

Article New inequalities based on harmonic log-convex functions

Imran Abbas Baloch^{1,2,*} and Silvestru Sever Dragomir³

- ¹ Abdus Salam School of Mathematical Sciences, GC University, Lahore, Pakistan.
- ² Govt. College for Boys, Gulberg Higher Education Department, Punjab, Pakistan.
- ³ Mathematics, College of Engineering and Science, Victoria University, Melbourne City, Australia.; sever.dragomir@vu.edu.au
- * Correspondence: iabbasbaloch@gmail.com

Received: 2 September 2019; Accepted: 22 December 2019; Published: 31 December 2019.

Abstract: Harmonic convexity is very important new class of non-convex functions, it gained prominence in the Theory of Inequalities and Applications as well as in the rest of Mathematics's branches. The harmonic convexity of a function is the basis for many inequalities in mathematics. Furthermore, harmonic convexity provides an analytic tool to estimate several known definite integrals like $\int_a^b \frac{e^x}{x^n} dx$, $\int_a^b \frac{\sin x}{x^n} dx$ and $\int_a^b \frac{\cos x}{x^n} dx \forall n \in \mathbb{N}$, where $a, b \in (0, \infty)$. In this article, some un-weighted inequalities of Hermite-Hadamard type for harmonic log-convex functions defined on real intervals are given.

Keywords: Harmonic convex functions, Hermite-Hadamard type inequalities, integral inequalities, harmonic log-convex functions.

MSC: 35B40, 35B41, 35B45, 35L05, 35R60, 58J37.

1. Introduction

D uring the investigation of convexity, many researchers founded new classes of functions which are not convex in general. Some of them are the so called harmonic convex functions [1], harmonic (α, m) -convex functions [2], harmonic (s, m)-convex functions [3,4] and harmonic (p, (s, m))-convex functions [5]. For a quick glance on importance of these classes and applications, see [1–19] and references therein.

Definition 1. A function $f : I \subseteq \mathbb{R} \setminus \{0\} \to \mathbb{R}$ is said to be harmonic convex function on *I* if

$$f\left(\frac{xy}{tx+(1-t)y}\right) \le tf(y) + (1-t)f(x) \tag{1}$$

holds for all $x, y \in I$ and $t \in [0, 1]$. If the inequality is reversed, then f is said to be harmonic concave.

In [5,20], Baloch *et al.* and Noor *et al.* also gave the definition of harmonic log-convex functions as follow:

Definition 2. A function $f : I \subseteq \mathbb{R} \setminus \{0\} \to (0, \infty)$ is said to be harmonic log-convex function on *I* if

$$f\left(\frac{xy}{tx+(1-t)y}\right) \le [f(x)]^{1-t}[f(y)]^t$$
(2)

holds for all $x, y \in I$ and $t \in [0, 1]$. If the inequality is reversed, then *f* is said to be harmonic log-concave.

In [20], Noor et al. proved the following result for harmonic log-convex functions:

Theorem 3. Let $I \subseteq \mathbb{R} \setminus \{0\}$ be an interval. If $f : I \to (0, \infty)$ is harmonic convex function, then

$$f\left(\frac{2ab}{a+b}\right) \le \exp\left[\frac{ab}{b-a} \int_{a}^{b} \log\left(\frac{f(x)}{x^{2}}\right) dx\right] \le \sqrt{f(a)f(b)}$$
(3)

for all $a, b \in I$ and a < b.

Here, motivated by the above result we study the class of harmonic log-convex functions and present some new inequalities for this class of functions.

2. Main Results

The following result holds.

Theorem 4. Let $f : I \subseteq \mathbb{R} \setminus \{0\} \to (0, \infty)$ be harmonic log-convex function. Then, for every $t \in [0, 1]$, we have

$$\int_{a}^{b} f(x)dx \geq \int_{a}^{b} [f(x)]^{1-t} \left[\frac{a^{2}b^{2}}{[(a+b)x-ab]^{2}} f\left(\frac{abx}{(a+b)x-ab}\right) \right]^{t} dx \\
\geq \begin{cases} (1-2t)a^{2}b^{2} \int_{\frac{ab}{ia+(1-t)b}}^{\frac{ab}{(1-t)a+tb}} \frac{[(a+b)tu-ab]^{2(t-1)}}{[ab-(1-t)(a+b)u]^{2t}} f(u)du & \text{if } t \neq \frac{1}{2}; \\
\frac{2ab}{a+b} \ln(\frac{b}{a}) f\left(\frac{2ab}{a+b}\right) & \text{if } t = \frac{1}{2}. \end{cases}$$
(4)

Proof. The cases $t = 0, \frac{1}{2}, 1$ are obvious. Assume that $t \in (0,1) \setminus \left\{\frac{1}{2}\right\}$. By the harmonic log-convexity of f we have

$$[f(x)]^{1-t} \left[f\left(\frac{abx}{(a+b)x-ab}\right) \right]^t \ge f\left(\frac{\frac{abx^2}{(a+b)x-ab}}{tx+(1-t)\frac{abx}{(a+b)x-ab}}\right) f\left(\frac{abx}{(a+b)tx-(2t-1)ab}\right)$$
(5)

for any $x \in [a, b]$. This allows that

$$[f(x)]^{1-t} \left[\frac{a^2 b^2}{[(a+b)x-ab]^2} f\left(\frac{abx}{(a+b)x-ab}\right) \right]^t \ge \frac{a^{2t} b^{2t}}{[(a+b)x-ab]^{2t}} f\left(\frac{abx}{(a+b)tx-(2t-1)ab}\right).$$
(6)

Integrating the inequality (6) over x on [a, b], we have

$$\int_{a}^{b} [f(x)]^{1-t} \left[\frac{a^{2}b^{2}}{[(a+b)x-ab]^{2}} f\left(\frac{abx}{(a+b)x-ab}\right) \right]^{t} dx \ge \int_{a}^{b} \frac{a^{2t}b^{2t}}{[(a+b)x-ab]^{2t}} f\left(\frac{abx}{(a+b)tx-(2t-1)ab}\right) dx.$$

Since $t \neq \frac{1}{2}$, then $u = \frac{abx}{(a+b)tx-(2t-1)ab}$ is the change of variable with $dx = \frac{(1-2t)a^2b^2}{[(a+b)tu-ab]^2}du$. For x = a, we get $u = \frac{ab}{ta+(1-t)b}$ and for x = b, we get $u = \frac{ab}{(1-t)a+tb}$. Therefore,

$$\int_{a}^{b} \frac{a^{2t}b^{2t}}{[(a+b)x-ab]^{2t}} f\left(\frac{abx}{(a+b)tx-(2t-1)ab}\right) dx = (1-2t)a^{2}b^{2} \int_{\frac{ab}{ta+(1-t)b}}^{\frac{ab}{(1-t)a+tb}} \frac{[(a+b)tu-ab]^{2(t-1)}}{[ab-(1-t)(a+b)u]^{2t}} f(u) du,$$

and hence the second inequality (4) is proved. By the Hölder integral inequality for $p = \frac{1}{1-t}$, $q = \frac{1}{t}$, we have

$$\begin{split} &\int_{a}^{b} [f(x)]^{1-t} \left[\frac{a^{2}b^{2}}{[(a+b)x-ab]^{2}} f\left(\frac{abx}{(a+b)x-ab}\right) \right]^{t} dx \\ &\leq \left(\int_{a}^{b} \left([f(x)]^{1-t} \right)^{\frac{1}{1-t}} dx \right)^{1-t} \left(\int_{a}^{b} \left(\left[\frac{a^{2}b^{2}}{[(a+b)x-ab]^{2}} f\left(\frac{abx}{(a+b)x-ab} \right) \right]^{t} \right)^{\frac{1}{t}} dx \right)^{t} \\ &= \left(\int_{a}^{b} f(x) dx \right)^{1-t} \left(\int_{a}^{b} \frac{a^{2}b^{2}}{[(a+b)x-ab]^{2}} f\left(\frac{abx}{(a+b)x-ab} \right) dx \right)^{t} \\ &= \left(\int_{a}^{b} f(x) dx \right)^{1-t} \left(\int_{a}^{b} f(x) dx \right)^{t} = \int_{a}^{b} f(x) dx. \end{split}$$

This proves the first part of inequality (4). \Box

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflicts of Interest: "The authors declare no conflict of interest."

References

- [1] İşcan, İ. (2014). Hermite-Hadamard type inequaities for harmonically convex functions. *Hacettepe Journal of Mathematics and Statistic* 43 (6), 935-942.
- [2] İşcan, İ. (2016). Hermite-Hadamard type inequalities for harmonically (α, m)-convex functions. Hacettepe Journal of Mathematics and Statistics, 45(2), 381-390.
- [3] Baloch, I. A., İşcan, İ., & Dragomir, S. S. (2016). Fejer type inequalities for harmonically (*s*, *m*)-convex functions. *International Journal of Analysis and Applications*, 12(2), 188-197.
- [4] Baloch, I. A., & İşcan, İ. (2016). New Hermite-Hadamard and Simpson type inequalities for harmonically (*s*, *m*)-convex functions in Second Sense. *International Journal of Analysis*, Article ID 672675.
- [5] Baloch, I. A., & İşcan, İ. (2017). Some Hermite-Hadamard type integral inequalities for harmonically (p, (s, m))-convex functions. Journal of Inequalities & Special Functions, 8(4), 65-84.
- [6] Dragomir, S. S., Pečarić, J., & Persson, L. E. (1995). Some inequalities of Hadamard type. Soochow Journal of Mathematics, 21(3), 335-341.
- [7] Dragomir, S. S. (2015). Inequalities of Jensen type for HA-convex functions. Fasciculi Mathematici, 55(1), 35-52.
- [8] Dragomir, S. S. (2006). Bounds for the normalised Jensen functional. *Bulletin of the Australian Mathematical Society*, 74(3), 471-478.
- [9] Dragomir, S. S., Pečarić, J., & Persson, L. E. (1995). Properties of some functionals related to Jensen's inequality. *Acta Mathematica Hungarica*, 69(4), 129-143.
- [10] Fang, Z. B., & Shi, R. (2014). On the (*p*,*h*)-convex function and some integral inequalities. *Journal of Inequalities and Applications*, 2014(1), 45.
- [11] Hazy, A. (2011). Bernstein-Doetsch-type results for *h*-convex functions. *Mathematical Inequalities & Applications*, 14(3), 499-508.
- [12] Jensen, J. L. W. V. (1906). Sur les fonctions convexes et ingalits entre les valeurs moyemes. Acta Mathematica 30, 175-193.
- [13] Mercer, A. M. (2003). A variant of Jensen's inequality. *Journal of Inequalities in Pure and Applied Mathematics*, 4(4), Article ID, 73.
- [14] Niculescu, C., & Persson, L. E. (2006). Convex functions and their applications. New York: Springer.
- [15] Olbrys, A. (2015). On separation by h-convex functions. Tatra Mountains Mathematical Publications, 62(1), 105-111.
- [16] Peajcariaac, J. E., & Tong, Y. L. (1992). Convex functions, partial orderings, and statistical applications. Academic Press.
- [17] Varošanec, S. (2007). On h-convexity. Journal of Mathematical Analysis and Applications, 326(1), 303-311.
- [18] Agarwal, R. P., & Dragomir, S. S. (1998). The property of supermultiplicity for some classical inequalities and applications. *Computers & Mathematics with Applications*, 35(6), 105-118.
- [19] Baloch, I. A., De La Sen, M., & İşcan, İ. (2019). Characterizations of Classes of Harmonic Convex Functions and Applications. *International Journal of Analysis and Applications*, 17(5), 722-733.
- [20] Noor, M. A. Noor., K. I., & Awan, M. U. (2014). Some characterizations of harmonically log-convex functions. Proceeding of the Jangjeon Mathematical Society, 17(1), 51-61.

© 2019 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).