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1. Introduction

W e investigate the generalized porous medium equation in the whole space R3,
ut + µΛαu = ∇ · (u∇Pu); (t, x) ∈ R+ ×R3,

u(0, x) = u0 x ∈ R3 ,
(1)

where u = u(t, x) is a real-valued function, which denotes a density or concentration. The dissipative
coefficient µ > 0 corresponds to the viscous case, while µ = 0 corresponds to the inviscid case. The fractional
Laplacian operator Λα is defined by Fourier transform as Λ̂αu = |ξ|αû, and P is an abstract operator.

The equation (1) was introduced in the first by Zhou et al. [1]. In fact, Equation (1) is obtained by adding
the fractional dissipative term µΛαu to the continuity equation (PME) ut +∇ · (uV) = 0 given by Caffarelli and
Vázquez [2], where the velocity V derives from a potential, V = −∇p and the velocity potential or pressure p
is related to u by an abstract operator p = Pu [3].

For µ = 0 and Pu = (−∆)−su = Λ−2su, 0 < s < 1; X. Zhou et al. [4] were interested in finding the
strong solutions of the equation (1) which becomes the fractional porous medium equation in the Besov spaces
Bα

p,∞ and they obtained the local solution for any initial data in Bα
1,∞. Moreover, in the critical case s = 1, the

Equation (1) leads to a mean field equation [4,5]. Let’s take this opportunity to briefly quote some works on
the well-posedness and regularity on those equations such as [4,6] and the references therein.

On the other hand, an another similar model occurs in the aggregation equation, and plays a fundamental
role in applied sciences such as physics, biology, chemistry, population dynamics. It describes a collective
motion and aggregation phenomena in biology and in mechanics of continuous media [7,8]. In the aggregation
equation, the abstract form pressure term Pu can also be represented by convolution with a kernel K as Pu =

K ∗ u. The typical kernels are the Newton potential |x|γ [9,10], and the exponent potential −e−|x| [11,12]. For
more results on this equation, we refer to [13,14] and the references therein.

Recently, Zhou et al. [1] obtained the local well-posedness in Besov spaces for large initial data, and
proved that the solution becomes global if the initial data is small, also, they studied a blowup criterion for the
solution.
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In addition, we can represent the Equation (1) with the same initial data by

ut + µΛαu + v · ∇u = −u(∇ · v);
v = −∇Pu .

(2)

As a consequence, this equation must be compared to the geostrophic model. So, the convective velocity is
not absolutely divergence-free for the generalized porous medium equation. Additionally, if we assume that
v is divergence-free vector function (∇ · v = 0), the form (2) can contain the quasi-geostrophic (Q-G) equation
[15,16].

Inspired by the works [1,17]; the aim of this paper is to prove the well-posedness results of Equation (1)
and to give the Gevrey class regularity of the solution in homogeneous Fourier Besov-Morrey spaces under

the condition that the abstract operator P is commutative with the operator e−µ
√

t|D|
α
2 and

‖ϕj∇̂Pu‖Mλ
p
≤ C2jσ‖ϕjû‖Mλ

p
. (3)

Clearly, for the fractional porous medium equation, i.e. Pu = Λ−2su, we get σ = 1− 2s. If Pu = K ∗ u
in the aggregation equation, Wu and Zhang [18] proved a similar result under the condition ∇K ∈ W1,1,
α ∈ (0, 1). Corresponding to their case we give a same result for σ = 0 when∇K ∈ L1, and also a similar result
for σ = 1 when K ∈ L1.

Throughout this paper, we use FṄ s
p,λ,q to denote the homogenous Fourier Besov-Morrey spaces, C will

denote constants which can be different at different places, U . V means that there exists a constant C > 0
such that U ≤ CV, and p′ is the conjugate of p satisfying 1

p + 1
p′ = 1 for 1 ≤ p ≤ ∞.

2. Preliminaries and main results

We start with a dyadic decomposition of Rn. Suppose χ ∈ C∞
0 (Rn), ϕ ∈ C∞

0 (Rn \ {0}) satisfying

supp χ ⊂
{

ξ ∈ Rn : |ξ| ≤ 4
3

}
,

supp ϕ ⊂
{

ξ ∈ Rn :
3
4
≤ |ξ| ≤ 8

3

}
,

χ(ξ) + ∑
j≥0

ϕ(2−jξ) = 1, ξ ∈ Rn,

∑
j∈Z

ϕ(2−jξ) = 1, ξ ∈ Rn\{0},

and denote ϕj(ξ) = ϕ(2−jξ) and P the set of all polynomials.
First, we recall the definition of Morrey spaces which are a complement of Lp spaces.

Definition 1 ([19]). For 1 ≤ p < ∞, 0 ≤ λ < n, the Morrey spaces Mλ
p = Mλ

p(Rn) is defined as the set of
functions f ∈ Lp

loc(R
n) such that

‖ f ‖Mλ
p
= sup

x0∈Rn
sup
r>0

r−
λ
p ‖ f ‖Lp(B(x0,r)) < ∞, (4)

where B(x0, r) denotes the ball in Rn with center x0 and radius r.
It is easy to see that the injection Mλ

p1
↪→ Mµ

p2 provided n−µ
p2
≥ n−λ

p1
and p2 ≤ p1, and M0

p = Lp.

If 1 ≤ p1, p2, p3 < ∞ and 0 ≤ λ1, λ2, λ3 < n with 1
p3

= 1
p1

+ 1
p2

and λ3
p3

= λ1
p1

+ λ2
p2

, then we have the
Hölder type inequality

‖ f g‖
M

λ3
p3
≤ ‖ f ‖

M
λ1
p1

‖g‖
M

λ2
p2

.

Also, for 1 ≤ p < ∞ and 0 ≤ λ < n,

‖ϕ ∗ g‖Mλ
p
≤ ‖ϕ‖L1‖g‖Mλ

p
, (5)
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for all ϕ ∈ L1 and g ∈ Mλ
p .

Definition 2. (homogeneous Fourier-Besov-Morrey spaces ) Let s ∈ R, 0 ≤ λ < n, 1 ≤ p < +∞ and
1 ≤ q ≤ +∞. The space FṄ s

p,λ,q(Rn) denotes the set of all u ∈ S ′(Rn)/P such that

‖u‖FṄ s
p,λ,q(Rn) =

{
∑
j∈Z

2jqs‖ϕjû‖
q
Mλ

p

}1/q
< +∞, (6)

with suitable modification made when q = ∞.
Note that the space FṄ s

p,λ,q(Rn) equipped with the norm (6) is a Banach space. Since M0
p = Lp, we have

FṄ s
p,0,q = FḂs

p,q, FṄ s
1,0,q = FḂs

1,q = Ḃs
q and FṄ−1

1,0,1 = χ−1 where Ḃs
q is the Fourier-Herz space and χ−1 is the

Lei-Lin space [20].

Now, we recall the definition of the mixed space-time spaces.

Definition 3. Let s ∈ R, 1 ≤ p < ∞, 1 ≤ q, ρ ≤ ∞, 0 ≤ λ < n, and I = [0, T), T ∈ (0, ∞]. The space-time
norm is defined on u(t, x) by

‖u(t, x)‖Lρ(I;FṄ s
p,λ,q)

=
{

∑
j∈Z

2jqs‖ϕjû‖
q
Lρ(I,Mλ

p )

}1/q
,

and denote by Lρ(I;FṄ s
p,λ,q) the set of distributions in S′(R×Rn)/P with finite ‖.‖Lρ(I;FṄ s

p,λ,q)
norm.

According to Minkowski inequality, we have

Lρ(I;FṄ s
p,λ,q) ↪→ Lρ(I;FṄ s

p,λ,q), if ρ ≤ q,

Lρ(I;FṄ s
p,λ,q) ↪→ Lρ(I;FṄ s

p,λ,q), if ρ ≥ q ,

where ‖u(t, x)‖Lρ(I;FṄ s
p,λ,q)

:=
( ∫

I ‖u(τ, ·)‖ρ

FṄ s
p,λ,q

dτ
)1/ρ

.

Our first main result is the following theorem.

Theorem 4. Assume that the abstract operator P satisfies the condition (3). If 0 ≤ λ < 3, 1 ≤ q ≤ ∞, 1 ≤ p < ∞ and

max{1+ σ, 0} < α < 2+ 3
p′ +

λ
p + σ then there exists a constant C0 such that for any u0 ∈ FṄ

1−α+ 3
p′ +

λ
p +σ

p,λ,q satisfies
‖u0‖

FṄ
1−α+ 3

p′ +
λ
p +σ

p,λ,q

< C0µ, the equation(1) admits a unique global solution u,

‖u‖
L∞

[0,∞);FṄ
1−α+ 3

p′ +
λ
p +σ

p,λ,q

 + µ‖u‖
L1

[0,∞);FṄ
1+ 3

p′ +
λ
p +σ

p,λ,q

 ≤ 2C‖u0‖
FṄ

1−α+ 3
p′ +

λ
p +σ

p,λ,q

where C is a positive constant.

Now, we give some remarks about this result.

Remark 1. The result stated in Theorem 4 is based on the works [3]. In particular, this result remains true if
we replace the Fourier-Besov-Morrey space FṄ s

p,λ,q by other functional spaces such as Fourier-Herz space Ḃs
q,

Fourier-Besov space FḂs
p,q and Lei-Lin space χ−1.

The analyticity of the solution is also an important subject developed by several researchers, particularly
with regard to the Navier-Stokes equations, see [17] and its references. In this paper, we will prove the Gevrey
class regularity for (1) in the Fourier-Besov-Morrey space. Inspired by this, we have obtained the following
specific results.



Open J. Math. Anal. 2019, 3(2), 71-80 74

Theorem 5. Let 0 ≤ λ < 3, 1 ≤ q ≤ ∞, 1 ≤ p < ∞ and max{1 + σ, 0} < α < min{2, 2 + 3
p′ +

λ
p + σ}. There

exists a constant C0 such that, if u0 ∈ FṄ
1−α+ 3

p′ +
λ
p +σ

p,λ,q satisfies ‖u0‖
FṄ

1−α+ 3
p′ +

λ
p +σ

p,λ,q

< C0µ, then the Cauchy problem

(1) admits a unique analytic solution u, in the sense that

‖eµ
√

t|D|
α
2 u‖

L∞

[0,∞);FṄ
1−α+ 3

p′ +
λ
p +σ

p,λ,q

 + µ‖eµ
√

t|D|
α
2 u‖

L1

[0,∞);FṄ
1+ 3

p′ +
λ
p +σ

p,λ,q

 ≤ 2C‖u0‖
FṄ

1−α+ 3
p′ +

λ
p +σ

p,λ,q

.

We finish this section with a Bernstein type lemma in Fourier variables in Morrey spaces.

Lemma 6 ([21]). Let 1 ≤ q ≤ p < ∞, 0 ≤ λ1, λ2 < n, n−λ1
p ≤ n−λ2

q , and let γ be a multiindex. If supp( f̂ ) ⊂
{|ξ| ≤ A2j} then there is a constant C > 0 independent of f and j such that

‖(iξ)γ f̂ ‖
M

λ2
q
≤ C2j|γ|+j

(
n−λ2

q − n−λ1
p

)
‖ f̂ ‖

M
λ1
p

. (7)

3. The well-posedness

First, we consider the linear nonhomogeneous dissipative equation{
ut + µΛαu = f (t, x) (t, x) ∈ R+ ×R3

u(0, x) = u0(x) x ∈ R3 ,
(8)

for which we recall the following result.

Lemma 7 ([22]). Let I = [0, T), 0 < T ≤ ∞, s ∈ R, 0 ≤ λ < 3, 1 ≤ p < ∞, and 1 ≤ q, ρ ≤ ∞. Assume that

u0 ∈ FṄ
s
p,λ,q and f ∈ Lρ

(
I;FṄ

s−α+ α
ρ

p,λ,q

)
. Then the Cauchy problem (8) has a unique solution u(t, x) such that for

all ρ1 ∈ [ρ,+∞]

µ
1

ρ1 ‖u‖
Lρ1

(
I;FṄ

s+ α
ρ1

p,λ,q

) ≤ (4
3

)α(
‖u0‖FṄ s

p,λ,q
+ µ

1
ρ−1‖ f ‖

Lρ(I;FṄ
s+ α

ρ−α

p,λ,q )

)

and

‖u‖L∞(I;FṄ s
p,λ,q)

+ µ‖u‖L1
(

I;FṄ s+α
p,λ,q

) ≤ (1 +
(

4
3

)α

)
(
‖u0‖FṄ s

p,λ,q
+ ‖ f ‖L1(I;FṄ s

p,λ,q)

)
.

If in addition q is finite, then u belongs to C(I;FṄ s
p,λ,q).

Proposition 8. Let 1 ≤ p < ∞, 1 ≤ ρ, q ≤ ∞, 1 + σ < α <
2+ 3

p′ +
λ
p +σ

2− 1
ρ

, 0 ≤ λ < 3, I = [0, T), T ∈ (0, ∞], and set

X = L∞

(
I;FṄ

1−α+ 3
p′ +

λ
p +σ

p,λ,q

)
∩ Lρ

(
I;FṄ

1−α+ 3
p′ +

λ
p +

α
ρ +σ

p,λ,q

)
,

with the norm
‖u‖X = ‖u‖

L∞

I;FṄ
1−α+ 3

p′ +
λ
p +σ

p,λ,q

 + µ‖u‖
Lρ

I;FṄ
1−α+ 3

p′ +
λ
p + α

ρ +σ

p,λ,q

 .

There exists a constant C = C(p, q) > 0 depending on p, q such that

‖u∂iPv‖
Lρ

I;FṄ
−2(α−1)+ 3

p′ +
α
ρ + λ

p +σ

p,λ,q

 ≤ Cµ−1‖u‖X‖v‖X . (9)
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Proof. Let us introduce some notations about the standard localization operators. We set

uj = ∆̇ju =
(
F−1 ϕj

)
∗ u, Ṡju = ∑

k≤j−1
∆̇ku, ˜̇∆ju = ∑

|k−j|≤1
∆̇ku, ∀j ∈ Z .

Using the decomposition of Bony’s paraproducts for the fixed j, we have

∆̇j(u∂iPv) = ∑
|k−j|≤4

∆̇j(Ṡk−1u∆̇k(∂iPv)) + ∑
|k−j|≤4

∆̇j(Ṡk−1(∂iPv)∆̇ku) + ∑
k≥j−3

∆̇j(∆̇ku ˜̇∆k(∂iPv))

= Ij + I Ij + I I Ij .

To prove this proposition, we can write

‖u∂iPv‖
Lρ

I;FṄ
−2(α−1)+ 3

p′ +
α
ρ + λ

p +σ

p,λ,q

 .
{

∑
j∈Z

2
j(−2(α−1)+ 3

p′ +
α
ρ +

λ
p +σ)q‖ Îj‖

q
Lρ(I,Mλ

p )

}1/q

+
{

∑
j∈Z

2
j(−2(α−1)+ 3

p′ +
α
ρ +

λ
p +σ)q‖ Î Ij‖

q
Lρ(I,Mλ

p )

}1/q

+
{

∑
j∈Z

2
j(−2(α−1)+ 3

p′ +
α
ρ +

λ
p +σ)q‖ Î I Ij‖

q
Lρ(I,Mλ

p )

}1/q
. (10)

We treat the above three terms differently. First, using Young’s inequality (5) in Morrey spaces, and
Lemma 6 with |γ| = 0, we get

‖ Îj‖Lρ(I,Mλ
p )
≤ ∑
|k−j|≤4

‖ ̂Ṡk−1u∆̇k(∂iPv)‖Lρ(I,Mλ
p )

≤ ∑
|k−j|≤4

‖ϕkF (∂iPv)‖Lρ(I,Mλ
p ) ∑

l≤k−2
‖ϕl û‖L∞(I,L1)

≤ ∑
|k−j|≤4

‖ϕkF (∂iPv)‖Lρ(I,Mλ
p ) ∑

l≤k−2
2

l( 3
p′ +

λ
p )‖ûl‖L∞(I,Mλ

p)

. ∑
|k−j|≤4

2kσ‖v̂k‖Lρ(I,Mλ
p )

(
∑

l≤k−2
2l(α−1−σ)q′

) 1
q′ ‖u‖

L∞

I;FṄ
1−α+ 3

p′ +
λ
p +σ

p,λ,q


. ∑
|k−j|≤4

2k(α−1)‖v̂k‖Lρ(I,Mλ
p )
‖u‖

L∞

I;FṄ
1−α+ 3

p′ +
λ
p +σ

p,λ,q

 .

Multiplying by 2
j(−2(α−1)+ 3

p′ +
α
ρ +

λ
p +σ)

, and taking lq−norm of both sides in the above estimate, we obtain{
∑
j∈Z

2
j(−2(α−1)+ 3

p′ +
α
ρ +

λ
p +σ)q‖ Îj‖

q
Lρ(I,Mλ

p )

}1/q

.
{

∑
j∈Z

(
∑

|k−j|≤4
2

k(1−α+ 3
p′ +

λ
p +

α
ρ +σ)

2
(j−k)(−2(α−1)+ 3

p′ +
α
ρ +

λ
p +σ)‖v̂k‖Lρ(I,Mλ

p )

)q}1/q
× ‖u‖

L∞

I;FṄ
1−α+ 3

p′ +
λ
p +σ

p,λ,q


. ‖u‖

L∞

I;FṄ
1−α+ 3

p′ +
λ
p +σ

p,λ,q

‖v‖Lρ

I;FṄ
1−α+ 3

p′ +
λ
p + α

ρ +σ

p,λ,q

 . (11)

Likewise, we prove that{
∑
j∈Z

2
j(−2(α−1)+ 3

p′ +
α
ρ +

λ
p +σ)q‖ Î Ij‖

q
Lρ(I,Mλ

p )

}1/q
. ‖v‖

L∞

I;FṄ
1−α+ 3

p′ +
λ
p +σ

p,λ,q

‖u‖Lρ

I;FṄ
1−α+ 3

p′ +
λ
p + α

ρ +σ

p,λ,q

 . (12)
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To evaluate I I Ij, we apply the Young inequality (5) in Morrey spaces and Lemma 6 with |γ| = 0, we
obtain

2
j(−2(α−1)+ 3

p′ +
α
ρ +

λ
p +σ)‖ Î I Ij‖Lρ(I,Mλ

p )

≤ 2
j(−2(α−1)+ 3

p′ +
α
ρ +

λ
p +σ) ∑

k≥j−3
∑

|l−k|≤1

∥∥F (∆̇ku∆̇l(∂iPv))
∥∥

Lρ(I,Mλ
p )

≤ 2
j(−2(α−1)+ 3

p′ +
α
ρ +

λ
p +σ) ∑

k≥j−3
∑

|l−k|≤1

∥∥ûk
∥∥

Lρ(I,Mλ
p )

∥∥ϕlF (∂iPv)
∥∥

L∞(I,L1)

≤ 2
j(−2(α−1)+ 3

p′ +
α
ρ +

λ
p +σ) ∑

k≥j−3
∑

|l−k|≤1
2

l( 3
p′ +

λ
p )
∥∥ûk
∥∥

Lρ(I,Mλ
p )

2lσ∥∥v̂l
∥∥

L∞(I,Mλ
p)

≤ ∑
k≥j−3

1

∑
l=−1

2
(−2(α−1)+ 3

p′ +
α
ρ +

λ
p +σ)(j−k)

2(α−1)l(2(−(α−1)+ 3
p′ +

α
ρ +

λ
p +σ)k∥∥ûk

∥∥
Lρ(I,Mλ

p )

)
×

(
2
(l+k)(−(α−1)+ 3

p′ +
λ
p +σ)∥∥v̂l+k

∥∥
L∞(I,Mλ

p)
)

.

Taking the lq−norm on both sides in the above estimate and using Hölder’s inequalities for series with
−2(α− 1) + α

ρ + 3
p′ +

λ
p + σ > 0, we get

(
∑
j∈Z

2
j(−2(α−1)+ 3

p′ +
α
ρ +

λ
p +σ)q‖ Î I Ij‖

q
Lρ(I,Mλ

p )

) 1
q

≤
(

∑
j∈Z

(
∑

m≤3

1

∑
l=−1

2
(−2(α−1)+ 3

p′ +
α
ρ +

λ
p +σ)m

2(α−1)l2
(−(α−1)+ 3

p′ +
α
ρ +

λ
p +σ)(j−m)

×
∥∥ûj−m

∥∥
Lρ(I,Mλ

p )
2
(−(α−1)+ 3

p′ +
λ
p +σ)(j−m+l)∥∥v̂j−m+l

∥∥
L∞(I,Mλ

p)

)q) 1
q

≤
1

∑
l=−1

∑
m≤3

2
(−2(α−1)+ 3

p′ +
α
ρ +

λ
p +σ)m

2(α−1)l‖u‖
Lρ

I;FṄ
1−α+ 3

p′ +
α
ρ + λ

p +σ

p,λ,q


×‖v‖

L∞

I;FṄ
1−α+ 3

p′ +
λ
p +σ

p,λ,∞

 .

Since lq ↪→ l∞, we obtain

(
∑
j∈Z

2
j(−2(α−1)+ 3

p′ +
α
ρ +

λ
p +σ)q‖ Î I Ij‖

q
Lρ(I,Mλ

p )

) 1
q
. ‖u‖

Lρ

I;FṄ
1−α+ 3

p′ +
α
ρ + λ

p +σ

p,λ,q

‖v‖L∞

I;FṄ
1−α+ 3

p′ +
λ
p +σ

p,λ,q

 . (13)

Estimates (10), (11), (12) and (13) yield (9) .

Lemma 9. Let X be a Banach space with norm ‖.‖X and B : X× X 7−→ X be a bounded bilinear operator satisfying

‖B(u, v)‖X ≤ η‖u‖X‖v‖X

for all u, v ∈ X and a constant η > 0. Then, if 0 < ε < 1
4η and if y ∈ X such that ‖y‖X ≤ ε, the equation

x := y + B(x, x) has a solution x in X such that ‖x‖X ≤ 2ε. This solution is the only one in the ball B(0, 2ε). Moreover,
the solution depends continuously on y in the sense: if ‖y′‖X ≤ ε, x′ = y′ + B(x′, x′), and ‖x′‖X ≤ 2ε, then

‖x− x′‖X ≤
1

1− 4εη
‖y− y′‖X .

Proof of theorem 4

Proof. To ensure the existence of global solutions with small initial data, we will use Lemma 9.



Open J. Math. Anal. 2019, 3(2), 71-80 77

In the following, we consider the Banach space

X = L∞

(
[0,+∞);FṄ

1−α+ 3
p′ +

λ
p +σ

p,λ,q

)
∩ L1

(
[0,+∞);FṄ

1+ 3
p′ +

λ
p +σ

p,λ,q

)
.

First, we start with the integral equation

u = e−µtΛα
u0 +

∫ t

0
e−µ(t−τ)Λα∇ · (u(τ)∇Pu(τ))dτ

= e−µtΛα
u0 + B(u, u) . (14)

We notice that B(u, v) can be thought as the solution to the heat Equation (8) with u0 = 0 and force
f = ∇ · (u(τ)∇Pv(τ)). According to Lemma 7 with s = 1− α + 3

p′ +
λ
p + σ and Proposition 8 with ρ = 1, we

obtain

‖B(u, v)‖X ≤
(

1 +
(4

3

)α)
‖∇ · (u∇Pv)‖

L1

[0,+∞);FṄ
1−α+ 3

p′ +
λ
p +σ

p,λ,q


≤
(

1 +
(4

3

)α)
Cµ−1‖u‖X‖v‖X .

By Lemma 9, we know that if ‖e−µtΛα
u0‖X < R with R = µ

4(1+( 4
3 )

α)C

then the equation (14) has a unique solution in B(0, 2R) := {x ∈ X : ‖x‖X ≤ 2R}. To prove ‖e−µtΛα
u0‖X < R,

notice that e−µtΛα
u0 is the solution to the dissipative equation with u0 = u0 and f = 0. So, Lemma 7 yields

‖e−µtΛα
u0‖X ≤

(
1 +

(4
3

)α)
‖u0‖

FṄ
1−α+ 3

p′ +
λ
p +σ

p,λ,q

. (15)

If ‖u0‖
FṄ

1−α+ 3
p′ +

λ
p +σ

p,λ,q

≤ C0µ with C0 = 1
4(1+( 4

3 )
α)2C

, then (14) has a unique global solution u ∈ X satisfying

‖u‖X ≤ 2
(

1 +
(4

3

)α)
‖u0‖

FṄ
1−α+ 3

p′ +
λ
p +σ

p,λ,q

.

Proof of theorem 5

Proof. To prove Theorem 5, we note a(t, x) := eµ
√

t|D|
α
2 u(t, x) . Using the integral Equation (14), we obtain

a(t, x) = eµ(
√

t|D|
α
2 − 1

2 tΛα)e−
1
2 µtΛα

u0

+
∫ t

0
eµ[(
√

t−
√

τ)|D|
α
2 − 1

2 (t−τ)Λα ]e−
1
2 µ(t−τ)Λα

eµ
√

τ|D|
α
2∇ · (u∇(Pu))dτ

:= Lu0 + B̃(u, u) .

In order to obtain the Gevrey class regularity of the solution, we use Lemma 9. Firstly, we start by

estimating the term Lu0 = e−
1
2 µ(
√

t|D|
α
2 −1)2+

µ
2 e−

1
2 µtΛα

u0 .
Using the Fourier transform, multiplying by ϕj and taking the Mλ

p-norm we obtain

‖ϕj L̂u0‖Mλ
p
≤ Ce−

1
2 µt2jα(3/4)α ∥∥ϕjû0

∥∥
Mλ

p
.
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Multiplying by 2
j(1−α+ 3

p′ +
λ
p +σ)

and taking lq−norm we get

‖Lu0‖
L∞

[0,+∞);FṄ
1−α+ 3

p′ +
λ
p +σ

p,λ,q

 ≤ C ‖u0‖
FṄ

1−α+ 3
p′ +

λ
p +σ

p,λ,q

.

Similarly

2
j(1+ 3

p′ +
λ
p +σ)

∥∥∥ϕj L̂u0

∥∥∥
L1([0,+∞);Mλ

p)
≤
(∫ ∞

0
e−

1
2 µt2jα(3/4)α

2jαdt
)

2
j(1−α+ 3

p′ +
λ
p +σ) ∥∥ϕjû0

∥∥
Mλ

p
.

We conclude by taking lq−norm that

µ ‖Lu0‖
L1

[0,+∞);FṄ
1+ 3

p′ +
λ
p +σ

p,λ,q

 ≤ C ‖u0‖
FṄ

1−α+ 3
p′ +

λ
p +σ

p,λ,q

.

Finally,
‖Lu0‖X ≤ C ‖u0‖

FṄ
1−α+ 3

p′ +
λ
p +σ

p,λ,q

.

On the other hand, we notice that B̃(u, v) as B̃
(

e−µ
√

τ|D|
α
2 a, e−µ

√
τ|D|

α
2 b
)

with b := eµ
√

τ|D|
α
2 v. Since

eµ[(
√

t−
√

τ)|ξ|
α
2 − 1

2 (t−τ)|ξ|α ] is uniformly bounded on t ∈ (0, ∞) and τ ∈ [0, t], it sufficient to consider the estimate

of ‖eµ
√

τ|D|
α
2 u∂i(Pv)‖

L1

I;FṄ
2−α+ 3

p′ +
λ
p +σ

p,λ,q

 for which we prove the flowing lemma.

Lemma 10. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞, 0 ≤ λ < 3, 1 + σ < α < min{2, 2 + 3
p′ +

λ
p + σ}, I = [0, T), T ∈ (0, ∞],

and set

X = L∞

(
I;FṄ

1−α+ 3
p′ +

λ
p +σ

p,λ,q

)
∩ L1

(
I;FṄ

1+ 3
p′ +

λ
p +σ

p,λ,q

)
.

There exists a constant C = C(p, q) > 0 depending on p, q such that

‖eµ
√

τ|D|
α
2 u∂i(Pv)‖

L1

I;FṄ
2−α+ 3

p′ +
λ
p +σ

p,λ,q

 ≤ Cµ−1‖a‖X‖b‖X .

Proof. Based on the same procedure in the proof of Proposition 8, we evaluate the estimate of

‖eµ
√

τ|D|
α
2 u∂i(Pv)‖

L1

I;FṄ
2−α+ 3

p′ +
λ
p +σ

p,λ,q

, in fact, we have for fixed j

∆̇jeµ
√

τ|D|
α
2 (u∂i(Pv)) = ∑

|k−j|≤4
∆̇jeµ

√
τ|D|

α
2 (Ṡk−1u∆̇k∂i(Pv)

)
+ ∑
|k−j|≤4

∆̇jeµ
√

τ|D|
α
2 (Ṡk−1∂i(Pv)∆̇ku

)
+ ∑

k≥j−3
∆̇jeµ

√
τ|D|

α
2
(

∆̇ku∆̃k∂i(Pv)
)

:= S1,j + S2,j + S3,j .
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Since eµ
√

τ
(
|ξ|

α
2 −|ξ−η|

α
2 −|η|

α
2
)

is uniformly bounded on τ when α ∈ [0, 2], we obtain

‖Ŝ1,j‖Mλ
p
= ‖ ∑

|k−j|≤4
ϕjeµ

√
τ|ξ|

α
2 F
(
Ṡk−1u∆̇k∂i(Pv)

)
‖Mλ

p

= ‖ ∑
|k−j|≤4

ϕjeµ
√

τ|ξ|
α
2 [( ∑

l≤k−2
e−µ
√

τ|ξ|
α
2 âl) ∗

(
e−µ
√

τ|ξ|
α
2 F (∆̇k∂i(Pb))

)]
‖Mλ

p

= ‖ ∑
|k−j|≤4

ϕj

∫
R3

eµ
√

τ
(
|ξ|

α
2 −|ξ−η|

α
2 −|η|

α
2
)(

∑
l≤k−2

âl
)
(ξ − η)F (∆̇k∂i(Pb))(η)dη‖Mλ

p

≤ C‖ ∑
|k−j|≤4

F
(
Ṡk−1a∆̇k∂i(Pb)

)
‖Mλ

p
.

The same calculus as in Proposition 8 gives{
∑
j∈Z

2
j(2−α+ 3

p′ +
λ
p +σ)q‖Ŝ1,j‖

q
L1(I,Mλ

p )

}1/q
. ‖a‖

L∞

I;FṄ
1−α+ 3

p′ +
λ
p +σ

p,λ,q

‖b‖L1

I;FṄ
1+ 3

p′ +
λ
p +σ

p,λ,q

 .

Similarly, we show that{
∑
j∈Z

2
j(2−α+ 3

p′ +
λ
p +σ)q‖Ŝ2,j‖

q
L1(I,Mλ

p )

}1/q
. ‖b‖

L∞

I;FṄ
1−α+ 3

p′ +
λ
p +σ

p,λ,q

‖a‖L1

I;FṄ
1+ 3

p′ +
λ
p +σ

p,λ,q

 .

Similarly, ∥∥∥Ŝ3,j

∥∥∥
Mλ

p
≤ ∑

k≥j−3
∑

|l−k|≤1

∥∥F (∆̇ka∆̇l (∂i(Pb))
)∥∥

Mλ
p

.

Using again the same procedure described in the proof of Proposition 8 we obtain{
∑
j∈Z

2
j(2−α+ 3

p′ +
λ
p +σ)q‖Ŝ3,j‖

q
L1(I,Mλ

p )

}1/q
. ‖a‖

L∞

I;FṄ
1−α+ 3

p′ +
λ
p +σ

p,λ,q

‖b‖L1

I;FṄ
1+ 3

p′ +
λ
p +σ

p,λ,q

 .

Finally, ∥∥∥∥eµ
√

τ|D|
α
2 u∂i(Pv)

∥∥∥∥
L1

I;FṄ
2−α+ 3

p′ +
λ
p +σ

p,λ,q

 ≤ Cµ−1‖a‖X‖b‖X .

To finish the proof of Theorem 5, it is easy to obtain the requested result by repeating the same step in the
proof of Theorem 4 and Proposition 8.
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