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1. Introduction

C onsider the linear differential equation

f (k) + ak−1(z) f (k−1) + · · ·+ a1(z) f ′ + a0(z) f = 0, (1)

where k ≥ 1 is an integer, a0(z), a1(z), . . . , ak−1(z) are analytic functions in the unit disc D = {z ∈ C : |z| < 1}
and a0(z) 6≡ 0. The theory of complex differential equations in the unit disc has been developed since 1980’s,
see [1]. In the year 2000, Heittokangas in [2] firstly investigated the growth and oscillation theory of Equation
(1) when the coefficients a0(z), a1(z), . . . , ak−1(z) are analytic functions in the unit disc D by introducing the
definition of the function spaces. His results also gave some important tools for further investigations on the
theory of meromorphic solutions of Equation (1).

In this article, we investigate the growth of solutions of the Equation (1) when the coefficients
a0(z), a1(z), . . . , ak−1(z) are analytic in D, and we deal with the case that the coefficients are fast growing in
D. To define the order of fast-growth of analytic functions, we define inductively for r ∈ [0,+∞), exp0 r = r,
exp1 r = er and expn+1 r = exp (expn r) , n ∈ N. For all r sufficiently large, we define log0 r = r, log1 r = log r
and logn+1 r = log (logn r) , n ∈ N. Also, we need to be familiar with the fundamental results and the standard
notations of the Nevanlinna’s theory on the complex plane C and in the unit disc D, for more details on
Nevanlinna theory and its applications in complex differential equations in complex plane and in unit disc, we
refer to [2–7].

Before stating our main results, we recall definitions and preliminary remarks concerning meromorphic
and analytic functions in D. For the definitions and more discussions, we refer the reader to [7–10].

Let p ≥ 1 be an integer and f be a meromorphic function in D. Then, the iterated p-order of f is defined
by

ρp( f ) = lim sup
r→1−

log+
p T(r, f )

log 1
1−r

,

where log+
1 r = log+ r = max{log r; 0}, log+

p+1 r = log+
(

log+
p r
)

and T(r, f ) is the Nevanlinna characteristic
function. If f is analytic in D, then the iterated p-order of f is defined by

ρM,p( f ) = lim sup
r→1−

log+
p+1 M(r, f )

log 1
1−r

,
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where M(r, f ) = max {| f (z)| : |z| = r} .

Remark 1. For p = 1, ρ1( f ) is called order, see [2]. And for p = 2, ρ2( f ) is called hyper-order, see [11].

Remark 2. It follows by [7, page 205] that if f is an analytic function in D, then we have the inequalities

ρ1( f ) ≤ ρM,1( f ) ≤ ρ1( f ) + 1

which are the best possible in the sense that there are analytic functions g and h such that ρ1(g) = ρM,1(g) and
ρM,1(h) = ρ1(h) + 1, see [12]. However, it follows by [4, Proposition 2.2.2] that ρp( f ) = ρM,p( f ) for p ≥ 2.

The iterated p-type of a meromorphic function f in D with 0 < ρp( f ) < +∞ is defined by

τp( f ) = lim sup
r→1−

(1− r)ρp( f ) log+
p−1 T(r, f ),

and if f is analytic in D with 0 < ρM,p( f ) < +∞, then the iterated p-type is defined by

τM,p( f ) = lim sup
r→1−

(1− r)ρM,p( f ) log+
p M(r, f ).

Remark 3. It follows by [4, Proposition 2.2.2] that τp( f ) = τM,p( f ) for p ≥ 2.

2. Basic results

Heittokangas et al. in [10] proved the following results.

Theorem 1 ([10]). Let k ∈ N. If the coefficients a0(z), a1(z), . . . , ak−1(z) are analytic in D such that ρM,p(aj) <

ρM,p(a0) for all j = 1, . . . , k− 1, then all solutions f 6≡ 0 of (1) satisfy ρM,p+1( f ) = ρM,p(a0).

Theorem 2 ([10]). Let k ∈ N. If the coefficients a0(z), a1(z), . . . , ak−1(z) are analytic in D such that ρM,p(aj) ≤
ρM,p(a0) for all j = 1, . . . , k− 1 and

∑
ρM,p(aj)=ρM,p(a0)

τM,p(aj) < τM,p(a0),

then all solutions f 6≡ 0 of (1) satisfy ρM,p+1( f ) = ρM,p(a0).

Hamouda in [13], gave an improvement of Theorem 2 as follows.

Theorem 3 ([13]). Let k ∈ N. If the coefficients a0(z), a1(z), . . . , ak−1(z) are analytic in D such that ρM,p(aj) ≤
ρM,p(a0) for all j = 1, . . . , k− 1 and

max
{

τM,p(aj) : ρM,p(aj) = ρM,p(a0)
}
< τM,p(a0),

then all solutions f 6≡ 0 of (1) satisfy ρM,p+1( f ) = ρM,p(a0).

Our proofs depend mainly upon the following lemmas. Before starting these lemmas, we recall the
concept of logarithmic measure. The logarithmic measure of a set S ⊂ (0, 1) is given by

lm(S) :=
∫

S

dt
1− t

.

The set F ⊂ [0, 1) in all this paper is not necessarily the same at each occurrence, but it is always of finite
logarithmic measure, that is lm(F) < +∞.

To avoid some problems of the exceptional sets, we need the following lemma.
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Lemma 1 ([2,14]). Let g : [0, 1) 7→ R and h : [0, 1) 7→ R be monotone non-decreasing functions such that g(r) ≤ h(r)
holds outside of an exceptional set F ⊂ [0, 1) of finite logarithmic measure. Then there exists a d ∈ (0, 1) such that if
s(r) = 1− d(1− r), then g(r) ≤ h(s(r)) for all r ∈ [0, 1).

Lemma 2 ([12, Theorem 3.1]). Let k and j be integers satisfying k > j ≥ 0, and let ε > 0 and d ∈ (0, 1). If f is a
meromorphic in D such that f (j) 6≡ 0, then∣∣∣∣∣ f (k)(z)

f (j)(z)

∣∣∣∣∣ ≤
[(

1
1− |z|

)2+ε

max
{

log
1

1− |z| ; T(s(|z|), f )
}]k−j

for |z| 6∈ F, where F ⊂ [0, 1) is a set of finite logarithmic measure, and where s(|z|) = 1− d(1− r).

Lemma 3 ([10]). Let f be a meromorphic function in the unit disc with ρp( f ) := ρ < +∞ for some p ∈ N, and let
ε > 0 be a given constant. Then, there exists a set F ⊂ (0, 1) of finite logarithmic measure such that for all z with
|z| = r 6∈ F and for all integer j ≥ 1, we have:

(i) If p = 1, then ∣∣∣∣∣ f (j)(z)
f (z)

∣∣∣∣∣ ≤ 1
(1− r)j(ρ+2+ε)

. (2)

(ii) If p ≥ 2, then ∣∣∣∣∣ f (j)(z)
f (z)

∣∣∣∣∣ ≤ expp−1

{
1

(1− r)ρ+ε

}
. (3)

Lemma 4 ([10]). Let a0(z), a1(z), . . . , ak−1(z) be analytic functions in the unit disc D. Then, every solution f 6≡ 0 of
the Equation (1) satisfies

ρp+1( f ) = ρM,p+1( f ) ≤ max
{

ρM,p(aj) : j = 0, . . . , k− 1
}

.

Remark 4. If p ≥ 2, then by Remark 2 and Lemma 4, we obtain that very solution f 6≡ 0 of the Equation (1)
satisfies

ρp+1( f ) ≤ max
{

ρp(aj) : j = 0, . . . , k− 1
}

.

Lemma 5 ([2,3,7]). Let f be a meromorphic function in the unit disc D and let k ∈ N. Then

m

(
r,

f (k)

f

)
= S(r, f ),

where S(r, f ) = O
(

log+ T(r, f ) + log
(

1
1−r

))
, possibly outside a set F ⊂ [0, 1) with finite logarithmic measure.

Lemma 6 ([15]). Let f be a meromorphic function in the unit disc D for which i ( f ) = p ≥ 1 and ρp ( f ) = ρ < +∞,
and let k ≥ 1 be an integer. Then for any ε > 0,

m

(
r,

f (k)

f

)
= O

(
expp−2

{
1

1− r

}ρ+ε
)

holds for all r outside a set F ⊂ [0, 1) with
∫

F
dr

1−r < +∞.

Lemma 7. For an integer p ≥ 2, let f be a meromorphic function in D such that 0 < ρp( f ) = ρ < +∞, 0 < τp( f ) =
τ < +∞ and 0 < τ∗p ( f ) = τ∗ < +∞ (see Definition 1). Then for any given η < τ∗, there exists a subset E ⊂ [0, 1)
that has an infinite logarithmic measure

∫
E

dr
1−r = +∞ such that for all r ∈ E, we have

logp−2 T(r, f ) > η exp
{

τ

(1− r)ρ

}
.
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Proof. By the definition of τ∗p ( f ), there exists an increasing sequence {rm}+∞
m=1 ⊂ [0, 1) satisfying 1

m +(
1− 1

m

)
rm < rm+1, (rm −→ 1−, m −→ +∞) and

lim
m→+∞

logp−2 T(rm, f )

exp
{

τ
(1−rm)ρ

} = τ∗.

Then, for any given 0 < ε < τ∗, there exists a positive integer m0 such that for all m ≥ m0, we have

logp−2 T(rm, f ) > (τ∗ − ε) exp
{

τ

(1− rm)
ρ

}
. (4)

For r ∈
[
rm, 1

m +
(

1− 1
m

)
rm

]
, we get

lim
m→+∞

exp
{

τ
[(

1− 1
m

) (
1

1−r

)]ρ}
exp

{
τ

(1−r)ρ

} = 1.

Then for any given 0 < η < τ∗ − ε, there exists a positive integer m1 such that for all m ≥ m1, and for all
r ∈

[
rm, 1

m +
(

1− 1
m

)
rm

]
, we have

exp
{

τ
[(

1− 1
m

) (
1

1−r

)]ρ}
exp

{
τ

(1−r)ρ

} >
η

τ∗ − ε
. (5)

By (4) and (5), for all m ≥ m2 = max {m0; m1} and for all r ∈
[
rm, 1

m +
(

1− 1
m

)
rm

]
, we have

logp−2 T(r, f ) ≥ log+
p−2 T(rm, f ) > (τ∗ − ε) exp

{
τ

(1− rm)
ρ

}
≥ (τ∗ − ε) exp

{
τ

[(
1− 1

m

)(
1

1− r

)]ρ}
> η exp

{
τ

(1− r)ρ

}
.

Set

E =
+∞⋃

m=m2

[
rm,

1
m

+

(
1− 1

m

)
rm

]
.

Then ∫
E

dt
1− t

=
+∞

∑
m=m2

∫ 1
m +(1− 1

m )rm

rm

dt
1− t

=
+∞

∑
m=m2

log
m

m− 1
= +∞.

By using similar reasoning as in the proof of Lemma 7, we easily obtain the following lemma.

Lemma 8. For an integer p ≥ 2, let f be a meromorphic function in D such that 0 < ρM,p( f ) = ρ < +∞, 0 <

τM,p( f ) = τ < +∞ and 0 < τ∗M,p( f ) = τ∗ < +∞. Then for any given η < τ∗, there exists a subset E ⊂ [0, 1) that

has an infinite logarithmic measure
∫

E
dr

1−r = +∞ such that for all r ∈ E, we have

logp−1 M(r, f ) > η exp
{

τ

(1− r)ρ

}
.

Lemma 9 ([16]). Let f be a solution of Equation (1) , where the coefficients aj (z) (j = 0, ..., k− 1) are analytic functions
in the disc ∆R = {z ∈ C : |z| < R} , 0 < R ≤ ∞. Let nc ∈ {1, ..., k} be the number of nonzero coefficients aj (z)



Open J. Math. Anal. 2020, 4(1), 38-48 42

(j = 0, ..., k− 1) , and let θ ∈ [0, 2π] and ε > 0. If zθ = νeiθ ∈ ∆R is such that aj (zθ) 6= 0 for some j = 0, ..., k− 1,
then for all ν < r < R, ∣∣∣ f (reiθ

)∣∣∣ ≤ C exp

nc

r∫
ν

max
j=0,...,k−1

∣∣∣aj

(
teiθ
)∣∣∣ 1

k−j dt

 ,

where C > 0 is a constant satisfying

C ≤ (1 + ε) max
j=0,...,k−1


∣∣∣ f (j) (zθ)

∣∣∣
(nc)

j max
n=0,...,k−1

|an (zθ)|
j

k−n

 .

Lemma 10. Let {aj(z)}0≤j≤k−1 be analytic functions in the disc D such that 0 < p < ∞ and 0 < max{ρM,p(aj) :
j = 1, . . . , k− 1} ≤ ρM,p (a0) = ρ < ∞ and max{τM,p(aj) : j = 1, . . . , k− 1} ≤ τM,p (a0) = τ < ∞. Then, every
solution f 6≡ 0 of the Equation (1) with ρp+1( f ) = ρ satisfies τp+1( f ) ≤ τ.

Proof. Let f 6≡ 0 be a solution of (1) with ρp+1( f ) = ρ. Let θ0 ∈ [0, 2π) be such that
∣∣ f (reiθ0

)∣∣ = M (r, f ) . By
Lemma 9, we have

M (r, f ) ≤ C exp

nc

r∫
ν

max
j=0,...,k−1

∣∣∣aj

(
teiθ
)∣∣∣ 1

k−j dt


≤ C exp

nc

r∫
ν

max
j=0,...,k−1

(
M
(
r, aj

)) 1
k−j dt


≤ C exp

(
nc (r− ν) max

j=0,...,k−1

{
M
(
r, aj

)})
. (6)

We have max
{

ρM,p(aj) : j = 0, 1, ..., k− 1
}
= ρM,p (a0) = ρ. By the definition of τM,p(aj), for any given

ε > 0 and r → 1−, we obtain

M(r, aj) ≤ expp

{
τM,p(aj) +

ε
2

(1− r)ρM,p(aj)

}
≤ expp

{
τ + ε

2
(1− r)ρ

}
(j = 0, 1, ..., k− 1) . (7)

By (6) and (7), we have for r → 1−

M (r, f ) ≤ expp+1

{
τ + ε

(1− r)ρ

}
. (8)

Then, it follows from (8), arbitrariness of ε > 0 that τp+1( f ) = τM,p+1( f ) ≤ τ.

3. Main results

In this article, we aim to answer the following questions:

1. What can be said about the growth of solutions of the Equation (1) in the case when ρM,p(aj) ≤ ρM,p(a0)

for all j = 1, . . . , k− 1 and

max
{

τM,p(aj) : ρM,p(aj) = ρM,p(a0)
}
≤ τM,p(a0)?

2. What happened when we replace ρM,p and τM,p by ρp and τp?

As the first result, we give an improvement to Theorems 1 and 2 of [13].

Theorem 4. Let a0(z), a1(z), . . . , ak−1(z) be meromorphic functions in the unit disc D, and a0(z) 6≡ 0. Suppose that
there exist a point ω ∈ ∂D, a curve γ tending to ω and a set F1 ⊂ (0, 1) of finite logarithmic measure such that for z ∈ γ

and |z| = r 6∈ F1, we have for the largest integer p ≥ 1
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lim
z→ω

k−1

∑
j=1

∣∣aj(z)
∣∣+ 1

|a0(z)|
expp

{
λ

(1− r)α

}
= 0 (9)

for all λ > 0 and α > 0. Then, every nontrivial meromorphic solution f of the Equation (1) satisfies ρp+1( f ) = +∞.

Proof. Suppose that f 6≡ 0 is a solution of the Equation (1) with ρp+1( f ) = ρ < +∞. By (1), f satisfies

1 ≤ 1
|a0(z)|

∣∣∣∣∣ f (k)

f

∣∣∣∣∣+ k−1

∑
j=1

|aj(z)|
|a0(z)|

∣∣∣∣∣ f (j)

f

∣∣∣∣∣ . (10)

For p ≥ 1, by (3), for all z satisfying |z| = r 6∈ F (F has finite logarithmic measure), we obtain∣∣∣∣∣ f (j)(z)
f (z)

∣∣∣∣∣ ≤ expp

{
1

(1− |z|)α

}
, (11)

where α > 0 is a constant which depends on ρ, ε and j = 1, . . . , k. By substituting (11) into (10), it yields

1 ≤

k−1

∑
j=1

∣∣aj(z)
∣∣+ 1

|a0(z)|
expp

{
1

(1− |z|)α

}
. (12)

By (9), for z ∈ γ such that |z| = r 6∈ F1 (F1 has finite logarithmic measure), we know that as z→ ω

k−1

∑
j=1

∣∣aj(z)
∣∣+ 1

|a0(z)|
expp

{
1

(1− |z|)α

}
−→ 0. (13)

Thus, for all z ∈ γ with |z| = r 6∈ F1 ∪ F, by (12) and (13), we get a contradiction. Hence, every
meromorphic solution f 6≡ 0 of (1) has an infinite (p + 1)-order.

Remark 5. In [13], under the same hypotheses of Theorem 4, Hamouda obtained that ρp+1( f ) ≥ α.

In all the next, we consider p ∈ N\{1}. In trying to give an answer on the above questions, we prove the
following results.

Theorem 5. Let a0(z), a1(z), . . . , ak−1(z) be analytic functions in the unit disc D satisfying ρM,p(aj) ≤ ρM,p(a0) = ρ

(0 < ρ < +∞) and τM,p(aj) ≤ τM,p(a0) = τ (0 < τ < +∞) for all j = 1, . . . , k− 1. Suppose that there exist two
positive real numbers α and β with 0 ≤ β < α, such that

|a0(z)| ≥ expp−1

{
α exp

τ

(1− r)ρ

}
(14)

and ∣∣aj(z)
∣∣ ≤ expp−1

{
β exp

τ

(1− r)ρ

}
, j = 1, . . . , k− 1 (15)

as |z| = r → 1− for r ∈ E1 (E1 is of infinite logarithmic measure). Then, every solution f 6≡ 0 of the Equation (1)
satisfies ρp ( f ) = +∞, ρp+1 ( f ) = ρ and dρτ ≤ τp+1( f ) ≤ τ, d ∈ (0, 1).

Proof. Let f 6≡ 0 be a solution of the Equation (1). By (1), f satisfies

|a0(z)| ≤
∣∣∣∣∣ f (k)

f

∣∣∣∣∣+ k−1

∑
j=1
|aj(z)|

∣∣∣∣∣ f (j)

f

∣∣∣∣∣ . (16)
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By hypotheses of Theorem 5 and Lemma 4, we know that ρp+1( f ) ≤ ρ. Suppose that ρp+1( f ) = ρ1 < ρ. Then,
by (3) for all 0 < ε < ρ− ρ1, we have∣∣∣∣∣ f (j)(z)

f (z)

∣∣∣∣∣ ≤ expp

{
1

(1− r)ρ1+ε

}
, j = 1, . . . , k, (17)

where |z| = r 6∈ F. By substituting (14), (15) and (17) into (16) we obtain

expp−1

{
α exp

τ

(1− r)ρ

}
≤ k expp−1

{
β exp

τ

(1− r)ρ

}
expp

{
1

(1− r)ρ1+ε

}
, (18)

for all r ∈ E1\F. Hence, we get

(α− β) exp
{

τ

(1− r)ρ

}
≤ exp

{
1

(1− r)ρ1+ε

}
+ C1 (19)

for some constant C1 > 0, which is a contradiction as |z| = r → 1−, r ∈ E1\F, since α > β ≥ 0 and ρ > ρ1 + ε.
Thus, ρp+1( f ) = ρ.

Now, by Lemma 2, we have for j = 1, . . . , k∣∣∣∣∣ f (j)(z)
f (z)

∣∣∣∣∣ ≤
[(

1
1− |z|

)2+ε

max
{

log
1

1− |z| ; T(s(|z|), f )
}]k

(20)

for all r 6∈ F2 ∪ [0, 1]. From, (14), (15), (16) and (20), we obtain

expp−1

{
α exp

τ

(1− r)ρ

}
≤ k expp−1

{
β exp

τ

(1− r)ρ

}(
1

1− r

)(2+ε)k
Tk(s(r), f ) (21)

for all r ∈ E1\(F2 ∪ [0, 1]). Hence

log(α− β) +
τ

(1− r)ρ ≤ logp
1

1− r
+ logp T(s(r), f ) + C2 (22)

for some constant C2 > 0 and for all r ∈ E1\(F2 ∪ [0, 1]). Setting R = s(r) = 1− d(1− r), d ∈ (0, 1). We have
1− r = 1−R

d , d ∈ (0, 1). Then by Lemma 1, we obtain we obtain for R −→ 1−

log(α− β) +
dρτ

(1− R)ρ ≤ logp
d

1− R
+ logp T(R, f ) + C2. (23)

Since 0 < ρp+1( f ) = ρ < ∞, from (23) we deduce that

τp+1( f ) = lim sup
R→1−

log+
p T(R, f )

1
(1−R)ρ

≥ dρτ.

By Lemma 10, we conclude that dρτ ≤ τp+1( f ) ≤ τ.

Theorem 6. Let a0(z), a1(z), . . . , ak−1(z) be analytic functions in the unit disc D satisfying ρp(aj) ≤ ρp(a0) = ρ

(0 < ρ < +∞) and τp(aj) ≤ τp(a0) = τ (0 < τ < +∞) for all j = 1, . . . , k− 1. Suppose that there exist two positive
real numbers α and β with 0 ≤ β < α, such that

m(r, a0) ≥ expp−2

{
α exp

τ

(1− r)ρ

}
(24)

and

m(r, aj) ≤ expp−2

{
β exp

τ

(1− r)ρ

}
, j = 1, . . . , k− 1 (25)
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as |z| = r → 1− for r ∈ E2 (E2 is of infinite logarithmic measure). Then, every solution f 6≡ 0 of the Equation (1)
satisfies ρp ( f ) = +∞, ρp+1 ( f ) = ρ and dρτ ≤ τp+1( f ) ≤ τ, d ∈ (0, 1).

Proof. Let f 6≡ 0 be a solution of the Equation (1). By (1) we can write

a0(z) = −
(

f (k)

f
+

k−1

∑
j=1

aj(z)
f (j)

f

)
. (26)

By hypotheses of Theorem 6 and Lemma 4, we know that ρp+1( f ) ≤ ρ. Suppose that ρp+1( f ) = ρ1 < ρ.
Then by Lemma 6, for all 0 < ε < ρ− ρ1 and for all |z| = r /∈ F, we have for j = 1, . . . , k

m

(
r,

f (j)

f

)
= O

(
expp−1

{
1

(1− r)ρ1+ε

})
. (27)

Now, let p ≥ 2, it follows by (24), (25), (26) and (27) that

expp−2

{
α exp

τ

(1− r)ρ

}
≤ m(r, a0)

≤
k−1

∑
j=1

m(r, aj) +
k−1

∑
j=1

m

(
r,

f (j)

f

)
+ O (1)

≤ (k− 1) expp−2

{
β exp

τ

(1− r)ρ

}
+ M expp−1

{
1

(1− r)ρ1+ε

}
(28)

holds for all z satisfying |z| = r ∈ E2\F as r → +∞, and M > 0 is some constant. Hence, from (28) we obtain

(α− β) exp
{

τ

(1− r)ρ

}
≤ exp

{
1

(1− r)ρ1+ε

}
+ C3

for some constant C3 > 0, which is a contradiction as |z| = r → 1−, r ∈ E2\F, since α > β ≥ 0 and ρ > ρ1 + ε.
Thus, ρp+1( f ) = ρ.

Now, it follows by (24), (25), (26) and Lemma 5 that

expp−2

{
α exp

τ

(1− r)ρ

}
≤ m(r, a0)

≤
k−1

∑
j=1

m(r, aj) +
k−1

∑
j=1

m

(
r,

f (j)

f

)
+ O (1)

≤ (k− 1) expp−2

{
β exp

τ

(1− r)ρ

}
+ O

(
log+ T(r, f ) + log

(
1

1− r

))
(29)

for all sufficiently large |z| = r ∈ E2\F. Then, for all sufficiently large |z| = r ∈ E2\F

log(α− β) +
τ

(1− r)ρ ≤ log+
p T(r, f ) + logp

(
1

1− r

)
+ C4 (30)

for some constant C4 > 0. Then by Lemma 1, we obtain for |z| = r ∈ E2, s (r)→ 1−

log(α− β) +
τ

(1− r)ρ ≤ log+
p T(s (r) , f ) + logp

(
1

1− s (r)

)
+ C4, (31)

where s(r) = 1− d(1− r), d ∈ (0, 1). Hence, by (31) we obtain

τp+1( f ) = lim sup
s(r)→1−

log+
p T(s (r) , f )

1
(1−s(r))ρ

≥ dρτ.

By Lemma 10, we conclude that dρτ ≤ τp+1( f ) ≤ τ.
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Hamouda in [17], to study the growth of meromorphic solutions of differential equations with finite
iterated p-order in complex plane, introduced new type of growth (see [17, p. 46]). According to the definition
of this new type of growth, we introduce a new definition of type of growth that we note τ∗p ( f ) related to
iterated p-order of meromorphic function f in the unit disc, as follows.

Definition 1. For p ≥ 2, let f be a meromorphic function of finite iterated p-order in D such that 0 < ρp ( f ) =
ρ < +∞ and 0 < τp ( f ) = τ < +∞, we define τ∗p ( f ) by

τ∗p ( f ) = lim sup
r→1−

log+
p−2 T(r, f )

exp
{

τ
(1−r)ρ

} .

If f is an analytic function in D with 0 < τM,p ( f ) = τM < +∞, we also define

τ∗M,p( f ) = lim sup
r→1−

log+
p−1 M(r, f )

exp
{

τM
(1−r)ρ

} .

The following theorems improves and extends Theorems 2 and 3.

Theorem 7. Let a0(z), a1(z), . . . , ak−1(z) be analytic functions in the unit disc D satisfying ρM,p(aj) ≤ ρM,p(a0) = ρ

(0 < ρ < +∞) and τM,p(aj) ≤ τM,p(a0) = τ (0 < τ < +∞) for all j = 1, . . . , k− 1 and

max
{

τ∗M,p(aj) : j = 1, . . . , k− 1
}
< τ∗M,p(a0).

Then all solutions f 6≡ 0 of (1) satisfy ρp ( f ) = +∞, ρp+1 ( f ) = ρ and dρτ ≤ τp+1( f ) ≤ τ, d ∈ (0, 1).

Proof. Suppose that all coefficients of the Equation (1) satisfy the hypotheses of Theorem 7. Now, let α and β

be two real numbers such that

max
{

τ∗M,p(aj) : j = 1, . . . , k− 1
}
< β < α < τ∗M,p(a0).

Because all coefficients are analytic, then for r −→ 1−

|aj(z)| ≤ expp−1

{
β exp

τ

(1− r)ρ

}
, j = 1, . . . , k− 1 (32)

and by Lemma 8, we have

M (r, a0) = |a0(z)| > expp−1

{
α exp

τ

(1− r)ρ

}
(33)

for all r ∈ E (E is a set of infinite logarithmic measure). From (32) and (33), and by Theorem 5, we obtain the
result.

Theorem 8. Let a0(z), a1(z), . . . , ak−1(z) be analytic functions in the unit disc D satisfying ρp(aj) ≤ ρp(a0) = ρ

(0 < ρ < +∞), τp(aj) ≤ τp(a0) = τ (0 < τ < +∞) for all j = 1, . . . , k− 1 and

max
{

τ∗p (aj) : j = 1, . . . , k− 1
}
< τ∗p (a0).

Then all solutions f 6≡ 0 of (1) satisfy ρp ( f ) = +∞, ρp+1 ( f ) = ρ and dρτ ≤ τp+1( f ) ≤ τ, d ∈ (0, 1).

Proof. Suppose that all coefficients of the Equation (1) satisfy the hypotheses of Theorem 8. Now, let α and β

be two real numbers such that

max
{

τ∗p (aj) : j = 1, . . . , k− 1
}
< β < α < τ∗p (a0).
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Since all coefficients are analytic, then for r −→ 1−

m
(
r, aj

)
≤ expp−2

{
β exp

τ

(1− r)ρ

}
, j = 1, . . . , k− 1 (34)

and by Lemma 7, we have

T (r, a0) = m (r, a0) > expp−2

{
α exp

τ

(1− r)ρ

}
(35)

for all r ∈ E (E is a set of infinite logarithmic measure). From (34) and (35), and by Theorem 6, we obtain the
result.

For some related results in the whole complex plane, see [18].
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