Open Journal of Mathematical Analysis

Article

Global well-posedness and analyticity for generalized porous medium equation in critical Fourier-Besov-Morrey spaces

Mohamed Toumlilin ${ }^{1, *}$
1 FST FES, Laboratory AAFA, Department of Mathematics, University Sidi Mohamed Ben Abdellah, Fes, Morocco.
* Correspondence: mohamed.toumlilin@usmba.ac.ma

Received: 23 July 2019; Accepted: 29 September 2019; Published: 19 October 2019.

Abstract

In this paper, we study the generalized porous medium equations with Laplacian and abstract pressure term. By using the Fourier localization argument and the Littlewood-Paley theory, we get global well-posedness results of this equation for small initial data u_{0} belonging to the critical Fourier-Besov-Morrey spaces. In addition, we also give the Gevrey class regularity of the solution.

Keywords: Porous medium equation, well-posedness, analyticity, Fourier-Besov-Morrey space.
MSC: 35K55, 74G25,76S05.

1. Introduction

W
e investigate the generalized porous medium equation in the whole space \mathbb{R}^{3},

$$
\left\{\begin{array}{l}
u_{t}+\mu \Lambda^{\alpha} u=\nabla \cdot(u \nabla P u) ; \quad(t, x) \in \mathbb{R}^{+} \times \mathbb{R}^{3} \tag{1}\\
u(0, x)=u_{0} \quad x \in \mathbb{R}^{3},
\end{array}\right.
$$

where $u=u(t, x)$ is a real-valued function, which denotes a density or concentration. The dissipative coefficient $\mu>0$ corresponds to the viscous case, while $\mu=0$ corresponds to the inviscid case. The fractional Laplacian operator Λ^{α} is defined by Fourier transform as $\widehat{\Lambda^{\alpha} u}=|\xi|^{\alpha} \hat{u}$, and P is an abstract operator.

The equation (1) was introduced in the first by Zhou et al. [1]. In fact, Equation (1) is obtained by adding the fractional dissipative term $\mu \Lambda^{\alpha} u$ to the continuity equation (PME) $u_{t}+\nabla \cdot(u V)=0$ given by Caffarelli and Vázquez [2], where the velocity V derives from a potential, $V=-\nabla p$ and the velocity potential or pressure p is related to u by an abstract operator $p=P u$ [3].

For $\mu=0$ and $P u=(-\Delta)^{-s} u=\Lambda^{-2 s} u, 0<s<1$; X. Zhou et al. [4] were interested in finding the strong solutions of the equation (1) which becomes the fractional porous medium equation in the Besov spaces $B_{p, \infty}^{\alpha}$ and they obtained the local solution for any initial data in $B_{1, \infty}^{\alpha}$. Moreover, in the critical case $s=1$, the Equation (1) leads to a mean field equation [4,5]. Let's take this opportunity to briefly quote some works on the well-posedness and regularity on those equations such as $[4,6]$ and the references therein.

On the other hand, an another similar model occurs in the aggregation equation, and plays a fundamental role in applied sciences such as physics, biology, chemistry, population dynamics. It describes a collective motion and aggregation phenomena in biology and in mechanics of continuous media $[7,8]$. In the aggregation equation, the abstract form pressure term $P u$ can also be represented by convolution with a kernel K as $P u=$ $K * u$. The typical kernels are the Newton potential $|x|^{\gamma}$ [9,10], and the exponent potential $-e^{-|x|}$ [11,12]. For more results on this equation, we refer to $[13,14]$ and the references therein.

Recently, Zhou et al. [1] obtained the local well-posedness in Besov spaces for large initial data, and proved that the solution becomes global if the initial data is small, also, they studied a blowup criterion for the solution.

In addition, we can represent the Equation (1) with the same initial data by

$$
\begin{gather*}
u_{t}+\mu \Lambda^{\alpha} u+v \cdot \nabla u=-u(\nabla \cdot v) \\
v=-\nabla P u \tag{2}
\end{gather*}
$$

As a consequence, this equation must be compared to the geostrophic model. So, the convective velocity is not absolutely divergence-free for the generalized porous medium equation. Additionally, if we assume that v is divergence-free vector function $(\nabla \cdot v=0)$, the form (2) can contain the quasi-geostrophic (Q-G) equation [15,16].

Inspired by the works [1,17]; the aim of this paper is to prove the well-posedness results of Equation (1) and to give the Gevrey class regularity of the solution in homogeneous Fourier Besov-Morrey spaces under the condition that the abstract operator P is commutative with the operator $e^{-\mu \sqrt{t}|D|^{\frac{\alpha}{2}}}$ and

$$
\begin{equation*}
\left\|\varphi_{j} \widehat{\nabla P u}\right\|_{\mathrm{M}_{p}^{\lambda}} \leq C 2^{j \sigma}\left\|\varphi_{j} \widehat{u}\right\|_{\mathrm{M}_{p}^{\lambda}} \tag{3}
\end{equation*}
$$

Clearly, for the fractional porous medium equation, i.e. $P u=\Lambda^{-2 s} u$, we get $\sigma=1-2$ s. If $P u=K * u$ in the aggregation equation, Wu and Zhang [18] proved a similar result under the condition $\nabla K \in W^{1,1}$, $\alpha \in(0,1)$. Corresponding to their case we give a same result for $\sigma=0$ when $\nabla K \in L^{1}$, and also a similar result for $\sigma=1$ when $K \in L^{1}$.

Throughout this paper, we use $\mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{s}$ to denote the homogenous Fourier Besov-Morrey spaces, C will denote constants which can be different at different places, $\mathrm{U} \lesssim \mathrm{V}$ means that there exists a constant $\mathrm{C}>0$ such that $\mathrm{U} \leq \mathrm{CV}$, and p^{\prime} is the conjugate of p satisfying $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ for $1 \leq p \leq \infty$.

2. Preliminaries and main results

We start with a dyadic decomposition of \mathbb{R}^{n}. Suppose $\chi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), \varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ satisfying

$$
\begin{gathered}
\operatorname{supp} \chi \subset\left\{\xi \in \mathbb{R}^{n}:|\xi| \leq \frac{4}{3}\right\}, \\
\operatorname{supp} \varphi \subset\left\{\xi \in \mathbb{R}^{n}: \frac{3}{4} \leq|\xi| \leq \frac{8}{3}\right\}, \\
\chi(\xi)+\sum_{j \geq 0} \varphi\left(2^{-j} \xi\right)=1, \quad \xi \in \mathbb{R}^{n}, \\
\sum_{j \in \mathbb{Z}} \varphi\left(2^{-j} \xi\right)=1, \quad \xi \in \mathbb{R}^{n} \backslash\{0\},
\end{gathered}
$$

and denote $\varphi_{j}(\xi)=\varphi\left(2^{-j} \xi\right)$ and \mathcal{P} the set of all polynomials.
First, we recall the definition of Morrey spaces which are a complement of L^{p} spaces.
Definition 1 ([19]). For $1 \leq p<\infty, 0 \leq \lambda<n$, the Morrey spaces $\mathrm{M}_{p}^{\lambda}=\mathrm{M}_{p}^{\lambda}\left(\mathbb{R}^{n}\right)$ is defined as the set of functions $f \in L_{l o c}^{p}\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
\|f\|_{\mathrm{M}_{p}^{\lambda}}=\sup _{x_{0} \in \mathbb{R}^{n}} \sup _{r>0} r^{-\frac{\lambda}{p}}\|f\|_{L^{p}\left(B\left(x_{0}, r\right)\right)}<\infty, \tag{4}
\end{equation*}
$$

where $B\left(x_{0}, r\right)$ denotes the ball in \mathbb{R}^{n} with center x_{0} and radius r.
It is easy to see that the injection $\mathrm{M}_{p_{1}}^{\lambda} \hookrightarrow \mathrm{M}_{p_{2}}^{\mu}$ provided $\frac{n-\mu}{p_{2}} \geq \frac{n-\lambda}{p_{1}}$ and $p_{2} \leq p_{1}$, and $\mathrm{M}_{p}^{0}=L^{p}$.
If $1 \leq p_{1}, p_{2}, p_{3}<\infty$ and $0 \leq \lambda_{1}, \lambda_{2}, \lambda_{3}<n$ with $\frac{1}{p_{3}}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$ and $\frac{\lambda_{3}}{p_{3}}=\frac{\lambda_{1}}{p_{1}}+\frac{\lambda_{2}}{p_{2}}$, then we have the Hölder type inequality

$$
\|f g\|_{\mathrm{M}_{p_{3}}^{\lambda_{3}}} \leq\|f\|_{\mathrm{M}_{p_{1}}^{\lambda_{1}}}\|g\|_{\mathrm{M}_{p_{2}}^{\lambda_{2}}}
$$

Also, for $1 \leq p<\infty$ and $0 \leq \lambda<n$,

$$
\begin{equation*}
\|\varphi * g\|_{\mathrm{M}_{p}^{\lambda}} \leq\|\varphi\|_{L^{1}}\|g\|_{\mathrm{M}_{p}^{\lambda}}, \tag{5}
\end{equation*}
$$

for all $\varphi \in L^{1}$ and $g \in \mathrm{M}_{p}^{\lambda}$.
Definition 2. (homogeneous Fourier-Besov-Morrey spaces) Let $s \in \mathbb{R}, 0 \leq \lambda<n, 1 \leq p<+\infty$ and $1 \leq q \leq+\infty$. The space $\mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{s}\left(\mathbb{R}^{n}\right)$ denotes the set of all $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) / \mathcal{P}$ such that

$$
\begin{equation*}
\|u\|_{\mathcal{F}_{p, \lambda, q}^{s}}\left(\mathbb{R}^{n}\right)=\left\{\sum_{j \in \mathbb{Z}} 2^{j q s}\left\|\varphi_{j} \widehat{u}\right\|_{\mathrm{M}_{p}^{\lambda}}^{q}\right\}^{1 / q}<+\infty \tag{6}
\end{equation*}
$$

with suitable modification made when $q=\infty$.
Note that the space $\mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{s}\left(\mathbb{R}^{n}\right)$ equipped with the norm (6) is a Banach space. Since $\mathrm{M}_{p}^{0}=L^{p}$, we have $\mathcal{F} \dot{\mathcal{N}}_{p, 0, q}^{s}=F \dot{B}_{p, q}^{s}, \mathcal{F} \dot{\mathcal{N}}_{1,0, q}^{s}=F \dot{B}_{1, q}^{s}=\dot{\mathcal{B}}_{q}^{s}$ and $\mathcal{F} \dot{\mathcal{N}}_{1,0,1}^{-1}=\chi^{-1}$ where $\dot{\mathcal{B}}_{q}^{s}$ is the Fourier-Herz space and χ^{-1} is the Lei-Lin space [20].

Now, we recall the definition of the mixed space-time spaces.
Definition 3. Let $s \in \mathbb{R}, 1 \leq p<\infty, 1 \leq q, \rho \leq \infty, 0 \leq \lambda<n$, and $I=[0, T), T \in(0, \infty]$. The space-time norm is defined on $u(t, x)$ by

$$
\|u(t, x)\|_{\mathcal{L}^{\rho}\left(I ; \mathcal{F} \hat{\mathcal{N}}_{p, \lambda, q}^{s}\right)}=\left\{\sum_{j \in \mathbb{Z}} 2^{j q s}\left\|\varphi_{j} \widehat{u}\right\|_{L^{\rho}\left(I, \mathrm{M}_{p}^{\lambda}\right)}^{q}\right\}^{1 / q}
$$

and denote by $\mathcal{L}^{\rho}\left(I ; \mathcal{F}_{p, \lambda, q}^{s}\right)$ the set of distributions in $S^{\prime}\left(\mathbb{R} \times \mathbb{R}^{n}\right) / \mathcal{P}$ with finite $\|\cdot\|_{\mathcal{L}^{\rho}\left(I ; \mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{s}\right)}$ norm.
According to Minkowski inequality, we have

$$
\begin{array}{ll}
L^{\rho}\left(I ; \mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{s}\right) \hookrightarrow \mathcal{L}^{\rho}\left(I ; \mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{s}\right), & \text { if } \rho \leq q \\
\mathcal{L}^{\rho}\left(I ; \mathcal{F}_{p, \lambda, q}^{s}\right) \hookrightarrow L^{\rho}\left(I ; \mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{s}\right), & \text { if } \rho \geq q
\end{array}
$$

where $\|u(t, x)\|_{L^{\rho}\left(I ; \mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{s}\right)}:=\left(\int_{I}\|u(\tau, \cdot)\|_{\mathcal{F}_{\dot{\mathcal{N}}}^{p, \lambda, q}}^{\rho} d \tau\right)^{1 / \rho}$.
Our first main result is the following theorem.
Theorem 4. Assume that the abstract operator P satisfies the condition (3). If $0 \leq \lambda<3,1 \leq q \leq \infty, 1 \leq p<\infty$ and $\max \{1+\sigma, 0\}<\alpha<2+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma$ then there exists a constant C_{0} such that for any $u_{0} \in \mathcal{F}^{\mathcal{N}_{p, \lambda, q}}{ }^{1-\alpha+\frac{3}{p^{1}}+\frac{\lambda}{p}+\sigma}$ satisfies

$$
\|u\|_{\mathcal{L}^{\infty}\left([0, \infty) ; \mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{1-\alpha+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma}\right)+\mu\|u\|_{\mathcal{L}^{1}\left([0, \infty) ; \mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{1+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma}\right)} \leq 2 C\left\|u_{0}\right\|_{\mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{1-\alpha+}}{ }^{1-\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma}}
$$

where C is a positive constant.
Now, we give some remarks about this result.
Remark 1. The result stated in Theorem 4 is based on the works [3]. In particular, this result remains true if we replace the Fourier-Besov-Morrey space $\mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{s}$ by other functional spaces such as Fourier-Herz space $\dot{\mathcal{B}}_{q}^{s}$, Fourier-Besov space $\mathrm{FB}_{p, q}^{s}$ and Lei-Lin space χ^{-1}.

The analyticity of the solution is also an important subject developed by several researchers, particularly with regard to the Navier-Stokes equations, see [17] and its references. In this paper, we will prove the Gevrey class regularity for (1) in the Fourier-Besov-Morrey space. Inspired by this, we have obtained the following specific results.

Theorem 5. Let $0 \leq \lambda<3,1 \leq q \leq \infty, 1 \leq p<\infty$ and $\max \{1+\sigma, 0\}<\alpha<\min \left\{2,2+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma\right\}$. There exists a constant C_{0} such that, if $u_{0} \in \mathcal{F}_{p, \lambda, q}^{1-\alpha+\frac{3}{p}+\frac{\lambda}{p}+\sigma}$ satisfies $\left\|u_{0}\right\|_{\mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{1-\alpha+\frac{3}{p}}+\frac{\lambda}{p}+\sigma}<C_{0} \mu$, then the Cauchy problem (1) admits a unique analytic solution u, in the sense that

We finish this section with a Bernstein type lemma in Fourier variables in Morrey spaces.
Lemma 6 ([21]). Let $1 \leq q \leq p<\infty, 0 \leq \lambda_{1}, \lambda_{2}<n, \frac{n-\lambda_{1}}{p} \leq \frac{n-\lambda_{2}}{q}$, and let γ be a multiindex. If $\operatorname{supp}(\widehat{f}) \subset$ $\left\{|\xi| \leq A 2^{j}\right\}$ then there is a constant $C>0$ independent of f and j such that

$$
\begin{equation*}
\left.\left\|(i \tilde{\xi})^{\gamma} \widehat{f}\right\|_{\mathrm{M}_{q}^{\lambda_{2}}} \leq C 2^{j|\gamma|+j\left(\frac{n-\lambda_{2}}{q}-\frac{n-\lambda_{1}}{p}\right.}\right)\|\widehat{f}\|_{\mathrm{M}_{p}^{\lambda_{1}}} . \tag{7}
\end{equation*}
$$

3. The well-posedness

First, we consider the linear nonhomogeneous dissipative equation

$$
\left\{\begin{array}{l}
u_{t}+\mu \Lambda^{\alpha} u=f(t, x) \quad(t, x) \in \mathbb{R}^{+} \times \mathbb{R}^{3} \tag{8}\\
u(0, x)=u_{0}(x) \quad x \in \mathbb{R}^{3},
\end{array}\right.
$$

for which we recall the following result.
Lemma 7 ([22]). Let $I=[0, T), 0<T \leq \infty, s \in \mathbb{R}, 0 \leq \lambda<3,1 \leq p<\infty$, and $1 \leq q, \rho \leq \infty$. Assume that $u_{0} \in \mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{s}$ and $f \in \mathcal{L}^{\rho}\left(I ; \mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{s-\alpha+\frac{\alpha}{\rho}}\right)$. Then the Cauchy problem (8) has a unique solution $u(t, x)$ such that for all $\rho_{1} \in[\rho,+\infty]$
and

$$
\|u\|_{\mathcal{L}^{\infty}\left(1 ; \mathcal{F} \mathcal{N}_{p, \lambda, q}^{s}\right)}+\mu\|u\|_{\mathcal{L}^{1}\left(I ; \mathcal{F} \mathcal{N}_{p, \lambda, q}^{s} s+\alpha\right.}^{s+\alpha} \leq\left(1+\left(\frac{4}{3}\right)^{\alpha}\right)\left(\left\|u_{0}\right\|_{\mathcal{F i}_{p, \lambda, q}^{s}}+\|f\|_{\mathcal{L}^{1}\left(1 ; \mathcal{F} \mathcal{N}_{p, \lambda, q}\right.}^{s}\right) .
$$

If in addition q is finite, then u belongs to $\mathcal{C}\left(I ; \mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{\mathcal{s}}\right)$.
Proposition 8. Let $1 \leq p<\infty, 1 \leq \rho, q \leq \infty, 1+\sigma<\alpha<\frac{2+\frac{3}{p}+\frac{\lambda}{p}+\sigma}{2-\frac{1}{\rho}}, 0 \leq \lambda<3, I=[0, T), T \in(0, \infty]$, and set

$$
X=\mathcal{L}^{\infty}\left(I ; \mathcal{F} \dot{\mathcal{N}}_{p, \lambda, \eta}^{1-\alpha+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma}\right) \cap \mathcal{L}^{\rho}\left(I ; \mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{1-\alpha+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\frac{\alpha}{\rho}+\sigma}\right)
$$

with the norm

$$
\|u\|_{X}=\|u\|_{\mathcal{L}^{\infty}\left(I ; \mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{1-\alpha+\frac{3}{p}}+\frac{\lambda}{p}+\sigma\right.}+\mu\|u\|_{\mathcal{L}^{\rho}}\left(I ; \mathcal{F} \dot{\mathcal{N}}_{p, \lambda, \mu}^{1-\alpha+\frac{3}{p}+\frac{\lambda}{p}+\frac{\alpha}{p}+\sigma}\right) .
$$

There exists a constant $C=C(p, q)>0$ depending on p, q such that

$$
\begin{equation*}
\left\|u \partial_{i} P v\right\|_{\mathcal{L}^{p}}\left(I ; F \dot{\mathcal{N}}_{p, \lambda, \boldsymbol{q}}^{-2(\alpha-1)+\frac{3}{p^{p}}+\frac{\alpha}{p}+\frac{\lambda}{p}+\sigma}\right) \leq C \mu^{-1}\|u\|_{X}\|v\|_{X} . \tag{9}
\end{equation*}
$$

Proof. Let us introduce some notations about the standard localization operators. We set

$$
u_{j}=\dot{\Delta}_{j} u=\left(\mathscr{F}^{-1} \varphi_{j}\right) * u, \quad \dot{S}_{j} u=\sum_{k \leq j-1} \dot{\Delta}_{k} u, \quad \widetilde{\Delta}_{j} u=\sum_{|k-j| \leq 1} \dot{\Delta}_{k} u, \quad \forall j \in \mathbb{Z} .
$$

Using the decomposition of Bony's paraproducts for the fixed j, we have

$$
\begin{aligned}
\dot{\Delta}_{j}\left(u \partial_{i} P v\right) & =\sum_{|k-j| \leq 4} \dot{\Delta}_{j}\left(\dot{S}_{k-1} u \dot{\Delta}_{k}\left(\partial_{i} P v\right)\right)+\sum_{|k-j| \leq 4} \dot{\Delta}_{j}\left(\dot{S}_{k-1}\left(\partial_{i} P v\right) \dot{\Delta}_{k} u\right)+\sum_{k \geq j-3} \dot{\Delta}_{j}\left(\dot{\Delta}_{k} u \widetilde{\Delta}_{k}\left(\partial_{i} P v\right)\right) \\
& =I_{j}+I I_{j}+I I I_{j}
\end{aligned}
$$

To prove this proposition, we can write

We treat the above three terms differently. First, using Young's inequality (5) in Morrey spaces, and Lemma 6 with $|\gamma|=0$, we get

$$
\begin{aligned}
\left\|\widehat{I}_{j}\right\|_{L^{\rho}\left(I, \mathrm{M}_{p}^{\lambda}\right)} & \leq \sum_{|k-j| \leq 4}\left\|\dot{S}_{k-1} \widehat{u \dot{\Delta}_{k}\left(\partial_{i} P v\right)}\right\|_{L^{\rho}\left(I, \mathrm{M}_{p}^{\lambda}\right)} \\
& \leq \sum_{|k-j| \leq 4}\left\|\varphi_{k} \mathcal{F}\left(\partial_{i} P v\right)\right\|_{L^{\rho}\left(I, \mathrm{M}_{p}^{\lambda}\right)} \sum_{l \leq k-2}\left\|\varphi_{l} \hat{u}\right\|_{L^{\infty}\left(I, L^{1}\right)} \\
& \leq \sum_{|k-j| \leq 4}\left\|\varphi_{k} \mathcal{F}\left(\partial_{i} P v\right)\right\|_{L^{\rho}\left(I, \mathrm{M}_{p}^{\lambda}\right)} \sum_{l \leq k-2} 2^{l\left(\frac{3}{p^{\prime}}+\frac{\lambda}{p}\right)}\left\|\widehat{u}_{l}\right\|_{L^{\infty}\left(I, \mathrm{M}_{p}^{\lambda}\right)} \\
& \lesssim \sum_{|k-j| \leq 4} 2^{k \sigma}\left\|\widehat{v}_{k}\right\|_{L^{\rho}\left(I, \mathrm{M}_{p}^{\lambda}\right)}\left(\sum_{l \leq k-2} 2^{l(\alpha-1-\sigma) q^{\prime}}\right)^{\frac{1}{q^{\prime}}}\|u\| \\
& \mathcal{L}^{\infty}\left(I ; \mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{\left.1-\alpha+\frac{3}{p^{\prime}+\frac{\lambda}{p}+\sigma}\right)}\right) \\
& \lesssim \sum_{|k-j| \leq 4} 2^{k(\alpha-1)}\left\|\widehat{v}_{k}\right\|_{L^{\rho}\left(I, \mathrm{M}_{p}^{\lambda}\right)}\|u\| \mathcal{L}^{\infty}\left(I ; \mathcal{F} \dot{\mathcal{N}}_{p, \lambda, \lambda}^{1-\alpha+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma}\right) .
\end{aligned}
$$

Multiplying by $2^{j\left(-2(\alpha-1)+\frac{3}{p^{\prime}}+\frac{\alpha}{\rho}+\frac{\lambda}{p}+\sigma\right)}$, and taking l^{q} - norm of both sides in the above estimate, we obtain

$$
\begin{align*}
& \left\{\sum_{j \in \mathbb{Z}} 2^{j\left(-2(\alpha-1)+\frac{3}{p^{\prime}}+\frac{\alpha}{\rho}+\frac{\lambda}{p}+\sigma\right) q}\left\|\widehat{I}_{j}\right\|_{L^{\rho}\left(I, \mathrm{M}_{p}^{\lambda}\right)}^{q}\right\}^{1 / q} \\
& \quad \lesssim\left\{\sum_{j \in \mathbb{Z}}\left(\sum_{|k-j| \leq 4} 2^{k\left(1-\alpha+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\frac{\alpha}{\rho}+\sigma\right)} 2^{(j-k)\left(-2(\alpha-1)+\frac{3}{p^{\prime}}+\frac{\alpha}{\rho}+\frac{\lambda}{p}+\sigma\right)}\left\|\widehat{v}_{k}\right\|_{L^{\rho}\left(I, \mathrm{M}_{p}^{\lambda}\right)}\right)^{q}\right\}^{1 / q} \times\|u\|_{\mathcal{L}^{\infty}\left(I ; \mathcal{F} \mathcal{N}_{p, \lambda, q}^{1-\alpha+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma}\right)} \tag{11}
\end{align*}
$$

Likewise, we prove that

$$
\begin{equation*}
\left\{\sum_{j \in \mathbb{Z}} 2^{j\left(-2(\alpha-1)+\frac{3}{p^{\prime}}+\frac{\alpha}{\rho}+\frac{\lambda}{p}+\sigma\right) q}\left\|\widehat{I I}_{j}\right\|_{L^{\rho}\left(I, \mathrm{M}_{p}^{\lambda}\right)}^{q}\right\}^{1 / q} \lesssim\|v\|_{\mathcal{L}^{\infty}\left(I ; \mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{1-\alpha+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma}\right)}\|u\|_{\mathcal{L}^{\rho}\left(I ; \mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{1-\alpha+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\frac{\alpha}{p}+\sigma}\right)} \tag{12}
\end{equation*}
$$

$$
\begin{align*}
& +\left\{\sum_{j \in \mathbb{Z}} 2^{j\left(-2(\alpha-1)+\frac{3}{p^{\prime}}+\frac{\alpha}{\rho}+\frac{\lambda}{p}+\sigma\right) q}\left\|\widehat{I I}_{j}\right\|_{L^{\rho}\left(I, \mathrm{M}_{p}^{\lambda}\right)}^{q}\right\}^{1 / q} \\
& +\left\{\sum_{j \in \mathbb{Z}} 2^{j\left(-2(\alpha-1)+\frac{3}{p^{\prime}+\frac{\alpha}{\rho}}+\frac{\lambda}{p}+\sigma\right) q}\left\|\widehat{I I I_{j}}\right\|_{L^{\rho}\left(I, \mathrm{M}_{p}^{\lambda}\right)}^{q}\right\}^{1 / q} . \tag{10}
\end{align*}
$$

To evaluate $I I I_{j}$, we apply the Young inequality (5) in Morrey spaces and Lemma 6 with $|\gamma|=0$, we obtain

$$
\begin{aligned}
& 2^{j\left(-2(\alpha-1)+\frac{3}{p^{\prime}}+\frac{\alpha}{\rho}+\frac{\lambda}{p}+\sigma\right)}\|\widehat{I I I}\|_{L^{\rho}\left(I, \mathrm{M}_{p}^{\lambda}\right)} \\
& \quad \leq 2^{j\left(-2(\alpha-1)+\frac{3}{p^{\prime}}+\frac{\alpha}{\rho}+\frac{\lambda}{p}+\sigma\right)} \sum_{k \geq j-3} \sum_{|l-k| \leq 1}\left\|\mathcal{F}\left(\dot{\Delta}_{k} u \dot{\Delta}_{l}\left(\partial_{i} P v\right)\right)\right\|_{L^{\rho}\left(I, \mathrm{M}_{p}^{\lambda}\right)} \\
& \quad \leq 2^{j\left(-2(\alpha-1)+\frac{3}{p^{\prime}}+\frac{\alpha}{\rho}+\frac{\lambda}{p}+\sigma\right)} \sum_{k \geq j-3} \sum_{|l-k| \leq 1}\left\|\widehat{u}_{k}\right\|_{L^{\rho}\left(I, \mathrm{M}_{p}^{\lambda}\right)}\left\|\varphi_{l} \mathcal{F}\left(\partial_{i} P v\right)\right\|_{L^{\infty}\left(I, L^{1}\right)} \\
& \quad \leq 2^{j\left(-2(\alpha-1)+\frac{3}{\left.p^{\prime}+\frac{\alpha}{\rho}+\frac{\lambda}{p}+\sigma\right)} \sum_{k \geq j-3|l-k| \leq 1} 2^{l\left(\frac{3}{p^{\prime}}+\frac{\lambda}{p}\right)}\left\|\widehat{u}_{k}\right\|_{L^{\rho}\left(I, \mathrm{M}_{p}^{\lambda}\right)} 2^{l \sigma}\left\|\widehat{v}_{l}\right\|_{L^{\infty}\left(I, \mathrm{M}_{p}^{\lambda}\right)}\right.} \\
& \quad \leq \sum_{k \geq j-3} \sum_{l=-1}^{1} 2^{\left(-2(\alpha-1)+\frac{3}{p^{\prime}}+\frac{\alpha}{\rho}+\frac{\lambda}{p}+\sigma\right)(j-k)} 2^{(\alpha-1) l}\left(2^{\left(-(\alpha-1)+\frac{3}{p^{\prime}}+\frac{\alpha}{\rho}+\frac{\lambda}{p}+\sigma\right) k}\left\|\widehat{u}_{k}\right\|_{L^{\rho}\left(I, \mathrm{M}_{p}^{\lambda}\right)}\right) \\
& \quad \times\left(2^{(l+k)\left(-(\alpha-1)+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma\right)}\left\|\widehat{v}_{l+k}\right\|_{L^{\infty}\left(I, \mathrm{M}_{p}^{\lambda}\right)}\right)
\end{aligned}
$$

Taking the l^{q}-norm on both sides in the above estimate and using Hölder's inequalities for series with $-2(\alpha-1)+\frac{\alpha}{\rho}+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma>0$, we get

$$
\begin{aligned}
& \left(\sum_{j \in \mathbb{Z}} 2^{j\left(-2(\alpha-1)+\frac{3}{p^{\prime}}+\frac{\alpha}{\rho}+\frac{\lambda}{p}+\sigma\right) q}\left\|\widehat{I I I}_{j}\right\|_{L^{\rho}\left(I, \mathrm{M}_{p}^{\lambda}\right)}^{q}\right)^{\frac{1}{q}} \\
& \leq\left(\sum _ { j \in \mathbb { Z } } \left(\sum_{m \leq 3} \sum_{l=-1}^{1} 2^{\left(-2(\alpha-1)+\frac{3}{p^{\prime}}+\frac{\alpha}{\rho}+\frac{\lambda}{p}+\sigma\right) m} 2^{(\alpha-1) l} 2^{\left(-(\alpha-1)+\frac{3}{p^{\prime}}+\frac{\alpha}{\rho}+\frac{\lambda}{p}+\sigma\right)(j-m)}\right.\right. \\
& \left.\left.\times\left\|\widehat{u}_{j-m}\right\|_{L^{\rho}\left(I, \mathrm{M}_{p}^{\lambda}\right)} 2^{\left(-(\alpha-1)+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma\right)(j-m+l)}\left\|\widehat{v}_{j-m+l}\right\|_{L^{\infty}\left(I, \mathrm{M}_{p}^{\lambda}\right)}\right)^{q}\right)^{\frac{1}{q}} \\
& \leq \sum_{l=-1}^{1} \sum_{m \leq 3} 2^{\left(-2(\alpha-1)+\frac{3}{p^{\prime}}+\frac{\alpha}{\rho}+\frac{\lambda}{p}+\sigma\right) m} 2^{(\alpha-1) l}\|u\| \mathcal{L}^{\rho}\left(I ; \mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{1-\alpha+\frac{3}{p^{\prime}}+\frac{\alpha}{\rho}+\frac{\lambda}{p}+\sigma}\right) \\
& \times\|v\|_{\mathcal{L}^{\infty}\left(I ; \mathcal{F} \dot{\mathcal{N}}_{p, \lambda, \infty}^{1-\alpha+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma}\right)} .
\end{aligned}
$$

Since $l^{q} \hookrightarrow l^{\infty}$, we obtain

Estimates (10), (11), (12) and (13) yield (9) .
Lemma 9. Let X be a Banach space with norm $\|\cdot\|_{X}$ and $B: X \times X \longmapsto X$ be a bounded bilinear operator satisfying

$$
\|B(u, v)\|_{X} \leq \eta\|u\|_{X}\|v\|_{X}
$$

for all $u, v \in X$ and a constant $\eta>0$. Then, if $0<\varepsilon<\frac{1}{4 \eta}$ and if $y \in X$ such that $\|y\|_{X} \leq \varepsilon$, the equation $x:=y+B(x, x)$ has a solution \bar{x} in X such that $\|\bar{x}\|_{X} \leq 2 \varepsilon$. This solution is the only one in the ball $\bar{B}(0,2 \varepsilon)$. Moreover, the solution depends continuously on y in the sense: if $\left\|y^{\prime}\right\|_{X} \leq \varepsilon, x^{\prime}=y^{\prime}+B\left(x^{\prime}, x^{\prime}\right)$, and $\left\|x^{\prime}\right\|_{X} \leq 2 \varepsilon$, then

$$
\left\|\bar{x}-x^{\prime}\right\|_{X} \leq \frac{1}{1-4 \varepsilon \eta}\left\|y-y^{\prime}\right\|_{X}
$$

Proof of theorem 4

Proof. To ensure the existence of global solutions with small initial data, we will use Lemma 9.

In the following, we consider the Banach space

$$
X=\mathcal{L}^{\infty}\left([0,+\infty) ; \mathcal{F \mathcal { N }}_{p, \lambda, q}^{1-\alpha+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma}\right) \cap \mathcal{L}^{1}\left([0,+\infty) ; \mathcal{F \mathcal { N }}_{p, \lambda, q}^{1+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma}\right)
$$

First, we start with the integral equation

$$
\begin{align*}
u & =e^{-\mu t \Lambda^{\alpha}} u_{0}+\int_{0}^{t} e^{-\mu(t-\tau) \Lambda^{\alpha}} \nabla \cdot(u(\tau) \nabla P u(\tau)) d \tau \\
& =e^{-\mu t \Lambda^{\alpha}} u_{0}+B(u, u) \tag{14}
\end{align*}
$$

We notice that $B(u, v)$ can be thought as the solution to the heat Equation (8) with $u_{0}=0$ and force $f=\nabla \cdot(u(\tau) \nabla \operatorname{Pv}(\tau))$. According to Lemma 7 with $s=1-\alpha+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma$ and Proposition 8 with $\rho=1$, we obtain

$$
\begin{aligned}
\|B(u, v)\|_{X} & \left.\leq\left(1+\left(\frac{4}{3}\right)^{\alpha}\right)\|\nabla \cdot(u \nabla P v)\|_{\mathcal{L}^{1}([0,+\infty) ; \mathcal{F}}^{p, \lambda, q}{ }^{1-\alpha+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma}\right) \\
& \leq\left(1+\left(\frac{4}{3}\right)^{\alpha}\right) C \mu^{-1}\|u\|_{X}\|v\|_{X} .
\end{aligned}
$$

By Lemma 9, we know that if $\left\|e^{-\mu t \Lambda^{\alpha}} u_{0}\right\|_{X}<R$ with $R=\frac{\mu}{4\left(1+\left(\frac{4}{3}\right)^{\alpha}\right) C}$
then the equation (14) has a unique solution in $B(0,2 R):=\left\{x \in X:\|x\|_{X} \leq 2 R\right\}$. To prove $\left\|e^{-\mu t \Lambda^{\alpha}} u_{0}\right\|_{X}<R$, notice that $e^{-\mu t \Lambda^{\alpha}} u_{0}$ is the solution to the dissipative equation with $u_{0}=u_{0}$ and $f=0$. So, Lemma 7 yields

$$
\begin{equation*}
\left\|e^{-\mu t \Lambda^{\alpha}} u_{0}\right\|_{X} \leq\left(1+\left(\frac{4}{3}\right)^{\alpha}\right)\left\|u_{0}\right\|_{\mathcal{F} \dot{\mathcal{N}_{p, \lambda, q}}}^{1-\alpha+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma} \tag{15}
\end{equation*}
$$

If $\left\|u_{0}\right\|_{\mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{1-\alpha+\frac{3}{p^{\prime}}}+\frac{\lambda}{P}+\sigma} \leq C_{0} \mu$ with $C_{0}=\frac{1}{4\left(1+\left(\frac{4}{3}\right)^{\alpha}\right)^{2} C^{2}}$, then (14) has a unique global solution $u \in X$ satisfying

$$
\|u\|_{X} \leq 2\left(1+\left(\frac{4}{3}\right)^{\alpha}\right)\left\|u_{0}\right\|_{\mathcal{F} \dot{N}_{p, \lambda, q}^{1-\alpha+}}{\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma}
$$

Proof of theorem 5

Proof. To prove Theorem 5, we note $a(t, x):=e^{\mu \sqrt{t}|D|^{\frac{\alpha}{2}}} u(t, x)$. Using the integral Equation (14), we obtain

$$
\begin{aligned}
a(t, x)= & e^{\mu\left(\sqrt{t}|D|^{\frac{\alpha}{2}}-\frac{1}{2} t \Lambda^{\alpha}\right)} e^{-\frac{1}{2} \mu t \Lambda^{\alpha}} u_{0} \\
& +\int_{0}^{t} e^{\mu\left[(\sqrt{t}-\sqrt{\tau})|D|^{\frac{\alpha}{2}}-\frac{1}{2}(t-\tau) \Lambda^{\alpha}\right]} e^{-\frac{1}{2} \mu(t-\tau) \Lambda^{\alpha}} e^{\mu \sqrt{\tau}|D|^{\frac{\alpha}{2}}} \nabla \cdot(u \nabla(P u)) d \tau \\
:= & L u_{0}+\widetilde{B}(u, u) .
\end{aligned}
$$

In order to obtain the Gevrey class regularity of the solution, we use Lemma 9. Firstly, we start by estimating the term $L u_{0}=e^{-\frac{1}{2} \mu\left(\sqrt{t}|D|^{\frac{\alpha}{2}}-1\right)^{2}+\frac{\mu}{2}} e^{-\frac{1}{2} \mu t \Lambda^{\alpha}} u_{0}$.

Using the Fourier transform, multiplying by φ_{j} and taking the M_{p}^{λ}-norm we obtain

$$
\left\|\varphi_{j} \widehat{L u_{0}}\right\|_{\mathrm{M}_{p}^{\lambda}} \leq C e^{-\frac{1}{2} \mu t 2^{j \alpha}(3 / 4)^{\alpha}}\left\|\varphi_{j} \widehat{u_{0}}\right\|_{\mathrm{M}_{p}^{\lambda}}
$$

Multiplying by $2^{j\left(1-\alpha+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma\right)}$ and taking l^{q} - norm we get

$$
\left\|L u_{0}\right\|_{\mathcal{L}^{\infty}\left([0,+\infty) ; \mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{1-\alpha+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma}\right)} \leq C\left\|u_{0}\right\|_{\mathcal{F} \dot{\mathcal{N}}_{p, \lambda, \lambda}^{1-\alpha+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma}}
$$

Similarly

$$
2^{j\left(1+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma\right)}\left\|\varphi_{j} \widehat{L u_{0}}\right\|_{L^{1}\left([0,+\infty) ; \mathrm{M}_{p}^{\lambda}\right)} \leq\left(\int_{0}^{\infty} e^{-\frac{1}{2} \mu t 2^{j \alpha}(3 / 4)^{\alpha}} 2^{j \alpha} d t\right) 2^{j\left(1-\alpha+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma\right)}\left\|\varphi_{j} \widehat{u_{0}}\right\|_{\mathrm{M}_{p}^{\lambda}} .
$$

We conclude by taking l^{q} - norm that

$$
\mu\left\|L u_{0}\right\|_{\mathcal{L}^{1}\left([0,+\infty) ; \mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{1+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma}\right)} \leq C\left\|u_{0}\right\|_{\mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{1-\alpha+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma}}
$$

Finally,

$$
\left\|L u_{0}\right\|_{X} \leq C\left\|u_{0}\right\|_{\mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{1-\alpha+\frac{3}{p}+\frac{\lambda}{p}+\sigma}}
$$

On the other hand, we notice that $\widetilde{B}(u, v)$ as $\widetilde{B}\left(e^{-\mu \sqrt{\tau}|D|^{\frac{\alpha}{2}}} a, e^{-\mu \sqrt{\tau}|D|^{\frac{\alpha}{2}}} b\right)$ with $b:=e^{\mu \sqrt{\tau}|D|^{\frac{\alpha}{2}}} v$. Since $e^{\mu\left[(\sqrt{t}-\sqrt{\tau})|\xi|^{\frac{\alpha}{2}}-\frac{1}{2}(t-\tau)|\xi|^{\alpha}\right]}$ is uniformly bounded on $t \in(0, \infty)$ and $\tau \in[0, t]$, it sufficient to consider the estimate of $\left\|e^{\mu \sqrt{\tau}|D|^{\frac{\alpha}{2}}} u \partial_{i}(P v)\right\|_{\mathcal{L}^{1}}\left(I ; \mathcal{F} \dot{\mathcal{N}}_{p, \lambda, \gamma}^{2-\alpha+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma}\right)$ for which we prove the flowing lemma.

Lemma 10. Let $1 \leq p<\infty, 1 \leq q \leq \infty, 0 \leq \lambda<3,1+\sigma<\alpha<\min \left\{2,2+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma\right\}, I=[0, T), T \in(0, \infty]$, and set

$$
X=\mathcal{L}^{\infty}\left(I ; \mathcal{F}_{p, \lambda, q}^{1-\alpha+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma}\right) \cap \mathcal{L}^{1}\left(I ; \mathcal{F}_{p, \lambda, q}^{1+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma}\right)
$$

There exists a constant $C=C(p, q)>0$ depending on p, q such that

$$
\left\|e^{\mu \sqrt{\tau}|D|^{\frac{\alpha}{2}}} u \partial_{i}(P v)\right\|_{\mathcal{L}^{1}\left(I ; \mathcal{F} \dot{\mathcal{N}}_{p, \lambda, q}^{2-\alpha+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma}\right)} \leq C \mu^{-1}\|a\|_{X}\|b\|_{X}
$$

Proof. Based on the same procedure in the proof of Proposition 8, we evaluate the estimate of

$$
\begin{aligned}
\dot{\Delta}_{j} e^{\mu \sqrt{\tau}|D|^{\frac{\alpha}{2}}}\left(u \partial_{i}(P v)\right)= & \sum_{|k-j| \leq 4} \dot{\Delta}_{j} e^{\mu \sqrt{\tau}|D|^{\frac{\alpha}{2}}}\left(\dot{S}_{k-1} u \dot{\Delta}_{k} \partial_{i}(P v)\right) \\
& +\sum_{|k-j| \leq 4} \dot{\Delta}_{j} e^{\mu \sqrt{\tau}|D|^{\frac{\alpha}{2}}}\left(\dot{S}_{k-1} \partial_{i}(P v) \dot{\Delta}_{k} u\right) \\
& +\sum_{k \geq j-3} \dot{\Delta}_{j} e^{\mu \sqrt{\tau}|D|^{\frac{\alpha}{2}}}\left(\dot{\Delta}_{k} u \widetilde{\Delta}_{k} \partial_{i}(P v)\right) \\
:= & S_{1, j}+S_{2, j}+S_{3, j} .
\end{aligned}
$$

Since $e^{\mu \sqrt{\tau}\left(|\xi|^{\frac{\alpha}{2}}-|\xi-\eta|^{\frac{\alpha}{2}}-|\eta|^{\frac{\alpha}{2}}\right)}$ is uniformly bounded on τ when $\alpha \in[0,2]$, we obtain

$$
\begin{aligned}
\left\|\widehat{S_{1, j}}\right\|_{\mathrm{M}_{p}^{\lambda}} & =\left\|\sum_{|k-j| \leq 4} \varphi_{j} e^{\mu \sqrt{\tau}|\xi|^{\frac{\alpha}{2}}} \mathscr{F}\left(\dot{S}_{k-1} u \dot{\Delta}_{k} \partial_{i}(P v)\right)\right\|_{\mathrm{M}_{p}^{\lambda}} \\
& =\left\|\sum_{|k-j| \leq 4} \varphi_{j} e^{\mu \sqrt{\tau}|\xi|^{\frac{\alpha}{2}}}\left[\left(\sum_{l \leq k-2} e^{-\left.\mu \sqrt{\tau}| |\right|^{\frac{\alpha}{2}}} \widehat{a_{l}}\right) *\left(e^{-\mu \sqrt{\tau}|\xi|^{\frac{\alpha}{2}}} \mathscr{F}\left(\dot{\Delta}_{k} \partial_{i}(P b)\right)\right)\right]\right\|_{\mathrm{M}_{p}^{\lambda}} \\
& \left.=\| \sum_{|k-j| \leq 4} \varphi_{j} \int_{\mathbb{R}^{3}} e^{\mu \sqrt{\tau}\left(|\xi|^{\frac{\alpha}{2}}-|\tilde{\xi}-\eta|^{\frac{\alpha}{2}}-|\eta|^{\frac{\alpha}{2}}\right.}\right)\left(\sum_{l \leq k-2} \widehat{a}_{l}\right)(\xi-\eta) \mathscr{F}\left(\dot{\Delta}_{k} \partial_{i}(P b)\right)(\eta) d \eta \|_{\mathrm{M}_{p}^{\lambda}} \\
& \leq C\left\|\sum_{|k-j| \leq 4} \mathscr{F}\left(\dot{S}_{k-1} a \dot{\Delta}_{k} \partial_{i}(P b)\right)\right\|_{\mathrm{M}_{p}^{\lambda}} .
\end{aligned}
$$

The same calculus as in Proposition 8 gives

$$
\left.\left\{\sum_{j \in \mathbb{Z}} 2^{j\left(2-\alpha+\frac{3}{p^{\prime}}+\frac{\lambda}{p}+\sigma\right) q}\left\|\widehat{S_{1, j}}\right\|_{L^{1}\left(I, M_{p}^{1}\right)}^{q}\right\}^{1 / q} \quad \lesssim\|a\|_{\mathcal{L}^{\infty}\left(I ; \mathcal{F} \mathcal{N}_{p, \lambda, q}^{1-\alpha+\frac{3}{p}}+\frac{\lambda}{p}+\sigma\right.}\|b\|_{\mathcal{L}^{1}\left(I ; F \mathcal{N}_{p, \lambda, q}^{1+\frac{3}{p}}\right.}^{1+\frac{\lambda}{p}+\sigma}\right) .
$$

Similarly, we show that

Similarly,

$$
\left\|\widehat{S_{3, j}}\right\|_{M_{p}^{\lambda}} \leq \sum_{k \geq j-3|l-k| \leq 1} \sum_{1}\left\|\mathcal{F}\left(\dot{\Delta}_{k} a \dot{\Delta}_{l}\left(\partial_{i}(P b)\right)\right)\right\|_{M_{p}^{\lambda}} .
$$

Using again the same procedure described in the proof of Proposition 8 we obtain

Finally,

$$
\left\|e^{\mu \sqrt{\tau}|D|^{\frac{\alpha}{2}}} u \partial_{i}(P v)\right\|_{\mathcal{L}^{1}}\left(I ; \mathcal{F} \mathcal{N}_{p, \lambda, q}^{2-\alpha+\frac{3}{p^{2}}+\frac{\lambda}{p}+\sigma}\right) \leq \mathcal{C} \mu^{-1}\|a\|_{X}\|b\|_{X}
$$

To finish the proof of Theorem 5, it is easy to obtain the requested result by repeating the same step in the proof of Theorem 4 and Proposition 8.

Conflicts of Interest: "The author declare no conflict of interest."

References

[1] Zhou, X., Xiao, W., \& Zheng, T. (2015). Well-posedness and blowup criterion of generalized porous medium equation in Besov spaces. Electronic Journal of Differential Equations, 2015(261), 1-14.
[2] Caffarelli, L. A., \& Vázquez, J. L. (2011). Nonlinear porous medium flow with fractional potential pressure. Archive for Rational Mechanics and Analysis, 202 (2011), 537-565.
[3] Xiao, W., \& Zhou, X. (2016). On the generalized porous medium equation in Fourier-Besov spaces. arXiv preprint arXiv:1612.03304.
[4] Zhou, X., Xiao, W., \& Chen, J. (2014). Fractional porous medium and mean field equations in Besov spaces. Electron Journal fo Differential Equations, 2014(199), 1-14.
[5] Lin, F., \& Zhang, P. (2002). On the hydrodynamic limit of Ginzburg-Landau wave vortices. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 55(7), 831-856.
[6] Biler, P., Imbert, C., \& Karch, G. (2011). Barenblatt profiles for a nonlocal porous medium equation. Comptes Rendus Mathematique, 349(11-12), 641-645.
[7] Blanchet, A., Carrillo, J. A., \& Masmoudi, N. (2008). Infinite time aggregation for the critical Patlak-Keller-Segel model in R^{2}. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 61(10), 1449-1481.
[8] Topaz, C. M., Bertozzi, A. L., \& Lewis, M. A. (2006). A nonlocal continuum model for biological aggregation. Bulletin of mathematical biology, 68(7), 1601-1623.
[9] Huang, Y., \& Bertozzi, A. L. (2010). Self-similar blowup solutions to an aggregation equation in R^{n}. SIAM Journal on Applied Mathematics, 70(7), 2582-2603.
[10] Li, D., \& Zhang, X. (2010). Global wellposedness and blowup of solutions to a nonlocal evolution problem with singular kernels. Communications on Pure \& Applied Analysis, 9(6), 1591-1606.
[11] Bertozzi, A. L., \& Laurent, T. (2007). Finite-time Blow-up of Solutions of an Aggregation Equation in R^{n}. Communications in mathematical physics, 274(3), 717-735.
[12] Li, D., \& Rodrigo, J. L. (2010). Wellposedness and regularity of solutions of an aggregation equation. Revista Matemática Iberoamericana, 26(1), 261-294.
[13] Karch, G., \& Suzuki, K. (2010). Blow-up versus global existence of solutions to aggregation equations. Applied Mathematics (Warsaw), 38 (2011), 243-258.
[14] Laurent, T. (2007). Local and global existence for an aggregation equation. Communications in Partial Differential Equations, 32(12), 1941-1964.
[15] Chen, Q., \& Zhang, Z. (2007). Global well-posedness of the 2D critical dissipative quasi-geostrophic equation in the TriebelÚLizorkin spaces. Nonlinear Analysis: Theory, Methods \& Applications, 67(6), 1715-1725.
[16] Wang, H., \& Zhang, Z. (2011). A frequency localized maximum principle applied to the 2D quasi-geostrophic equation. Communications in Mathematical Physics, 301(1), 105-129.
[17] Wang, W., \& Wu, G. (2018). Global mild solution of the generalized NavierÚStokes equations with the Coriolis force. Applied Mathematics Letters, 76, 181-186.
[18] Wu, G., \& Zhang, Q. (2013). Global well-posedness of the aggregation equation with supercritical dissipation in Besov spaces. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 93(12), 882-894.
[19] Kato, T. (1992). Strong solutions of the Navier-Stokes equation in Morrey spaces. Boletim da Sociedade Brasileira de Matemática-Bulletin/Brazilian Mathematical Society, 22(2), 127-155.
[20] Cannone, M., \& Wu, G. (2012). Global well-posedness for NavierÚStokes equations in critical FourierÚHerz spaces. Nonlinear Analysis: Theory, Methods \& Applications, 75(9), 3754-3760.
[21] Ferreira, L. C., \& Lima, L. S. (2014). Self-similar solutions for active scalar equations in FourierÚBesovÚMorrey spaces. Monatshefte für Mathematik, 175(4), 491-509.
[22] El Baraka, A., \& Toumlilin, M. (2017). Global Well-Posedness for Fractional Navier-Stokes Equations in critical Fourier-Besov-Morrey Spaces. Moroccan Journal of Pure and Applied Analysis, 3(1), 1-13.
(c) 2019 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

