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Abstract: The problem discussed is the Navier-Stokes problem (NSP) in R3. Uniqueness of its solution is
proved in a suitable space X. No smallness assumptions are used in the proof. Existence of the solution in X
is proved for t ∈ [0, T], where T > 0 is sufficiently small. Existence of the solution in X is proved for t ∈ [0, ∞)

if some a priori estimate of the solution holds.
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1. Introduction

T here is a large literature on the Navier-Stokes problem (NSP) in R3 ( see [1], Chapter 5) and references
therein). The global existence and uniqueness of a solution in R3 was not proved. The goal of this

paper is to prove uniqueness of the solution to NSP in a suitable functional space. No smallness assumptions
are used in our proof.

The NS problem in R3 consists of solving the equations

v′ + (v,∇)v = −∇p + ν∆v + f , x ∈ R3, t ≥ 0, ∇ · v = 0, v(x, 0) = v0(x). (1)

Vector-functions v = v(x, t), f = f (x, t) and the scalar function p = p(x, t) decay as |x| → ∞ uniformly
with respect to t ∈ R+ := [0, ∞), v′ := vt, ν = const > 0 is the viscosity coefficient, the velocity v and the
pressure p are unknown, v0 and f are known, ∇ · v0 = 0. Equations (1) describe viscous incompressible fluid
with density ρ = 1.

We use the integral equation for v:

v(x, t) = F−
∫ t

0
ds
∫
R3

G(x− y, t− s)(v,∇)vdy. (2)

Equation (2) is equivalent to (1), see [2]. Formula for the tensor G is derived in [2], see also [1], p.41. The
term F = F(x, t) depends only on the data f and v0 (see equation (18) in [2] or formula (5.42) in [1]):

F :=
∫
R3

g(x− y)v0(y)dy +
∫ t

0
ds
∫
R3

G(x− y, t− s) f (y, s)dy. (3)

We assume throughout that f and v0 are such that F is bounded in all the norms we use.
Let X be the Banach space of continuous functions with respect to t with the norm

‖ṽ‖ :=
∫
R3
|ṽ(ξ, t)|(1 + |ξ|)dξ, (4)

where t > 0, and ṽ := (2π)−3
∫
R3 v(x, t)e−iξ·xdx. Taking the Fourier transform of (2) yields

ṽ = F̃−
∫ t

0
dsG̃ṽ ? iξṽ := B(ṽ), (5)
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where ? denotes the convolution in R3 and for brevity we omitted the tensorial indices: instead of G̃mpṽj ?

(iξ j)ṽp, where one sums up over the repeated indices, we wrote G̃(ξ, t− s)ṽ ? (iξṽ). From formula (5.9) in [1]
it follows that

|G̃| ≤ ce−νξ2(t−s). (6)

By c > 0 we denote various constants independent of t and ξ. Let S(R3 × R+) and S(R3) be the
L.Schwartz spaces. Our results are:

Theorem 1. Assume that f and v0 are in S(R3 ×R+) and S(R3) respectively. Then there is at most one solution to
NSP in X.

Theorem 2. The solution to NSP in X exists for t ∈ [0, T] if T > 0 is sufficiently small.

Theorem 3. The solution v(x, t) to NSP in X exists for all t ≥ 0 if an a priori estimate supt≥0 ‖ṽ(ξ, t)‖ < ca holds,
where ca > 0 is a constant depending only on the data.

2. Proofs

Proof of Theorem 1. Let ṽ and w̃ belong to X and solve equation (5). Denote z := ṽ− w̃. Then (5) implies

z = −
∫ t

0
dsG̃(z ? iξṽ + w̃ ? iξz). (7)

Let ‖z(ξ, t)‖ := u(t) and
∫
R3 :=

∫
. From (7) and (6) one gets

u(t) ≤ c
∫ t

0
ds
∫

dξe−νξ2(t−s)(1 + |ξ|)
[∫
|z(ξ − ζ, s)||ζ||ṽ(ζ, s)|dζ +

∫
|w̃(ξ − ζ, s)||ζ||z(ζ, s)|dζ

]
. (8)

Let η := ξ − ζ. One has:

∫
dζ|ζ||ṽ|

∫
dξ(1 + |ξ|)|z(ξ − ζ, s)|e−νξ2(t−s) ≤ ‖ṽ‖u(s)max

ζ∈R3

{
e−ν|η+ζ|2(t−s) 1 + |η + ζ|

1 + |η|

}
. (9)

Furthermore,

max
ζ∈R3

{
e−ν|η+ζ|2(t−s) 1 + |η + ζ|

1 + |η|

}
= (1 + |η|)−1 max

p∈R+

{(1 + p)e−νp2(t−s)} ≤ 1 +
cν

(t− s)1/2 , (10)

where cν = cν−0.5. Indeed, if h(r) = (1 + r)e−ν(t−s)r2
, then maxr>0 h(r) = h(R) ≤ 1 + cν

(t−s)1/2 , where R =

− 1
2 + ( 1

4 + 1
2ν(t−s) )

1/2 and h′(R) = 0.
A similar estimate holds for the second integral in (8):∫
dζ(1 + |ζ|)|z(ζ, s)|

∫
dξe−νξ2(t−s)(1 + |ξ|)|w̃(ξ − ζ, s)| ≤ u(s)max

ζ∈R3

∫
dp|w̃(p, s)|(1 + |p + ζ|)e−νξ2(t−s).

(11)

The right side of (11) is u(s)J, where

J =
∫

dp|w̃(p, s)|(1 + p)max
ζ∈R3

(
1 + |p + ζ|

1 + p
e−νξ2(t−s)

)
≤ ‖w̃‖

(
1 +

cν

(t− s)1/2

)
. (12)

From (7)–(12) one gets

u(t) ≤ C(t)
∫ t

0

(
1 +

cν

(t− s)1/2

)
u(s)ds, C(t) = c max

0≤s≤t
(‖ṽ(p, s)‖+ ‖w̃(p, s)‖), (13)

where C(t) > 0 is a continuous function and u(t) ≥ 0. Note that C(t) is a continuous function of t for all
t ≥ 0 because we assume that the solutions ṽ and w̃ belong to X and C(t) is the sum of the norms of the two
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elements of X. The Volterra inequality (13) has only the trivial solution u(t) = 0, as follows from Lemma 1,
proved below. Theorem 1 is proved.

Lemma 1. Inequality (13) has only the trivial non-negative solution u(t) = 0.

Proof of Lemma 1. Denote u(t)
C(t) = q(t). Then

q(t) ≤
∫ t

0

(
1 +

cν

(t− s)1/2

)
C(s)q(s)ds :=

∫ t

0
K(t, s)q(s)ds. (14)

The kernel K(t, s) > 0 is weakly singular. Any solution q ≥ 0 to (14) satisfies the estimate 0 ≤ q ≤ Q,
where Q ≥ 0 solves the Volterra equation

Q(t) =
∫ t

0
K(t, s)Q(s)ds. (15)

This equation has only the trivial solution Q = 0. Lemma 1 is proved.

Proof of Theorem 2. From (5) after multiplying by 1 + |ξ|, integrating over R3 and using calculations similar
to the ones in equation (12), one gets

u(t) ≤ b(t) + c
∫ t

0

(
1 +

cν

(t− s)1/2

)
u2(s)ds := A(u), (16)

where b(t) :=
∫
|F̃(ξ, t)|(1 + |ξ|)dξ and u(t) := ‖ṽ(ξ, t)‖. For sufficiently small T equation U = AU is

uniquely solvable by iterations according to the contraction mapping principle. If supt∈[0,T] b(t) ≤ c0 and T
is sufficiently small, then a ball supt∈[0,T] u(t) ≤ c1, c1 > c0, is mapped by the operator A into itself and A is
a contraction mapping. The operator A maps positive functions into positive functions. Thus, u(t) ≤ U(t).
Theorem 2 is proved.

Proof of Theorem 3. Under the assumption of Theorem 3 inequality (16) implies:

u(t) ≤ b(t) + cca

∫ t

0

(
1 +

cν

(t− s)1/2

)
u(s)ds := A1(u), (17)

The corresponding equation U = A1U is a linear Volterra integral equation. It has a unique solution
defined for all t ≥ 0, and 0 ≤ u(t) ≤ U(t). Theorem 3 is proved.

Remark 1. The following a priori estimates for solutions to NSP hold:

‖v‖L2(R3) ≤ c,
∫ t

0
‖∇v(x, s)‖2

L2(R3)ds ≤ c, (18)

and
sup

t∈[0,T]
|ṽ(ξ, t)| ≤ c + cT1/2, supt≥0;ξ∈R3(|ξ||ṽ|) < c. (19)

Proof of (18). First estimate (18) is well known. It remains to prove the second estimate (18). For this, multiply
(1) by v and integrate over R3 to get (see [1]):

0.5
d
∫

v2dx
dt

+ ν
∫
|∇v|2dx =

∫
f vdx.

Integrating over t one gets:

0.5
∫

v2dx +
∫ t

0
ds
∫
|∇v(x, s)|2dx ≤ 0.5

∫
v2

0dx +
∫ t

0
ds
∫

f vdx.
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One has
∫ t

0 ds
∫

f vdx ≤
∫ t

0 ds(
∫
| f (x, s)|2)1/2(

∫
|v(x, s)|2)1/2 ≤ c. Indeed, it is assumed that f decays fast,

so supt≥0
∫ t

0 ds(
∫
| f |2dx)1/2 ≤ c. Using this and estimates (18) we get

∫ t
0 ds

∫
| f v|dx ≤ c. Thus, the second

estimate (18) is proved.

Proof of estimate (19). From Equation (5) one gets:

|ṽ| ≤ |F̃|+ c
∫ t

0
e−νξ2(t−s)|ṽ| ? (|ξ||ṽ|)ds := |F̃|+ I. (20)

One has supt≥0 |F̃| ≤ c under the assumptions of Theorem 1. By the Cauchy inequality, the first estimate
(18) and Parseval’s equality one gets |ṽ| ? (|ξ||ṽ) ≤ ‖ṽ|‖L2(R3)‖|ξ|ṽ‖L2(R3). Thus, using the Cauchy inequality,
and the second estimate (18), one gets

I ≤ c
∫ t

0
e−νξ2(t−s)‖|ξ|ṽ‖L2(R3)ds ≤ ct1/2[

∫ t

0
‖|ξ|ṽ‖2

L2(R3)]
1/2 ≤ ct1/2. (21)

From (20) and (21) estimate (19) follows.
The second estimate (19) is proved in [1], p. 50, inequality (5.39), under the assumption of Theorem 1.
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