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1. Introduction

L et Σp,n denote the class of functions of the form

f (z) =
a−1

zp +
∞

∑
k=n

ak−pzk−p (p, n ∈ N = {1, 2, 3, . . .}),

which are analytic and p-valent in the punctured unit disc E0 = E \ {0}, where E = {z ∈ C : |z| < 1}. Define

D0 f (z) = f (z),

D1 f (z) =
a−1

zp + 2a0 + 3a1z + 4a2z2 + . . . =
(z2 f (z))′

z
,

D2 f (z) = D1(D1 f (z)),

and for n = 1, 2, 3, . . .

Dn f (z) = D1(Dn−1 f (z)) =
(z2Dn−1 f (z))′

z
.

LetMS∗n(p, α) denote the class of functions f ∈ Σp,n if

−< 1
p

(
Dn+1 f (z)

Dn f (z)
− 2
)
> α, (α < 1; z ∈ E).

and letMKn(p, α) denote the class of functions f ∈ Σp,n if

−< 1
p

(
(Dn+1 f (z))′

(Dn f (z))′
− 2
)
> α, (α < 1; z ∈ E).

The classes of meromorphic starlike functions of order α and meromorphic convex functions of order α

are denoted byMS∗(α) andMK(α), respectively and are defined as:

MS∗(α) =
{

f ∈ Σ : −<
(

z f ′(z)
f (z)

)
> α, (0 ≤ α < 1; z ∈ E)

}
,
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and

MK(α) =
{

f ∈ Σ : −<
(

1 +
z f ′′(z)
f ′(z)

)
> α, (0 ≤ α < 1; z ∈ E)

}
.

Note that MS∗(α) = MS∗0(1, α) and MK(α) = MK0(1, α). In the theory of meromorphic functions,
there exists a variety of results for starlikeness and convexity of meromorphic functions, we state some of
them below. Wang et al. [1] proved the following results;

Theorem 1. If f (z) ∈ Σp satisfies the following inequality∣∣∣∣ f (z)
z f ′(z)

(
1 +

z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

)∣∣∣∣ < µ

(
0 < µ <

1
p

)
,

then f ∈ MS∗p
(

p
1+pµ

)
.

Theorem 2. If f (z) ∈ Σp satisfies the inequality∣∣∣∣ z f ′(z)
f (z)

− z f ′′(z)
f ′(z)

− 1
∣∣∣∣ < δ (0 < δ < 1),

then f ∈ MS∗p(p(1− δ)).

Theorem 3. If f (z) ∈ Σp satisfies the following inequality

<
(

z f ′(z)
f (z)

+ β
z2 f ′′(z)

f (z)

)
< βλ

(
λ +

1
2

)
+

1
2

pβ− λ (β ≥ 0, p− 1
2
≤ λ ≤ p),

then f ∈ MS∗p(λ).

Goswami et al. [2] proved the following results;

Theorem 4. If f (z) ∈ Σp, n with f (z) 6= 0 for all z ∈ E0, satisfies the following inequality∣∣∣∣[zp f (z)]
1

α−p

(
z f ′(z)

f (z)
+ α

)
+ p− α

∣∣∣∣ < (n + 1)(p− α)√
(n + 1)2 + 1

, z ∈ E,

for some real values of α (0 ≤ α < p),then f ∈ MS∗p,n(α).

Theorem 5. If f (z) ∈ Σp, n with f (z) 6= 0 for all z ∈ E0 satisfies the following inequality∣∣∣∣γ[zp f (z)]γ

z

(
z f ′(z)

f (z)
+ p

)∣∣∣∣ ≤ (n + 1)
2
√
(n + 1)2 + 1

, z ∈ E,

for γ ≤ − 1
p ,then f ∈ MS∗p,n

(
p + 1

γ

)
.

Theorem 6. If f (z) ∈ Σp, n with f (z) 6= 0 for all z ∈ E0, satisfies the inequality∣∣∣∣∣∣
(

zp+1 f ′(z)
−p

) 1
α−p
(

1 +
z f ′′(z)
f ′(z)

+ α

)
+ p− α

∣∣∣∣∣∣ < (n + 1)(p− α)√
(n + 1)2 + 1

, z ∈ E,

for some real values of α (0 ≤ α < p),then f ∈ MKp,n(α).
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Theorem 7. If f (z) ∈ Σp, n with f (z) 6= 0 for all z ∈ E0, satisfies the inequality∣∣∣∣∣∣1z
(

zp+1 f ′(z)
−p

) 1
α−p
(

1 +
z f ′′(z)
f ′(z)

+ p
)∣∣∣∣∣∣ ≤ (n + 1)(p− α)

2
√
(n + 1)2 + 1

, z ∈ E,

for some real values of α (0 ≤ α < p),then f ∈ MKp,n(α).

From above stated results, we notice that a number of sufficient conditions for meromorphic starlike
and meromorphic convex functions have been obtained in terms of differential inequalities in the literature
of meromorphic functions. The study of such results is a source of motivation for us to produce the present
paper. In the present paper, we study differential inequalities involving a differential operator. As particular
cases of our main results, we derive certain sufficient conditions for meromorphic starlike and meromorphic
convex functions.

2. Preliminaries

We shall use the following lemma of [3] to prove our result.

Lemma 1. Suppose w is a nonconstant analytic function in E with w(0) = 0. If |w(z)| attains its maximum value at a
point z0 ∈ E on the circle |z| = r < 1, then z0w′(z0) = mw(z0), where m ≥ 1, is some real number.

3. Main Results

Theorem 8. Let f (z) ∈ Σp satisfy

∣∣∣∣Dn+1[ f ](z)
Dn[ f ](z)

− 1
∣∣∣∣γ ∣∣∣∣Dn+2[ f ](z)

Dn+1[ f ](z)
− 1
∣∣∣∣β < M(p, α, β, γ), z ∈ E, (1)

for some real numbers α, β and γ such that 0 ≤ α < p, β ≥ 0, γ ≥ 0, β + γ > 0, then f (z) ∈ MS∗n(p, α), where
n ∈ N0 = N∪ {0} and

M(p, α, β, γ) =


(

1− α
p

)γ ( 1
2 −

α
p

)β
, 0 ≤ α < p

2 ,(
1− α

p

)γ+β
(

2
2− α

p

)β

, p
2 ≤ α < p.

Proof. We consider the following two cases separately.
Case (i). When 0 ≤ α < p

2 . Writing α
p = µ, we see that 0 ≤ µ < 1

2 . Define a function w as

2− Dn+1[ f ](z)
Dn[ f ](z)

=
1 + (1− 2µ)w(z)

1− w(z)
, (2)

where w is an analytic function in E, w(0) = 0 and w(z) 6= 1 in E. Differentiating (2) logarithmatically, we get

z(Dn+1[ f ](z))′

Dn+1[ f ](z)
− z(Dn[ f ](z))′

Dn[ f ](z)
=

2(µ− 1)zw′(z)
(1− w(z))(1 + (2µ− 3)w(z))

. (3)

From the definition, we have the identity

z(Dn[ f ](z))′ = Dn+1[ f ](z)− 2Dn[ f ](z). (4)
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Using (4) in (3), we get Dn+2[ f ](z)
Dn+1[ f ](z) =

1+(2µ−3)w(z)
1−w(z) + 2(µ−1)zw′(z)

(1−w(z))(1+(2µ−3)w(z)) . So, we have

∣∣∣∣Dn+1[ f ](z)
Dn[ f ](z)

− 1
∣∣∣∣γ ∣∣∣∣Dn+2[ f ](z)

Dn+1[ f ](z)
− 1
∣∣∣∣β =

∣∣∣∣2(1− µ)w(z)
1− w(z)

∣∣∣∣γ ∣∣∣∣2(1− µ)w(z)
1− w(z)

+
2(1− µ)zw′(z)

(1− w(z))(1 + (2µ− 3)w(z))

∣∣∣∣β
=

∣∣∣∣2(1− µ)w(z)
1− w(z)

∣∣∣∣γ+β ∣∣∣∣1 + zw′(z)
w(z)(1 + (2µ− 3)w(z))

∣∣∣∣β (5)

We claim that |w(z)| < 1, z ∈ E. Suppose, to the contrary, that there exists a point z0 ∈ E such that
max|z|≤|z0| |w(z)| = |w(z0)| = 1. Then by Lemma 1, we have w(z0) = eiθ , 0 ≤ θ < 2π and z0w′(z0) =

mw(z0), m ≥ 1. Therefore

∣∣∣∣Dn+1[ f ](z)
Dn[ f ](z)

− 1
∣∣∣∣γ ∣∣∣∣Dn+2[ f ](z)

Dn+1[ f ](z)
− 1
∣∣∣∣β =

∣∣∣∣2(1− µ)w(z0)

1− w(z0)

∣∣∣∣γ+β ∣∣∣∣1 + m
1 + (2µ− 3)w(z0)

∣∣∣∣β
=

2γ+β(1− µ)γ+β

|1− eiθ |γ+β

∣∣∣∣1 + m
1 + (2µ− 3)eiθ

∣∣∣∣β
≥ (1− µ)γ+β

(
1− m

2(1− µ)

)β

≥ (1− µ)γ+β

(
1− 1

2(1− µ)

)β

= (1− µ)γ

(
1
2
− µ

)β

,

which contradicts (1) for 0 ≤ α < p
2 . Therefore we must have |w(z)| < 1 for all z ∈ E, and hence from (2), we

conclude that f ∈ MS∗n(p, α).
Case (ii). When p

2 ≤ α < p, therefore we must have 1
2 ≤ µ < 1, where µ = α

p . Let w be defined by

2− Dn+1[ f ](z)
Dn[ f ](z)

=
µ

µ− (1− µ)w(z)
, (6)

where w(z) 6= µ
1−µ in E. Then w is analytic in E with w(0) = 0. Proceeding as in Case (i) above, we obtain

∣∣∣∣Dn+1[ f ](z)
Dn[ f ](z)

− 1
∣∣∣∣γ ∣∣∣∣Dn+2[ f ](z)

Dn+1[ f ](z)
− 1
∣∣∣∣β

=

∣∣∣∣ (1− µ)w(z)
µ− (1− µ)w(z)

∣∣∣∣γ ∣∣∣∣ (1− µ)w(z)
µ− (1− µ)w(z)

+
µ(1− µ)zw′(z)

(µ− (1− µ)w(z))(µ− 2(1− µ)w(z))

∣∣∣∣β
=

∣∣∣∣ 1− µ

µ− (1− µ)w(z)

∣∣∣∣γ+β

|w(z)|γ
∣∣∣∣w(z) +

µzw′(z)
µ− 2(1− µ)w(z)

∣∣∣∣β . (7)

We shall prove that |w(z)| < 1, z ∈ E. If not, suppose there exists a point z0 ∈ E such that there exists a
point z0 ∈ E such that max|z|≤|z0| |w(z)| = |w(z0)| = 1. Then by Lemma 1 we have w(z0) = eiθ , 0 ≤ θ < 2π

and z0w′(z0) = mw(z0), m ≥ 1. Therefore

∣∣∣∣Dn+1[ f ](z)
Dn[ f ](z)

− 1
∣∣∣∣γ ∣∣∣∣Dn+2[ f ](z)

Dn+1[ f ](z)
− 1
∣∣∣∣β =

(1− µ)γ+β
(

1 + mµ
µ+2−2µ

)β

|µ− (1− µ)w(z0)|γ+β

≥ (1− µ)γ+β
(

2
2− µ

)β

,

which contradicts (1) for p
2 ≤ α < p. Therefore, we must have |w(z)| < 1 for all z ∈ E, and hence in view of

(6), we conclude that f ∈ MS∗n(p, α). This completes the proof of the theorem.
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Theorem 9. Let f (z) ∈ Σp satisfy

∣∣∣∣ (Dn+1[ f ](z))′

(Dn[ f ](z))′
− 1
∣∣∣∣γ ∣∣∣∣ (Dn+2[ f ](z))′

(Dn+1[ f ](z))′
− 1
∣∣∣∣β < M(p, α, β, γ), z ∈ E, (8)

for some real numbers α, β and γ such that 0 ≤ α < p, β ≥ 0, γ ≥ 0, β + γ > 0, then f (z) ∈ MKn(p, α), where
n ∈ N0 = N∪ {0} and

M(p, α, β, γ) =


(

1− α
p

)γ ( 1
2 −

α
p

)β
, 0 ≤ α < p

2 ,(
1− α

p

)γ+β
(

2
2− α

p

)β

, p
2 ≤ α < p.

Proof. Again,we consider the following two cases separately.
Case (i). When 0 ≤ α < p

2 . Writing α
p = µ, we see that 0 ≤ µ < 1

2 . Define a function w as

2− (Dn+1[ f ](z))′

(Dn[ f ](z))′
=

1 + (1− 2µ)w(z)
1− w(z)

, (9)

where w is an analytic function in E, w(0) = 0 and w(z) 6= 1 in E. Differentiating (9) logarithmatically, we get

z(Dn+1[ f ](z))′′

(Dn+1[ f ](z))′
− z(Dn[ f ](z))′′

(Dn[ f ](z))′
=

2(µ− 1)zw′(z)
(1− w(z))(1 + (2µ− 3)w(z))

. (10)

From the following identity

z(Dn[ f ](z))′ = Dn+1[ f ](z)− 2Dn[ f ](z), (11)

we have
z(Dn[ f ](z))′′ = (Dn+1[ f ](z))′ − 3(Dn[ f ](z))′. (12)

Using the identity (12), Equation (10) may be written as

(Dn+2[ f ](z))′

(Dn+1[ f ](z))′
=

1 + (2µ− 3)w(z)
1− w(z)

+
2(µ− 1)zw′(z)

(1− w(z))(1 + (2µ− 3)w(z))
.

So, we have ∣∣∣∣ (Dn+1[ f ](z))′

(Dn[ f ](z))′
− 1
∣∣∣∣γ ∣∣∣∣ (Dn+2[ f ](z))′

(Dn+1[ f ](z))′
− 1
∣∣∣∣β

=

∣∣∣∣2(1− µ)w(z)
1− w(z)

∣∣∣∣γ ∣∣∣∣2(1− µ)w(z)
1− w(z)

+
2(1− µ)zw′(z)

(1− w(z))(1 + (2µ− 3)w(z))

∣∣∣∣β
=

∣∣∣∣2(1− µ)w(z)
1− w(z)

∣∣∣∣γ+β ∣∣∣∣1 + zw′(z)
w(z)(1 + (2µ− 3)w(z))

∣∣∣∣β . (13)

The remaining part of the proof is similar to that of Theorem 8.

4. Criteria for Starlikeness and Convexity

When we assign particular values to various parameters involved in Theorem 8 and Theorem 9, we obtain
following special cases. Setting n = 0 in Theorem 8, we obtain the following result.
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Corollary 1. Let f ∈ Σp satisfy the condition

∣∣∣∣ 1p
(

z f ′(z)
f (z)

)
− 1
∣∣∣∣γ ∣∣∣∣ 1p

(
z f ′′(z) + 3 f ′(z)
z f ′(z) + 2 f (z)

)
− 1
∣∣∣∣β <


(

1− α
p

)γ ( 1
2 −

α
p

)β
, 0 ≤ α < p

2 ,(
1− α

p

)γ+β
(

2
2− α

p

)β

, p
2 ≤ α < p,

for all z ∈ E and for some real numbers α(0 ≤ α < 1), β ≥ 0 and γ ≥ 0 with β + γ > 0, then f ∈ MS∗(p, α).

For p = 1, Theorem 8 reduces to the following;

Corollary 2. For some real numbers α(0 ≤ α < 1), β ≥ 0 and γ ≥ 0 with β + γ > 0, if f ∈ Σ satisfies

∣∣∣∣Dn+1[ f ](z)
Dn[ f ](z)

− 1
∣∣∣∣γ ∣∣∣∣Dn+2[ f ](z)

Dn+1[ f ](z)
− 1
∣∣∣∣β <

(1− α)γ
(

1
2 − α

)β
, 0 ≤ α < 1

2 ,

(1− α)γ+β ( 2
2−α

)β
, 1

2 ≤ α < 1,

in E, thenMS∗n(1, α), where n ∈ N0.

Setting n = 0 in above corollary, yields the following result.

Corollary 3. Let f (z) ∈ Σ satisfy the condition

∣∣∣∣ z f ′(z)
f (z)

+ 1
∣∣∣∣γ ∣∣∣∣ z f ′′(z) + 3 f ′(z)

z f ′(z) + 2 f (z)
− 1
∣∣∣∣β <

(1− α)γ
(

1
2 − α

)β
, 0 ≤ α < 1

2 ,

(1− α)γ+β ( 2
2−α

)β
, 1

2 ≤ α < 1,

where z ∈ E, α (0 ≤ α < 1), β ≥ 0 and γ ≥ 0 with β + γ > 0,then f ∈ MS∗(α).

Setting β = γ = 1 and α = 0 in above corollary, we obtain the following result.

Remark 1. If f (z) ∈ Σ satisfies ∣∣∣∣ z f ′(z)
f (z)

+ 1
∣∣∣∣ ∣∣∣∣ z f ′′(z) + 3 f ′(z)

z f ′(z) + 2 f (z)
− 1
∣∣∣∣ < 1

2
, z ∈ E,

then f ∈ MS∗.

By writing β = 1 and γ = 0, Theorem 8, we get

Corollary 4. If for all z ∈ E, a function f ∈ Σp satisfies the condition

Dn+2[ f ](z)
Dn+1[ f ](z)

≺


1 +

(
1
2 −

α
p

)
z, 0 ≤ α < p

2 ,

1 +

[
2
(

1− α
p

)
2− α

p

]
z, p

2 ≤ α < p,

then

2− Dn+1[ f ](z)
Dn[ f ](z)

≺
1 +

(
1− 2α

p

)
z

1− z
, z ∈ E,

i.e.

<
(

2− Dn+1[ f ](z)
Dn[ f ](z)

)
>

α

p
.

Setting n = 0 in Theorem 9, we obtain the following result.

Corollary 5. Let f ∈ Σp satisfy the condition
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∣∣∣∣ 1p
(

z f ′′(z) + 3 f ′(z)
f ′(z)

)
− 1
∣∣∣∣γ ∣∣∣∣ 1p

(
z2 f ′′′(z) + 7z f ′(z) + 9 f ′(z)

z f ′′(z) + 3 f (z)

)
− 1
∣∣∣∣β <


(

1− α
p

)γ ( 1
2 −

α
p

)β
, 0 ≤ α < p

2 ,(
1− α

p

)γ+β
(

2
2− α

p

)β

, p
2 ≤ α < p,

for all z ∈ E and for some real numbers α(0 ≤ α < 1), β ≥ 0 and γ ≥ 0 with β + γ > 0, then f ∈ MK(p, α).

For p = 1, Theorem 9 reduces to the following;

Corollary 6. For some real numbers α(0 ≤ α < 1), β ≥ 0 and γ ≥ 0 with β + γ > 0, if f ∈ Σ satisfies

∣∣∣∣ (Dn+1[ f ](z))′

(Dn[ f ](z))′
− 1
∣∣∣∣γ ∣∣∣∣ (Dn+2[ f ](z))′

(Dn+1[ f ](z))′
− 1
∣∣∣∣β <

(1− α)γ
(

1
2 − α

)β
, 0 ≤ α < 1

2 ,

(1− α)γ+β ( 2
2−α

)β
, 1

2 ≤ α < 1,

in E,thenMKn(1, α), where n ∈ N0.

Setting n = 0 in above corollary, yields the following result;

Corollary 7. Let f (z) ∈ Σ satisfy the condition

∣∣∣∣ z f ′′(z)
f ′(z)

+ 2
∣∣∣∣γ ∣∣∣∣ z2 f ′′′(z) + 7z f ′′(z) + 9 f ′(z)

z f ′′(z) + 3 f (z)
− 1
∣∣∣∣β <

(1− α)γ
(

1
2 − α

)β
, 0 ≤ α < 1

2 ,

(1− α)γ+β ( 2
2−α

)β
, 1

2 ≤ α < 1,

where z ∈ E, α (0 ≤ α < 1), β ≥ 0 and γ ≥ 0 with β + γ > 0,then f ∈ MK(α).

Setting β = γ = 1 and α = 0 in above corollary, we obtain the following result;

Remark 2. If f (z) ∈ Σ satisfies∣∣∣∣ z f ′′(z)
f ′(z)

+ 2
∣∣∣∣ ∣∣∣∣ z2 f ′′′(z) + 7z f ′′(z) + 9 f ′(z)

z f ′′(z) + 3 f (z)
− 1
∣∣∣∣ < 1

2
, z ∈ E,

then f ∈ MK.
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