## Article

# Concerning the Navier-Stokes problem 

Alexander G. Ramm<br>Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA.; ramm@math.ksu.edu

Received: 16 June 2020; Accepted: 27 August 2020; Published: 31 August 2020.


#### Abstract

The problem discussed is the Navier-Stokes problem (NSP) in $\mathbb{R}^{3}$. Uniqueness of its solution is proved in a suitable space $X$. No smallness assumptions are used in the proof. Existence of the solution in $X$ is proved for $t \in[0, T]$, where $T>0$ is sufficiently small. Existence of the solution in $X$ is proved for $t \in[0, \infty)$ if some a priori estimate of the solution holds.


Keywords: Navier-Stokes equations, uniqueness of the solutions.
MSC: 35Q30, 76D05.

## 1. Introduction

There is a large literature on the Navier-Stokes problem (NSP) in $\mathbb{R}^{3}$ ( see [1], Chapter 5) and references therein). The global existence and uniqueness of a solution in $\mathbb{R}^{3}$ was not proved. The goal of this paper is to prove uniqueness of the solution to NSP in a suitable functional space. No smallness assumptions are used in our proof.

The NS problem in $\mathbb{R}^{3}$ consists of solving the equations

$$
\begin{equation*}
v^{\prime}+(v, \nabla) v=-\nabla p+v \Delta v+f, \quad x \in \mathbb{R}^{3}, \quad t \geq 0, \quad \nabla \cdot v=0, \quad v(x, 0)=v_{0}(x) \tag{1}
\end{equation*}
$$

Vector-functions $v=v(x, t), f=f(x, t)$ and the scalar function $p=p(x, t)$ decay as $|x| \rightarrow \infty$ uniformly with respect to $t \in \mathbb{R}_{+}:=[0, \infty), v^{\prime}:=v_{t}, v=$ const $>0$ is the viscosity coefficient, the velocity $v$ and the pressure $p$ are unknown, $v_{0}$ and $f$ are known, $\nabla \cdot v_{0}=0$. Equations (1) describe viscous incompressible fluid with density $\rho=1$.

We use the integral equation for $v$ :

$$
\begin{equation*}
v(x, t)=F-\int_{0}^{t} d s \int_{\mathbb{R}^{3}} G(x-y, t-s)(v, \nabla) v d y . \tag{2}
\end{equation*}
$$

Equation (2) is equivalent to (1), see [2]. Formula for the tensor $G$ is derived in [2], see also [1], p.41. The term $F=F(x, t)$ depends only on the data $f$ and $v_{0}$ (see equation (18) in [2] or formula (5.42) in [1]):

$$
\begin{equation*}
F:=\int_{\mathbb{R}^{3}} g(x-y) v_{0}(y) d y+\int_{0}^{t} d s \int_{\mathbb{R}^{3}} G(x-y, t-s) f(y, s) d y . \tag{3}
\end{equation*}
$$

We assume throughout that $f$ and $v_{0}$ are such that $F$ is bounded in all the norms we use.
Let $X$ be the Banach space of continuous functions with respect to $t$ with the norm

$$
\begin{equation*}
\|\tilde{v}\|:=\int_{\mathbb{R}^{3}}|\tilde{v}(\xi, t)|(1+|\xi|) d \xi \tag{4}
\end{equation*}
$$

where $t>0$, and $\tilde{v}:=(2 \pi)^{-3} \int_{\mathbb{R}^{3}} v(x, t) e^{-i \xi \cdot x} d x$. Taking the Fourier transform of (2) yields

$$
\begin{equation*}
\tilde{v}=\tilde{F}-\int_{0}^{t} d s \tilde{G} \tilde{v} \star i \tilde{\xi} \tilde{v}:=B(\tilde{v}) \tag{5}
\end{equation*}
$$

where $\star$ denotes the convolution in $\mathbb{R}^{3}$ and for brevity we omitted the tensorial indices: instead of $\tilde{G}_{m p} \tilde{v}_{j} \star$ $\left(i \tilde{\zeta}_{j}\right) \tilde{v}_{p}$, where one sums up over the repeated indices, we wrote $\tilde{G}(\tilde{\xi}, t-s) \tilde{v} \star(i \tilde{\xi} \tilde{v})$. From formula (5.9) in [1] it follows that

$$
\begin{equation*}
|\tilde{G}| \leq c e^{-v \zeta^{2}(t-s)} \tag{6}
\end{equation*}
$$

By $c>0$ we denote various constants independent of $t$ and $\xi$. Let $S\left(\mathbb{R}^{3} \times \mathbb{R}_{+}\right)$and $S\left(\mathbb{R}^{3}\right)$ be the L.Schwartz spaces. Our results are:

Theorem 1. Assume that $f$ and $v_{0}$ are in $S\left(\mathbb{R}^{3} \times \mathbb{R}_{+}\right)$and $S\left(\mathbb{R}^{3}\right)$ respectively. Then there is at most one solution to NSP in X .

Theorem 2. The solution to NSP in $X$ exists for $t \in[0, T]$ if $T>0$ is sufficiently small.
Theorem 3. The solution $v(x, t)$ to NSP in $X$ exists for all $t \geq 0$ if an a priori estimate $\sup _{t \geq 0}\|\tilde{v}(\xi, t)\|<c_{a}$ holds, where $c_{a}>0$ is a constant depending only on the data.

## 2. Proofs

Proof of Theorem 1. Let $\tilde{v}$ and $\tilde{w}$ belong to $X$ and solve equation (5). Denote $z:=\tilde{v}-\tilde{w}$. Then (5) implies

$$
\begin{equation*}
z=-\int_{0}^{t} d s \tilde{G}(z \star i \tilde{\xi} \tilde{v}+\tilde{w} \star i \tilde{\xi} z) \tag{7}
\end{equation*}
$$

Let $\|z(\xi, t)\|:=u(t)$ and $\int_{\mathbb{R}^{3}}:=\int$. From (7) and (6) one gets

$$
\begin{equation*}
u(t) \leq c \int_{0}^{t} d s \int d \xi e^{-v \xi^{2}(t-s)}(1+|\xi|)\left[\int|z(\xi-\zeta, s)\|\zeta\| \tilde{v}(\zeta, s)| d \zeta+\int|\tilde{w}(\xi-\zeta, s) \| \zeta||z(\zeta, s)| d \zeta\right] \tag{8}
\end{equation*}
$$

Let $\eta:=\xi-\zeta$. One has:

$$
\begin{equation*}
\int d \zeta|\zeta||\tilde{v}| \int d \xi(1+|\xi|)|z(\xi-\zeta, s)| e^{-v \xi^{2}(t-s)} \leq\|\tilde{v}\| u(s) \max _{\zeta \in \mathbb{R}^{3}}\left\{e^{-v|\eta+\zeta|^{2}(t-s)} \frac{1+|\eta+\zeta|}{1+|\eta|}\right\} \tag{9}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\max _{\zeta \in \mathbb{R}^{3}}\left\{e^{-v|\eta+\zeta|^{2}(t-s)} \frac{1+|\eta+\zeta|}{1+|\eta|}\right\}=(1+|\eta|)^{-1} \max _{p \in \mathbb{R}_{+}}\left\{(1+p) e^{-v p^{2}(t-s)}\right\} \leq 1+\frac{c_{v}}{(t-s)^{1 / 2}} \tag{10}
\end{equation*}
$$

where $c_{v}=c v^{-0.5}$. Indeed, if $h(r)=(1+r) e^{-v(t-s) r^{2}}$, then $\max _{r>0} h(r)=h(R) \leq 1+\frac{c_{v}}{(t-s)^{1 / 2}}$, where $R=$ $-\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{2 v(t-s)}\right)^{1 / 2}$ and $h^{\prime}(R)=0$.

A similar estimate holds for the second integral in (8):

$$
\begin{equation*}
\int d \zeta(1+|\zeta|)|z(\zeta, s)| \int d \xi e^{-v \xi^{2}(t-s)}(1+|\xi|)|\tilde{w}(\xi-\zeta, s)| \leq u(s) \max _{\zeta \in \mathbb{R}^{3}} \int d p|\tilde{w}(p, s)|(1+|p+\zeta|) e^{-v \xi^{2}(t-s)} \tag{11}
\end{equation*}
$$

The right side of (11) is $u(s) J$, where

$$
\begin{equation*}
J=\int d p|\tilde{w}(p, s)|(1+p) \max _{\zeta \in \mathbb{R}^{3}}\left(\frac{1+|p+\zeta|}{1+p} e^{-v \xi^{2}(t-s)}\right) \leq\|\tilde{w}\|\left(1+\frac{c_{v}}{(t-s)^{1 / 2}}\right) \tag{12}
\end{equation*}
$$

From (7)-(12) one gets

$$
\begin{equation*}
u(t) \leq C(t) \int_{0}^{t}\left(1+\frac{c_{v}}{(t-s)^{1 / 2}}\right) u(s) d s, \quad C(t)=c \max _{0 \leq s \leq t}(\|\tilde{v}(p, s)\|+\|\tilde{w}(p, s)\|) \tag{13}
\end{equation*}
$$

where $C(t)>0$ is a continuous function and $u(t) \geq 0$. Note that $C(t)$ is a continuous function of $t$ for all $t \geq 0$ because we assume that the solutions $\tilde{v}$ and $\tilde{w}$ belong to $X$ and $C(t)$ is the sum of the norms of the two
elements of $X$. The Volterra inequality (13) has only the trivial solution $u(t)=0$, as follows from Lemma 1, proved below. Theorem 1 is proved.

Lemma 1. Inequality (13) has only the trivial non-negative solution $u(t)=0$.
Proof of Lemma 1. Denote $\frac{u(t)}{C(t)}=q(t)$. Then

$$
\begin{equation*}
q(t) \leq \int_{0}^{t}\left(1+\frac{c_{v}}{(t-s)^{1 / 2}}\right) C(s) q(s) d s:=\int_{0}^{t} K(t, s) q(s) d s \tag{14}
\end{equation*}
$$

The kernel $K(t, s)>0$ is weakly singular. Any solution $q \geq 0$ to (14) satisfies the estimate $0 \leq q \leq Q$, where $Q \geq 0$ solves the Volterra equation

$$
\begin{equation*}
Q(t)=\int_{0}^{t} K(t, s) Q(s) d s \tag{15}
\end{equation*}
$$

This equation has only the trivial solution $Q=0$. Lemma 1 is proved.
Proof of Theorem 2. From (5) after multiplying by $1+|\xi|$, integrating over $\mathbb{R}^{3}$ and using calculations similar to the ones in equation (12), one gets

$$
\begin{equation*}
u(t) \leq b(t)+c \int_{0}^{t}\left(1+\frac{c_{v}}{(t-s)^{1 / 2}}\right) u^{2}(s) d s:=A(u) \tag{16}
\end{equation*}
$$

where $b(t):=\int|\tilde{F}(\xi, t)|(1+|\xi|) d \xi$ and $u(t):=\|\tilde{v}(\xi, t)\|$. For sufficiently small $T$ equation $U=A U$ is uniquely solvable by iterations according to the contraction mapping principle. If $\sup _{t \in[0, T]} b(t) \leq c_{0}$ and $T$ is sufficiently small, then a ball $\sup _{t \in[0, T]} u(t) \leq c_{1}, c_{1}>c_{0}$, is mapped by the operator $A$ into itself and $A$ is a contraction mapping. The operator $A$ maps positive functions into positive functions. Thus, $u(t) \leq U(t)$. Theorem 2 is proved.

Proof of Theorem 3. Under the assumption of Theorem 3 inequality (16) implies:

$$
\begin{equation*}
u(t) \leq b(t)+c c_{a} \int_{0}^{t}\left(1+\frac{c_{v}}{(t-s)^{1 / 2}}\right) u(s) d s:=A_{1}(u) \tag{17}
\end{equation*}
$$

The corresponding equation $U=A_{1} U$ is a linear Volterra integral equation. It has a unique solution defined for all $t \geq 0$, and $0 \leq u(t) \leq U(t)$. Theorem 3 is proved.

Remark 1. The following a priori estimates for solutions to NSP hold:

$$
\begin{equation*}
\|v\|_{L^{2}\left(\mathbb{R}^{3}\right)} \leq c, \quad \int_{0}^{t}\|\nabla v(x, s)\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2} d s \leq c \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{t \in[0, T]}|\tilde{v}(\xi, t)| \leq c+c T^{1 / 2}, \quad \sup _{t \geq 0 ; \xi \in \mathbb{R}^{3}}(|\xi||\tilde{v}|)<c . \tag{19}
\end{equation*}
$$

Proof of (18). First estimate (18) is well known. It remains to prove the second estimate (18). For this, multiply (1) by $v$ and integrate over $\mathbb{R}^{3}$ to get (see [1]):

$$
0.5 \frac{d \int v^{2} d x}{d t}+v \int|\nabla v|^{2} d x=\int f v d x
$$

Integrating over $t$ one gets:

$$
0.5 \int v^{2} d x+\int_{0}^{t} d s \int|\nabla v(x, s)|^{2} d x \leq 0.5 \int v_{0}^{2} d x+\int_{0}^{t} d s \int f v d x
$$

One has $\int_{0}^{t} d s \int f v d x \leq \int_{0}^{t} d s\left(\int|f(x, s)|^{2}\right)^{1 / 2}\left(\int|v(x, s)|^{2}\right)^{1 / 2} \leq c$. Indeed, it is assumed that $f$ decays fast, so $\sup _{t \geq 0} \int_{0}^{t} d s\left(\int|f|^{2} d x\right)^{1 / 2} \leq c$. Using this and estimates (18) we get $\int_{0}^{t} d s \int|f v| d x \leq c$. Thus, the second estimate (18) is proved.

Proof of estimate (19). From Equation (5) one gets:

$$
\begin{equation*}
|\tilde{v}| \leq|\tilde{F}|+c \int_{0}^{t} e^{-v \xi^{2}(t-s)}|\tilde{v}| \star(|\xi||\tilde{v}|) d s:=|\tilde{F}|+I . \tag{20}
\end{equation*}
$$

One has $\sup _{t \geq 0}|\tilde{F}| \leq c$ under the assumptions of Theorem 1. By the Cauchy inequality, the first estimate (18) and Parseval's equality one gets $|\tilde{v}| \star(\mid \xi \| \tilde{v}) \leq\left\|\tilde{v}\left|\left\|_{L^{2}\left(\mathbb{R}^{3}\right)}\right\|\right| \tilde{\zeta} \mid \tilde{v}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}$. Thus, using the Cauchy inequality, and the second estimate (18), one gets

$$
\begin{equation*}
I \leq c \int_{0}^{t} e^{-v \xi^{2}(t-s)}\||\xi| \tilde{v}\|_{L^{2}\left(\mathbb{R}^{3}\right)} d s \leq c t^{1 / 2}\left[\int_{0}^{t}\||\tilde{\xi}| \tilde{v}\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}\right]^{1 / 2} \leq c t^{1 / 2} \tag{21}
\end{equation*}
$$

From (20) and (21) estimate (19) follows.
The second estimate (19) is proved in [1], p. 50, inequality (5.39), under the assumption of Theorem 1.
Conflicts of Interest: "The author declares no conflict of interest."

## References

[1] Ramm, A. G. (2019). Symmetry Problems. The Navier-Stokes Problem, Morgan \& Claypool Publishers, San Rafael, CA.
[2] Ramm, A. G. (2017). Global existence, uniqueness and estimates of the solution to the Navier-Stokes equations, Applied Mathematics Letters, 74, 154-160.
(c) 2020 by the author; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

