

ε(cūz(θtω), Aσ v̄) ≤ ε|c||z(θtω)|
2
√

λ1
(‖A

1+ν
2 ū‖2 + ‖A

ν
2 v̄‖2), (103)

α(c∇ūz(θtω),∇Aνv̄) ≤ αλ1|c||z(θtω)|
2

(
‖A

1+ν
2 ū‖2 + ‖A

ν
2 v̄‖2

)
, (104)

(c2ūz2(θtω), Aνv̄) ≤ 2|c|4|z(θtω)|4
ελ0

+
ε

8
(‖A

1+ν
2 ū‖2 + ‖A

ν
2 v̄‖2), (105)

(cv̄z(θtω), Aνv̄) ≤ |c||z(θtω)|
2

‖A
ν
2 v̄‖2, (106)

(cūz(θtω), Aνζ)µ,1 ≤
|c||z(θtω)|

2
(‖A

1+ν
2 ū‖2 + ‖A

ν
2 ζ‖2

µ,1), (107)

(g(x, t), Aνv̄) ≤ 2
(4α + ε)

‖A
ν
2 g(x, t)‖2 +

4α + ε

8
‖A

ν
2 v̄‖2, (108)

for nonlinear term we have

( f (u)− f0(ũ), Aνv̄) = ( f (u)− f0(ū), Aν(ū + εū− cūz(θtω)))

≤ d
dt

∫
Rn
( f (u)− f0(ũ))Aνūdx +

∫
Rn
( f (u)− f0(ũ))Aνūdx

−
∫
Rn
( f ′(u)ut − f ′0(ũ)ũt)Aνūdx−

∫
Rn
( f (u)− f0(ũ))Aνūz(θtω)dx.
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Next, due to (8), (74)-(75), the Cauchy-Schwartz inequality and the Young inequality, we arrive at∫
Rn
( f ′(u)ut − f ′0(ũ)ũt)Aνūdx =

∫
Rn
(( f ′0(u)− f ′0(ũ))ut + f ′0(ũ)ūt + f ′1(u)ut)Aνūdx, (109)

hence, the following inequalities holds∫
Rn
( f ′0(u)− f ′0(ũ))ut Aνūdx ≤ C

∫
Rn

f ′′0 (u + θ(u− ũ))|u− ũ||ut||Aνū|dx

≤ C
∫
Rn

(
1 + |u|3 + |ũ|3

)
|ū||Aνū||ut|dx

≤ C
(

1 + ‖u‖3
L6 + ‖ũ‖3

L6

)
‖ū‖

L
6

1−2ν
‖Aνū‖

L
6

1+2ν
‖ut‖L6

≤ k1 (r, τ − t, ω) ‖A
1+ν

2 ū‖

≤ 4εk2
1 (r, τ − t, θtω) +

ε

16
‖A

1+ν
2 ū‖2, (110)

and note that ν ≤ 5−p
2 , ∫

Rn
f ′1(u)ut Aνūdx ≤ C

∫
Rn
(1 + |u|p)|ut||Aνū|dx

≤ C(1 + ‖u‖p
L 6p

5−2ν

)‖Aνū‖L 6
1+2ν
‖ut‖L2

≤ C(1 + ‖∇u‖p)‖Aνū‖L 6
1+2ν
‖ut‖L6

≤ 4εk2
2 (r, τ − t, θtω) +

ε

16
‖A

1+ν
2 ū‖2, (111)

such as ∫
Rn

f ′0(ũ)ūt Aνūdx ≤ C(1 + ‖ũ‖4
L6)‖A

1+ν
2 ū‖L 6

1+2ν
‖Aνūt‖

L
6

3+2ν

≤ C(1 + ‖ũ‖4
L6)‖A

1+ν
2 ū‖L 6

1+2ν
‖Aνūt‖

L
6

3+2ν

≤ 4εk3 (r, τ − t, θtω) (‖A
ν
2 ū‖2 + |ε|2) + ε

16
‖A

1+ν
2 ū‖2

L 6
1+2ν

(112)

and ∫
Rn

( f (u)− f0(ũ)) |Aνū||z(θtω)|dx ≤ C
∫
Rn

f ′ (u + θ(u− ũ)) |u− ũ||Aνū||z(θtω)|dx

≤ C
∫
Rn

(
1 + |u|4 + |ũ|4

)
|ū||Aνū||z(θtω)|dx

≤ C
(

1 + ‖u‖4
L6 + ‖ũ‖4

L6

)
‖ū‖

L
6

1−2ν
‖Aνū‖

L
6

1+2ν
|z(θtω)|

≤ 4ε
(

k2
4 (r, τ − t, θtω) + |z(θtω)|2

)
+

ε

16

∥∥∥A
1+ν

2 ū
∥∥∥2

. (113)

Thus, by collecting all (100)-(113) and (99), we show that

1
2

d
dt

(
‖A

ν
2 ϕ2‖2

E + 2 ( f (u)− f0(ũ))
)
+

ε

4

∥∥∥A
ν
2 ϕ2

∥∥∥2

E
+

kε

2
( f (u)− f0(ũ))

≤ µ1|c||z(θtω)|‖A
ν
2 ϕ2‖2

E + C(ω)[1 + k2
1(r, τ − t, ω) + k2

2(r, τ − t, θtω)

+k2
3(r, τ − t, ω) + k2

4 (r, τ − t, ω) + |z(θtω)|2 + |z(θtω)|4 + ‖A
ν
2 q(x, t)‖2]. (114)

By Gronwall’s inequality to (114) on [τ − t, r] and replacing ω to θ−τω, we have∥∥∥A
ν
2 ϕ2(r, τ − t, θ−τω, ϕτ−t(θ−τω))

∥∥∥2

E
≤

(
‖A

ν
2 ϕ2(r, τ − t, θ−τω, ϕτ−t)‖2

E + 2( f (u(r, τ − t, θ−τω, ϕτ−t))

− f0(ũ (r, τ − t, θ−τω, ϕτ−t))
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≤
(
‖A

ν
2 ϕ2‖2

E + ( f (u)− f0(ũ))
)

exp2
∫ τ−t

r (σ−µ1|c||z(θs−τω)|))(s−τ,ω)ds

+
∫ r

τ−t
ρ1(s, θsω)exp2

∫ s
r (σ−µ1|c||z(θς−τω)|)(ς−τ,ω)dςds. (115)

We put

ρ1(r, θtω) = C(ω)[1 + k2
1(r, τ − t, θtω) + k2

2(r, τ − t, θtω) + k2
3(r, τ − t, θtω)

+k2
4 (r, τ − t, θtω) + |z(θtω)|2 + |z(θtω)|4 + ‖A

ν
2 g(x, t)‖2]. (116)

Similar to above equation,∫
Rn

( f (u)− f0(ũ)) Aνūdx ≤ C
∫
Rn
( f ′(u + θ(u− ũ))|u− ũ||Aνū|dx

≤ C
∫
Rn

(
1 + |u|4 + |ũ|4

)
|ū||Aνū|dx

≤ C(1 + ‖u‖4
L6 + ‖ũ‖4

L6)‖ū‖
L

6
1−2ν
‖Aνū‖

L
6

1+2ν

≤ k5 (τ, τ − t, θ−tω) ‖A
1+ν

2 ū‖‖Aνū‖

≤ εk2
5 (τ, τ − t, θ−tω) ‖A

ν
2 ū‖2 +

ε

4
‖A

1+ν
2 ū‖2, (117)

by (115) and (117), we can get

‖Aν ϕ2(τ, τ − t, θ−τω, ϕτ−t)‖2
E ≤ $2

2(τ, ω).

6. Random attractors

In this section, we establish the existence of a D-random attractor for the random dynamical system Φ
associated with system (18) onRn, that is, by Lemma 10, Φ has a closed random absorbing set inD, which along
with the D-pullback asymptotic compactness, they imply the existence of a unique D-random attractor. Next
due to decomposition of solutions we shall prove the D-pullback asymptotic compactness of Φ (see[10,37]).
For τ ∈ R, ω ∈ Ω, t ≥ 0, we get

ζ(τ, τ − t, θ−τω, ϕτ−t, s) =

{
ū((τ, τ − t, θ−τω, ϕτ−t − ū(τ − r, τ − t, θ−τ+sω, ϕτ−t), r ≤ t,

ū(τ, τ − t, θ−τω, ϕτ−t), t ≤ r;
(118)

ζs(τ, τ − t, θ−τω, ϕτ−t) =

{
ūt(τ − r, τ − t, θ−τ+rω, ϕτ−t), 0 ≤ r ≤ t,

0, t ≤ r.
(119)

Lemma 16. Let Eν = H2ν+1 × H2ν × L2
µ(R+, H2ν+1) → L2

µ(R+, H2ν+1) is projection operator setting, Y =

ψ(r, Bν(τ, ω)) is a random bounded absorbing set, by Lemma 15, ψ(r) is the solution of the system (76), and by Lemma
15, there is a positive random radius $ν(τ, ω) depending on r, such that

1 Y is bounded in L2
µ(R+, H1+2ν)

⋂
H1

µ(R+, H2ν),

2 sup
η∈Y,s∈R+

‖η(s)‖2
µ,1 ≤ $ν(τ, ω). (120)

Denote by Bν the closed ball of H1+2ν × H2ν of random variable radius $ν(τ, ω), let we apply on a finite domain. Bν is
compact subset of H1+2ν × H2ν. Thus, we chose that a set B̃ν(τ, ω)

B̃ν(τ , ω) =
⋃

ψτ−t(θ−τω)∈B1(θ−tω)

⋃
t≥0

ζ(τ, τ − t, θ−τω, ϕτ−t(θ−τω), s), s ∈ R+, τ ∈ R, ω ∈ Ω, (121)
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hence, ν is as in (97). From (3) and (120), we find

‖η(s)‖2
µ,1 =

∫ +∞

0
µ(s)‖∇η(s)‖2ds ≤ $ν(τ, ω)

∫ +∞

0
eδsds ≤ $ν(τ, ω)

δ
. (122)

The next Lemma we investigate the main result about the existence of a random attractor for random
dynamical system Φ.

Lemma 17. we assume that ψ(t, τ, ω) is a solution of system (77) and the conditions of Lemma 14 hold, for each t ≥ 0,
there exists a random set B̃ν(ω) ∈ D(Eν) with

‖B̃ν(τ, ω)‖Eν = sup
ψ̃∈B̃ν(τ,ω)

‖ψ̃‖E ≤ M̃(τ, ω)

is relatively compact in E. Then we show the following attraction property of Ā(τ, ω), for every B(τ, θ−tω) ∈ D(E), if
there exist and positive number σ and M̃(τ, ω) ≥ 0 so as for each τ ∈ R, ω ∈ Ω it satisfy

dH(Φ(t, τ − t, θ−tω, B1(τ − t, θ−tω)), B̃1(τ, ω)) ≤ M0(τ, ω)e−σt → 0 at t→ +∞ (123)

Proof. Let ϕτ−t(θ−τω) ∈ B1(τ − t, θ−tω) and by (118)-(120) and Lemma 17, it concludes that B̃ν(τ , ω) is
relatively compact in L2

µ(R+, H1), let Bν(ω) ⊂ Eν ⊂ E be the ball of Eν of radius M(τ, ω) defined by (27),
where ν is as in (97). Lastly, we get compact set A0(ς, w) = B̃ν × Bν ⊂ E.
Since Lemma 10, Lemma 14 and ϕτ−t(θ−τω) ∈ B0(τ − t, θ−tω), there exists a random set M(τ, ω) ∈ B0 ⊆
B(τ, ω) ∈ D(E), such that

dH(Φ(t, τ − t, θ−tω, B(τ − t, θ−tω)), B0(ω)) ≤ M(τ, ω)e−σt → 0 at t→ +∞, (124)

next, follows from Lemma 13, for ϕτ−t(θ−τω) ∈ B1(τ − t, θ−tω), there exists positive a random variable
M0(τ, ω) ∈ B1(τ, ω) ∈ D(E) and M1(τ, ω) ∈ B1(ω) ∈ D(E) such that,

dH(Φ(t, τ − t, θ−tω, B(τ − t, θ−tω)), B1(τ, ω)) ≤ M0(τ, ω)e−σ1t → 0 as t→ +∞, (125)

by Lemma 15, let ϕτ−t(θ−τω) ∈ B1(τ − t, θ−tω), there exists positive a random variable $2
2(τ, ω) ∈ B1(ω) ∈

D(E), such that

dH(Φ(t, τ − t, θ−tω, B(τ − t, θ−tω)), B1(τ, ω)) ≤ $2
2(τ, ω)e−σ1t → 0 as t→ +∞, (126)

let ν ≥ 0 is fixed, by above recursion of finite steps at most 1
ν + 2, there exists random set $̃ν ∈ B̃ν(ω) ∈ D(Eν)

as for as
dH(Φ(t, τ − t, θ−tω, B1(τ − t, θ−tω)), B̃ν(τ, ω)) ≤ $̃ν(τ, ω)e−σ2νt → 0 at t→ +∞, (127)

due to Lemma 16 and (118)-(120), $ν(τ, ω) ∈ B1(ω) ∈ D(E) we have

dH(Φ(t, τ − t, θ−tω, Bν(τ − t, θ−tω)), B̃ν(τ, ω)) ≤ $ν(τ, ω)e−σ2νt → 0 at t→ +∞, (128)

and
Ã(τ, ω) = Bν(τ, ω)× B̃ν(τ, ω), (129)

Thus, by Lemma 11, there exists T = T(τ, ω, B) ≥ 0 such that ϕ(t, τ− t, θ−τω, B(τ− t, θ−τω) ⊆ B0(ω)) ∀t ≥ T
Let t ≥ T and T = t− r ≥ T(τ, ω, B0) ≥ 0, using cocycle property (3) of Φ, we show that

ϕ(t, τ − t, θ−τω, B(τ − t, θ−τω)) = ϕ(t, τ − T, θ−τω, B(τ − T, θ−τω))

= ϕ(τ, τ − T̂, (θ−τω), ϕ(τ − T̂, τ − T, θ−τω, B(τ − T, θ−τω))

⊆ ϕ(τ − T, τ − T, θ−τω, B0(θ−Tω)) ⊆ B1(τ, ω), (130)
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for each ϕ(τ, τ − t, (θ−τω), ϕτ−t(θ−τω)) ∈ ϕ(t, τ − t, θ−τω, B(τ − t, θ−tω)), for t ≥ r + T(τ, ω, B0), where
ϕτ−t(θ−τω) ∈ B(τ − t, θ−tω). By (97) and Lemma 15, we get

ϕ̃(τ, τ − t, (θ−τω), ϕτ−t(θ−τω)) = ϕ(τ, τ − t, (θ−τω), ϕτ−t(θ−τω))

−ψ(τ, τ − t, (θ−τω), ψτ−t(θ−τω)) ∈ Ã(τ, ω). (131)

Therefore, thanks to Lemma 14, we conclude that

inf
ψ̃∈Ã(τ,ω)

‖ϕ(τ, τ − t, (θ−τω), ϕτ−t(θ−τω))− ψ̃‖2
E ≤ ‖ψ(τ, τ − t, (θ−τω), ψτ−t(θ−τω))‖2

E

≤ M̃2(τ, ω)e−σt , ∀t > T̃ + T(τ, ω, B0),

so

dH(Φ(t, τ − t, θ−tω, B(τ − t, θ−τω)), Ã(τ, ω)) ≤ M̃(τ, ω)e−σ1t → 0 at t→ +∞.

Theorem 18. Suppose that (6)-(11) hold. Then the continuous cocycle Φ associated with the problem (15)-(17) or (18)
has a unique D-pullback attractor A ⊆ Ã(τ, ω)

⋂
B0(ω), A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D in Rn.

Proof. Hence that the continuous cocycle Φ has a closed random absorbing set {A(ω)}ω∈Ω in D, by Lemma
10, Lemma 11 and Lemma 16, the continuous cocycle Φ is D-pullback asymptotically compact in Rn. Since
that the existence of a unique D- random attractor for Φ follows from Lemma 8 immediately.
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