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Abstract: In this paper, we study the generalized porous medium equations with Laplacian and abstract
pressure term. By using the Fourier localization argument and the Littlewood-Paley theory, we get global
well-posedness results of this equation for small initial data uy belonging to the critical Fourier-Besov-Morrey
spaces. In addition, we also give the Gevrey class regularity of the solution.
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1. Introduction

W e investigate the generalized porous medium equation in the whole space R3,

ur + uAu = V- (uVPu); (t,x) € RT xR3,
M

u(0,x) = ug x € R?,

where u = u(t, x) is a real-valued function, which denotes a density or concentration. The dissipative
coefficient 4 > 0 corresponds to the viscous case, while y = 0 corresponds to the inviscid case. The fractional
Laplacian operator A* is defined by Fourier transform as A%y = |Z|*2, and P is an abstract operator.

The equation (1) was introduced in the first by Zhou et al. [1]. In fact, Equation (1) is obtained by adding
the fractional dissipative term yA%u to the continuity equation (PME) u; + V - (uV) = 0 given by Caffarelli and
Vézquez [2], where the velocity V derives from a potential, V = —Vp and the velocity potential or pressure p
is related to u by an abstract operator p = Pu [3].

For y = 0Oand Pu = (—A)Su = A"%u,0 < s < 1; X. Zhou et al. [4] were interested in finding the
strong solutions of the equation (1) which becomes the fractional porous medium equation in the Besov spaces
B} . and they obtained the local solution for any initial data in Bj ,,. Moreover, in the critical case s = 1, the
Equation (1) leads to a mean field equation [4,5]. Let’s take this opportunity to briefly quote some works on
the well-posedness and regularity on those equations such as [4,6] and the references therein.

On the other hand, an another similar model occurs in the aggregation equation, and plays a fundamental
role in applied sciences such as physics, biology, chemistry, population dynamics. It describes a collective
motion and aggregation phenomena in biology and in mechanics of continuous media [7,8]. In the aggregation
equation, the abstract form pressure term Pu can also be represented by convolution with a kernel K as Pu =
K % u. The typical kernels are the Newton potential |x|7 [9,10], and the exponent potential —e~ %l [11,12]. For
more results on this equation, we refer to [13,14] and the references therein.

Recently, Zhou et al. [1] obtained the local well-posedness in Besov spaces for large initial data, and
proved that the solution becomes global if the initial data is small, also, they studied a blowup criterion for the
solution.
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In addition, we can represent the Equation (1) with the same initial data by

up+uANu+v-Vu=—-u(V-0);

v=—VPu. @)

As a consequence, this equation must be compared to the geostrophic model. So, the convective velocity is
not absolutely divergence-free for the generalized porous medium equation. Additionally, if we assume that
v is divergence-free vector function (V - v = 0), the form (2) can contain the quasi-geostrophic (Q-G) equation
[15,16].

Inspired by the works [1,17]; the aim of this paper is to prove the well-posedness results of Equation (1)
and to give the Gevrey class regularity of the solution in homogeneous Fourier Besov-Morrey spaces under

the condition that the abstract operator P is commutative with the operator e~ MVHDIZ and

9,9 Pitlygy < C27 gyl - ®)

Clearly, for the fractional porous medium equation, i.e. Pu = A~%u, wegetc = 1 —2s. If Pu = K*u
in the aggregation equation, Wu and Zhang [18] proved a similar result under the condition VK € W1,
a € (0,1). Corresponding to their case we give a same result for ¢ = 0 when VK € L!, and also a similar result
for o = 1 when K € L.

Throughout this paper, we use FN ; A4 to denote the homogenous Fourier Besov-Morrey spaces, C will
denote constants which can be different at different places, U < V means that there exists a constant C > 0
such that U < CV, and p’ is the conjugate of p satisfying % + % =1forl <p <ol

2. Preliminaries and main results

We start with a dyadic decomposition of R”. Suppose x € C°*(R"), ¢ € CF(R" \ {0}) satisfying

4
supp x C {éeR" Hg] < 3},

SUPP(PC{CER”1i§|§§§},

x@+ Y. 9@272)=1, feR",
j=0
Z §0(2_]§) =1, ¢d¢€ Rn\{o}l

JEL

and denote ¢;(¢) = @(27/¢) and P the set of all polynomials.
First, we recall the definition of Morrey spaces which are a complement of L? spaces.

Definition 1 ([19]). For 1 < p < o0, 0 < A < n, the Morrey spaces M;,‘ = M;}(R”) is defined as the set of
functions f € Llpo (R"™) such that

_A
HfHM}A, = sup supr * ”f”LP(B(xo,r)) < %, 4)
xpER™ r>0

where B(x, 7) denotes the ball in R"” with center xy and radius 7.

It is easy to see that the injection M/P}l — Mgz provided "p;z” > ”p’—lA and py < pp, and Mg =LF.
ith L = 1 4+ 1 A Moy A
If1 < p1,pa,p3s <ocand 0 < A, Ay, A3 < n with 5 = T and o = T then we have the

Holder type inequality

£l

2 < .
wis = Il gl

Also, for1 < p<ooand0< A <n,

19 8l < 1@l gy ©)
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forall ¢ € L' and g € My,

Definition 2. (homogeneous Fourier-Besov-Morrey spaces ) Lets € R, 0 < A < #n,1 < p < +c0 and
1 < g < +o0. The space .7-"/\/',, A,q(R") denotes the set of all u € S'(R") /P such that

1/q
RS :{Zzwanoun" V< oo, ©)

with suitable modification made when g = co.
Note that the space FN; paq(R") equipped with the norm (6) is a Banach space. Since M% = LP, we have

.7:/\/;,0 = FB;; g ]:/\/1,0,44 = Fleq = 5’3 and fj\'/’ljol,l = x~! where B;; is the Fourier-Herz space and ! is the

Lei-Lin space [20].
Now, we recall the definition of the mixed space-time spaces.

Definition 3. Lets € R, 1 < p < o0, 1 <gp <o, 0<A<nandI=[0,T), T € (0,00]. The space-time
norm is defined on u(t, x) by

1/q
It )l goirrnrs, ) = { L 2" lgill, i)
]

and denote by £ (I; FNP Aq) the set of distributions in §'(R x R") /P with finite ||. HEP(ITNS | ynorm.
FNpag

According to Minkowski inequality, we have

LA(LFN, ) = LALFN, ), ifp<g,
LP(1; ‘FNpAq) LP(I;]:N;,)\,q), ifp>q,

1/p
-5 = . o
where [1e(t, )l = (i 0T )
Our first main result is the following theorem.

Theorem 4. Assume that the abstract operator P satisfies the condition (3). If0 < A < 3,1 < g < oo, 1 < p < oo and

—at g to
max{l+0c,0} <a <2 + —|— -+ o then there exists a constant Cq such that for any ug € ]:./\/ A satisfies
luoll | 5 A < Cou, the equatlon(l) admits a unique global solution u,

FN g 4

pAg pAA pAA

[ 1-a+ 3 4840 + pffu| 143+ 240 < 2C|juo| B
Lo | [0,00);FN v L] [0,00);FN, P FN P

where C is a positive constant.
Now, we give some remarks about this result.

Remark 1. The result stated in Theorem 4 is based on the works [3]. In particular, this result remains true if

we replace the Fourier-Besov-Morrey space FA, , , by other functional spaces such as Fourier-Herz space 15,

P A
Fourier-Besov space FBM and Lei-Lin space y !

The analyticity of the solution is also an important subject developed by several researchers, particularly
with regard to the Navier-Stokes equations, see [17] and its references. In this paper, we will prove the Gevrey
class regularity for (1) in the Fourier-Besov-Morrey space. Inspired by this, we have obtained the following
specific results.
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Theorem 5. Let 0 < A < 3,1 < g <o0,1<p < ooand max{l+0c,0} <a <min{2,2+%+%+0}. There
3

7+7
exists a constant Cy such that, if uy € .7-"/\/ vy satisfies |||

FN

'y et B g4 < Cop, then the Cauchy problem
pAg
(1) admits a unique analytic solution u, in the sense that

14
DI|2 t|D
He”‘/ﬂ |ZMH . a+7+p+0 +V|‘ey\ﬂ ‘ ”” ‘1+%+%+a SZCHuO” _1—a+%+%+«7’
L2 [0,00),FN 0 7 LU 0,00, FN, FN g’

We finish this section with a Bernstein type lemma in Fourier variables in Morrey spaces.

Lemma 6 ([21]). Let 1 < g < p < 00,0 < Ay, Ay < 1, ”_pAl < "7‘2, and let <y be a multiindex. Ifsupp(A) C

{|&| < A2/} then there is a constant C > 0 independent of f and j such that

168 Flyge < 27 )

3. The well-posedness

First, we consider the linear nonhomogeneous dissipative equation

{ up + puANu = f(t,x) (tx) €eRT xR? ®

u(0,x) = up(x) x €R?,
for which we recall the following result.

Lemma 7 ([22]). Let I = [0,T), 0 < T <o0,s e RO<A<31<p<oo,andl <gq,p < oco. Assume that
U E]:NpAqunde LP (I FN
all p1 € [p, —i—oo]

A > Then the Cauchy problem (8) has a unique solution u(t,x) such that for

s)
e (I]:NPM )

1 < (4" 19
f1 « — -5 P
g ”uHcm <I;f/\‘f”ﬁ> - (3) (HuoH;Np/A/q MG HfH
and

4 14
)+ 110 s ) < 0 (5)) (Bl + 10, ))-
If in addition q is finite, then u belongs to C(I; ]—"/\/p Ag)-
24+ 540

A
Proposition 8. Let 1 < p <o, 1<p,g<oo, 1+0<a< 271”,03/\<3, I=1[0,T), T € (0,00], and set
0

pAg pAA

AR A —at Syt
X:£°°<I]-"N pU)ﬂE”(I}"N ! pﬁ),

with the norm

”uHX: “uH 1a+p3+p+zr +V””H _1%+%+%+%+v :
L I;]:Np/\q LP I;]:Np,/\,q

There exists a constant C = C(p,q) > 0 depending on p,q such that

[[ud;Po]| ~2(a- 1>+3+“p+?;+a) < CpHlullxllo]lx ©)
P

LP (I }'/\f
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Proof. Let us introduce some notations about the standard localization operators. We set

uj=Aju = (ﬁ_lq)j) «u, Sju= Y A, Zju = Y Au, VjeZ.
k<j—1 k—jl<1

Using the decomposition of Bony’s paraproducts for the fixed j, we have

Aj(uoiPv) = Y Aj(Sk_qubi(9iPv)) + Y Ai(Sk_1(9iPv)Au) + Y Aj(Akqu(ain))
|k jl<4 |k—jl<4 k>j-3

= [+ I + I1I;.

To prove this proposition, we can write

[|ud; Po

PP jez

j(—2(a— 1+ + +4 +oq 1/q
2(a— 1)+p3+ +440 S/ {22 ” ]||Lp IM)‘)}
pAAq

LP (I;]:N

j(—2(a— 1+ 5540 1/q
]G

1/q
i {22] 2(a-1)+3 +++0q”1HH

jEZ

Le IM/\)} (10)

We treat the above three terms differently. First, using Young’s inequality (5) in Morrey spaces, and
Lemma 6 with |y| = 0, we get

111 ¢ M) S Y ISk 1“Ak( )l emp)

lk—jl<4
< L 1o F@Po) an X lortler
k—jl<4 1<k-2
l( +
< 2 ”(Pk}-(apv)”m[M)t Z ||ul||Loo(1MA)
k—j|<4 1<k—2
1
I(a—1—
S L 2Nl ( X 277
|k jl<4 1<k-2 £ I;f/\/mq v
k(
N Z 2ka=1) ||Uk||LP(IM)‘ ] 1at3 1440\
k—jl<4 e (1;pr,/\,q’” ! )
i(—2(a— 3 pa A
Multiplying by P PRy e) , and taking /7—norm of both sides in the above estimate, we obtain
J(=2(a— 1)+ 54845 +0)g 1/q
22 ||I ||U7 IM)‘)}
JEZ
k(—at+ 34245400y (j—k)(—2(a—D)+3+4+240), o ay1/q
< Z 2 2 TPty P ||’()k||Lp(LM}/})>} X ||ul| N
JEZ " lk—jl<4 ﬁm(l;]:Np,Alq ’ )
S ] 1-a+ 34440 il I A AT (1)
© . P TN P
e () a1

Likewise, we prove that

j(=2(a— 1+ G Ly adl 1/q
{x? TGy b S I vty Il e - (12)
jez M) £°°<1‘le +”+p+) E"(I-le Wﬂmﬁ)

pAg pAg
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To evaluate I11;, we apply the Young inequality (5) in Morrey spaces and Lemma 6 with |y| = 0, we
obtain

2j(_2(a_1)+%+%+%+0)||I/I—TjHLP(I,M{})
< PR Y 1F(Akudi(@iPo)) || oy
k>j-3|1-k]<1 o
i(—2(a—1)+3+44+2 10) N
< 27UV @l gy |91 F @PO) | 00
k>3 |1—k[<1
S 2]‘(—2(06—1)"!‘%"‘%"‘%"'0') 21(% % HukHLp(IM/\ 21 HUIHL“’ IM/\)
k>j—3 1-K[<1
SR D D At s e e AT
k>j-31=—1 -
(1+k) (—(a=1)+F +2+0) |,
x (2 ' et UHUlJrkHLw(I,M;))'

Taking the [7—norm on both sides in the above estimate and using Holder’s inequalities for series with
—2(a71)+%+%+%+0>0,weget

=

22] 1x1+ +++L7q||HIH

LP(I M} )
JEZL

< (Y(Y Z o2 D+ 7 +5+5+0)m pa-1)l5(= (a=1)+F+5+5+0)(j—m)
JEZ “m<31=—1

. 1
(—(a=1)+ 5 +5+0)(j—m+D) ) 7

18-l aa3)) )
Mp

< 2 22 —2(a— l+ + +5 +(T) 2(0‘71)]||MH a3k
£P<I}'/\/ vy )

x| Tj—m [ 1o IM’\)Z

I=—1m<3

XHUH l—a+%+%+a :
£ (1;%‘/%%00” )

Since 11 — [*°, we obtain

-

j(—2(a—1) + + +4 +¢7 q q
(L2 I agy)" ST s Pl sy 03)
jeZ LO\LFN, 7 L2\ LFN,, . P

Estimates (10), (11), (12) and (13) yield (9). O
Lemma 9. Let X be a Banach space with norm ||.||x and B : X x X — X be a bounded bilinear operator satisfying

1B(w,0)|[x < nllullxv]x

for all u,v € X and a constant y > 0. Then, if 0 < & < ﬁ and if y € X such that |ly||x < e, the equation

x := y+ B(x, x) has a solution X in X such that ||%||x < 2e. This solution is the only one in the ball B(0,2¢). Moreover,
the solution depends continuously on y in the sense: if ||y ||x <&, x' =y’ + B(x',x), and ||x'||x < 2¢, then

1% — x| x < ly —v'llx-

4817

Proof of theorem 4

Proof. To ensure the existence of global solutions with small initial data, we will use Lemma 9.
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In the following, we consider the Banach space

et S 4340 1 e R R4
X =L® [O,+00);.7:./\/'p’/\’q P nL [O,+00);}"J\/'p,/\f’q )

First, we start with the integral equation

, t R
u = e My, +/0 e DAY L (u(1)VPu(t))dT
= e MMy + B(u,u) . (14)

We notice that B(u,v) can be thought as the solution to the heat Equation (8) with uy = 0 and force
f=V-(u(t)VPo(1)). According to Lemma 7 withs =1 —a + % + % + 0 and Proposition 8 with p = 1, we
obtain

1Bw,o)lx < (14 (5)") IV - @vPo)|

3

1 . 1—a+?+%+0
L [O,+00);]:Np’/\,q

< (1+(3)") M ulxliolix

; —utA® i — I
By Lemma 9, we know that if ||e upl|x < Rwith R FIERREITS

then the equation (14) has a unique solution in B(0,2R) := {x € X : ||x||x < 2R}. To prove [e " ug|x < R,
notice that e=#*A\" 11 is the solution to the dissipative equation with ug = 1g and f = 0. So, Lemma 7 yields

« 4\«
—ptA
e uollx < (14 (3) ol yaisge (15)
FNpra
If [Juo| 1ot 4o < Cop with Gy = W' then (14) has a unique global solution 1 € X satisfying
FN
PG

4N\
lullx <2(1+(3) Yol v
N 4

p
A

O
Proof of theorem 5
Proof. To prove Theorem 5, we note a(t, x) := etViID| : u(t, x) . Using the integral Equation (14), we obtain
a(t,x) = eP‘(\/ﬂD‘%*%tM)e*%”tMuo
n / * H(Vi=VDIDIE —H(t=r)AY = bp(t=D)A TP g (4 (Pu) Y
= Lu(; + B(u,u).

In order to obtain the Gevrey class regularity of the solution, we use Lemma 9. Firstly, we start by
estimating the term Luy = e aH(VHDI2 =124 = bty
Using the Fourier transform, multiplying by ¢; and taking the M;}—norm we obtain

Tun _1 jou «
HQDJ’LMOHMQ < Ce 2M2 (3/4) |

G”J’”AOHMQ :
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s (1—at3 42 .
Multiplying by 05+ and taking /7—norm we get
||L1/l0|| '1—a+%+%+a S CHMOH .1—a+%+%+7 .
Lo [0, 400N, FNpag "
Similarly

2j(1+%+%+0)

‘ijL/lzJ

R 1 jo o, i(l—at2+2 40
—1usi%(3/4)% 5 jA—atS+5+0) |
L1([0,+00) M) : (/0 © ? dt) 2 o H(PJMOHW '

We conclude by taking /7—norm that

p [ Luol|

pAg

.”%*%*” <C HuOH '1—a+%+i+a :
pAa

o ([0,+oo);fN FN !

Finally,

ILuollye < Clluoll  1oaiigie -

]:NP/M
On the other hand, we notice that E(u, v) as B (eVﬁDza, e”ﬁmzb) with b = e*VTIPI2y. Since

(VI8 2 =5 (=118 g uniformly bounded on t € (0,00) and 7 € [0, ], it sufficient to consider the estimate

2—a+ 5+ 5 +0
pver

of ||etVTIPI2 43, (Po)|| 3.0 for which we prove the flowing lemma.
L1 (I;}'J\'/’pﬂ’q )

Lemma 10. LetlSp<oo,1gqgoo,Og/\<3,1+0<a<min{2,2+%+%+a},I:[O,T),Te(O,oo],

and set
- letx+%+%+¢7 1 N1+%+%+a
X=L"LF pAg NnL | L F g .

There exists a constant C = C(p,q) > 0 depending on p, q such that

D|3 _
||eyﬁ| |2ual(PU)|| 27”‘+‘3f+%+f7 SC”‘ 1||aHXHbHX
L1 (I;]:NWW P )
Proof. Based on the same procedure in the proof of Proposition 8, we evaluate the estimate of
[|e#VTIPI2 49, (Po) || 2 ai3 2., - in fact, we have for fixed j
£ (rf/\‘f W )
’ pAA

Aje”ﬁm‘% (uai(Pv)) = Z A]e”\/ﬂm% (Sk_luAkai(Pv))

lk—j| <4

+ Z A]'E‘u\/ﬂD'z (S'k,lai(Pv)Aku)
Ik—jl<4

+kz A]‘EH\E'D‘Z (Akuﬁk&-(Pv))
>j-3

= 51,]‘ + 52,]' + 53,1' .



Open ]. Math. Anal. 2019, 3(2), 71-80 79

v (1812 —1g—n12 ~1y|2)

Since e is uniformly bounded on T when « € [0, 2], we obtain

M/]z} = || Z gojeﬂﬁ‘g‘jﬁ(Sk_1uAkai(Pv))HMﬁ
lk—jl<4

= Z (pjeﬂx/ﬂé\? [( Z e—ﬂﬁ\é\fal) % (e‘“ﬁmzﬁ‘(Aka,-(Pb)))]||MA
k—j|<4 1<k—2 ’

By (p/ Ve3P =ni?) (3 1) (& = 1) 7 (8d;(PD) (1) g
\k jl<4 1<k-2

lk—jl<4

[1S1,;

The same calculus as in Proposition 8 gives

j(2—a+3+240)g 1/q
22 e ||Sl/] LI(IM)‘)} S HaH 1 at3 + pro ”bH 1+%+%+J :
Jj€Z £ | LFA v £ LrEN, P

pAg pAg

Similarly, we show that

pAg pAq

i(2— /x+ 75 +0)q 1/9
{ZZ ”SZJ Ll(IMA)} < o]l 1-at 31440 Ha” 1+3+§+a :
= 2| LEN, Y LFN

Similarly, ‘ ‘

Using again the same procedure described in the proof of Proposition 8 we obtain

< YL 17 (Beads (3i(P0)) gy -

My T S <

j(2— a+ 5 4 A —Hrq 1/q
{22 ”53,] Ll(IM)‘)} < llall - a+p+ +o il : ‘1+%+%+0 :
= L2\ LFN, LY LFN, P
Finally,
E”ﬁ'D'zuai(Pv) 2at B deo < CuHlallxpllx -
I.F/\/p)\q
O

To finish the proof of Theorem 5, it is easy to obtain the requested result by repeating the same step in the
proof of Theorem 4 and Proposition 8. [
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