

Article On hyper-singular integrals

Alexander G. Ramm

Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA.; ramm@math.ksu.edu

Received: 28 July 2020; Accepted: 6 October 2020; Published: 22 October 2020.

Abstract: The integrals $\int_{-\infty}^{\infty} t_{+}^{\lambda-1} \phi(t) dt$ and $\int_{0}^{t} (t-s)^{\lambda-1} b(s) ds$ are considered, $\lambda \neq 0, -1, -2...$, where $\phi \in C_{0}^{\infty}(\mathbb{R})$ and $0 \leq b(s) \in L_{loc}^{2}(\mathbb{R})$. These integrals are defined in this paper for $\lambda \leq 0, \lambda \neq 0, -1, -2, ...,$ although they diverge classically for $\lambda \leq 0$. Integral equations and inequalities are considered with the kernel $(t-s)_{+}^{\lambda-1}$.

Keywords: Hyper-singular integrals.

MSC: 44A10, 45A05, 45H05.

1. Introduction

n [1] the following integral equation is of interest;

$$b(t) = b_0(t) + \int_0^t (t-s)^{\lambda-1} b(s) ds,$$
(1)

where b_0 is a smooth functions rapidly decaying with all its derivatives as $t \to \infty$, $b_0(t) = 0$ if t < 0. We are especially interested in the value $\lambda = -\frac{1}{4}$, because of its importance for the Navier-Stokes theory, [1], Chapter 5, [2,3]. The integral in (1) diverges in the classical sense for $\lambda \leq 0$. Our aim is to define this hyper-singular integral. There is a regularization method to define singular integrals $J := \int_{\mathbb{R}} t_+^{\lambda} \phi(t) dt$, $\lambda < -1$, in distribution theory, [4]. However, the integral in (1) is a convolution, which is defined in [4], p.135, as a direct product of two distributions. This definition is not suitable for our purposes because although $t_+^{\lambda-1}$ for $\lambda \leq 0$, $\lambda \neq 0, -1, -2, ...$ is a distribution on the space $C_0^{\infty}(\mathbb{R}_+)$ of the test functions, but it is not a distribution in the space $K = C_0^{\infty}(\mathbb{R})$ of the test functions used in [4]. Indeed, one can find $\phi \in K$ such that $\lim_{n\to\infty} \phi_n = \phi$ in K, but $\lim_{n\to\infty} \int_{\mathbb{R}} t_+^{\lambda-1} \phi(t) dt = \infty$ for $\lambda \leq 0$, so that $t_+^{\lambda-1}$ is not a linear bounded functional in K, i.e., not a distribution. On the other hand, one can check that $t_+^{\lambda-1}$ for $\lambda \in R$ is a distribution (a bounded linear functional) in the space $\mathcal{K} = C_0^{\infty}(\mathbb{R}_+)$ with the convergence $\phi_n \to \phi$ in \mathcal{K} defined by the requirements: a) the supports of all ϕ_n belong to an interval $[a, b], 0 < a \leq b < \infty$, b) $\phi_n^{(j)} \to \phi^{(j)}$ in C([a, b]) for all j = 0, 1, 2, Indeed, the functional $\int_0^{\infty} t_+^{\lambda} \phi(t) dt$ is linear and bounded in \mathcal{K} :

$$\left|\int_0^\infty t_+^\lambda \phi_n(t)dt\right| \leq (a^\lambda + b^\lambda)\int_a^b |\phi_n(t)|dt.$$

A similar estimate holds for the derivatives of ϕ_n . Although $t_+^{-\frac{5}{4}}$ is a distribution in \mathcal{K} , the convolution

$$h := \int_0^t (t-s)^{-\frac{5}{4}} b(s) ds := t_+^{-\frac{5}{4}} \star b$$
⁽²⁾

cannot be defined similarly to the definition in [4] because the function $\int_0^{\infty} \phi(u+s)b(s)ds$ does not, in general, belong to \mathcal{K} even if $\phi \in \mathcal{K}$.

Let us define the convolution h using the Laplace transform

$$L(b) := \int_0^\infty e^{-pt} b(t) dt, \quad Rep > 0.$$

Laplace transform for distributions is studied in [5]. One has $L(t_+^{-\frac{5}{4}} \star b) = L(t_+^{-\frac{5}{4}})L(b)$. To define $L(t^{\lambda-1})$ for $\lambda \leq 0$, note that for $\text{Re}\lambda > 0$ the classical definition

$$\int_0^\infty e^{-pt} t^{\lambda-1} dt = \frac{\Gamma(\lambda)}{p^\lambda}$$
(3)

holds. The right-side of (3) admits analytic continuation to the complex plane of λ , $\lambda \neq 0, -1, -2, \dots$ This allows one to define integral (3) for any $\lambda \neq 0, -1, -2, \dots$ Recall that the gamma function $\Gamma(\lambda)$ has its only singular points, the simple poles, at $\lambda = -n$, $n = 0, 1, 2, \dots$ with the residue at $\lambda = -n$ equal to $\frac{(-1)^n}{n!}$. It is known that $\Gamma(z + 1) = z\Gamma(z)$, so

$$\Gamma(-\frac{1}{4}) = -4\Gamma(3/4) := -c_1, \quad c_1 > 0.$$
 (4)

Therefore, we define *h* by defining L(h) as follows:

$$L(h) = -c_1 p^{\frac{1}{4}} L(b), \quad \lambda = -\frac{1}{4},$$
(5)

and assume that L(b) can be defined. That L(b) is well defined in the Navier-Stokes theory follows from the a priori estimates proved in [1], Chapter 5. From (5) one gets

$$L(b) = -c_1^{-1} p^{-\frac{1}{4}} L(h).$$
(6)

2. Convolution of special functions

Define $\Phi_{\lambda} = \frac{t_{+}^{\lambda-1}}{\Gamma(\lambda)}$.

Lemma 1. For any $\lambda, \mu \in \mathbb{R}$ the following formulas hold;

$$\Phi_{\lambda} \star \Phi_{\mu} = \Phi_{\lambda+\mu}, \quad \Phi_{\lambda+0} \star \Phi_{-\lambda} = \delta(t). \tag{7}$$

Proof. For $\text{Re}\lambda > 0$, $\text{Re}\mu > 0$ one has

$$\Phi_{\lambda} \star \Phi_{\mu} = \frac{1}{\Gamma(\lambda)\Gamma(\mu)} \int_{0}^{t} (t-s)^{\lambda-1} s^{\mu-1} ds = \frac{t_{+}^{\lambda+\mu-1}}{\Gamma(\lambda)\Gamma(\mu)} \int_{0}^{1} (1-u)^{\lambda-1} u^{\mu-1} du = \frac{t_{+}^{\lambda+\mu-1}}{\Gamma(\lambda+\mu)},$$
(8)

where we used the known formula for beta function:

$$B(\lambda,\mu) := \int_0^1 u^{\lambda-1} (1-u)^{\mu-1} du = \frac{\Gamma(\lambda)\Gamma(\mu)}{\Gamma(\lambda+\mu)}.$$

Analytic properties of beta function follow from these of Gamma function. The function $\frac{1}{\Gamma(z)}$ is entire function of *z*.

Let us now prove the second formula (7). We have $\Gamma(\epsilon) \sim \epsilon$ as $\epsilon \to 0$. Therefore

$$\frac{t_{+}^{\lambda+\epsilon-\lambda-1}}{\Gamma(\epsilon)} \sim \epsilon t_{+}^{\epsilon-1}.$$
(9)

If f is any continuous rapidly decaying function then

$$\lim_{\epsilon \to 0} \epsilon \int_0^\infty t^{\epsilon - 1} f(t) dt = f(0).$$
⁽¹⁰⁾

Indeed, fix a small $\delta > 0$, such that $f(t) \sim f(0)$ for $t \in [0, \delta]$ as $\delta \to 0$. Then, as $\epsilon \to 0$, one has

$$\lim_{\epsilon \to +0} \epsilon \int_0^{\delta} t^{\epsilon-1} f(t) dt = \lim_{\epsilon \to +0} \epsilon f(0) \frac{t^{\epsilon}}{\epsilon} |_0^{\delta} = f(0) \lim_{\epsilon \to +0} \delta^{\epsilon} = f(0).$$
(11)

Note that

$$\lim_{\epsilon \to 0} \epsilon \int_{\delta}^{\infty} t^{\epsilon - 1} f(t) dt = 0, \quad \delta > 0,$$
(12)

because $|\int_{\delta}^{\infty} t^{\epsilon-1} f(t) dt| \leq c$ and $\epsilon \to 0$. From (11) and (12) one obtains (10). So, the second formula (7) is proved. Lemma 1 is proved. \Box

Remark 1. The first formula (7) of Lemma 1 is proved in [4], pp.150–151. Our proof of the second formula (7) differs from the proof in [4] considerably.

Remark 2. A different proof of Lemma 1 can be given: $L(\Phi_{\lambda} \star \Phi_{\mu}) = \frac{1}{p^{\lambda+\mu}}$ by formula (3), and $L^{-1}(\frac{1}{p^{\lambda+\mu}}) = \Phi_{\lambda+\mu}(t)$. If $\lambda = -\mu$, then $\frac{1}{p^{\lambda+\mu}} = 1$ and $L^{-1}(1) = \delta(t)$.

3. Integral equation and inequality

Consider equation (1) and the following inequality:

$$q(t) \le b_0(t) + t_+^{\lambda - 1} \star q, \quad q \ge 0.$$
(13)

Theorem 1. Equation (1) has a unique solution. This solution can be obtained by iterations by solving the Volterra equation

$$b_{n+1} = -c_1^{-1}\Phi_{1/4} \star b_n + c_1^{-1}\Phi_{1/4} \star b_0, \quad b_{n=0} = c_1^{-1}\Phi_{1/4} \star b_0, \quad b = \lim_{n \to \infty} b_n.$$
(14)

Proof. Applying to (1) the operator $\Phi_{1/4}$ * and using the second equation (7) one gets a Volterra equation

$$\Phi_{1/4} \star b = \Phi_{1/4} \star b_0 - c_1 b, \quad c_1 = |\Gamma(-\frac{1}{4})|,$$

or

$$b = -c_1^{-1}\Phi_{1/4} \star b + c_1^{-1}\Phi_{1/4} \star b_0, \quad c_1 = 4\Gamma(3/4).$$
(15)

The operator Φ_{λ} with $\lambda > 0$ is a Volterra-type equation which can be solved by iterations, see [1], p.53, Lemmas 5.10, 5.11. If $b_0 \ge 0$ then the solution to (1) is non-negative, $b \ge 0$. Theorem 1 is proved. \Box

For convenience of the reader let us prove the results mentioned above.

Lemma 2. The operator $Af := \int_0^t (t-s)^p f(s) ds$ in the space X := C(0,T) for any fixed $T \in [0,\infty)$ and p > -1 has spectral radius r(A) equal to zero, r(A) = 0. The equation f = Af + g is uniquely solvable in X. Its solution can be obtained by iterations

$$f_{n+1} = Af_n + g, \quad f_0 = g; \quad \lim_{n \to \infty} f_n = f,$$
 (16)

for any $g \in X$ and the convergence holds in X.

Proof. The spectral radius of a linear operator *A* is defined by the formula $r(A) = \lim_{n\to\infty} ||A^n||^{1/n}$. By induction one proves that

$$|A^{n}f| \leq t^{n(p+1)} \frac{\Gamma^{n}(p+1)}{\Gamma(n(p+1)+1)} ||f||_{X}, \quad n \geq 1.$$
(17)

From this formula and the known asymptotic of the gamma function the conclusion r(A) = 0 follows. The convergence result (16) is analogous to the well known statement for the assumption ||A|| < 1. Lemma 2 is proved. \Box

If $q \ge 0$ then inequality (13) implies

$$q \le -c_1^{-1} \Phi_{1/4} \star q + c_1^{-1} \Phi_{1/4} \star b_0.$$
⁽¹⁸⁾

Inequality (18) can be solved by iterations with the initial term $c_1^{-1}\Phi_{1/4} \star b_0$. This yields

$$q \le b, \tag{19}$$

where b solves (1). See also [6,7].

Conflicts of Interest: "The author declares no conflict of interest."

References

- [1] Ramm, A. G. (2019). Symmetry Problems. The Navier-Stokes Problem, Morgan & Claypool Publishers, San Rafael, CA.
- [2] Ramm, A. G. (2019). Solution of the Navier-Stokes problem. Applied Mathematics Letters, 87, 160-164.
- [3] Ramm, A. G. (2020). Concerning the Navier-Stokes problem. Open Journal of Mathematical Analysis, 4(2), 89-92.
- [4] Gel'fand, I. & Shilov, G. (1959). Generalized functions, Vol.1, GIFML, Moscow. (in Russian)
- [5] Brychkov, Y. A., & Prudnikov, A. P. (1986). Integral transforms of generalized functions. *Journal of Soviet Mathematics*, 34(3), 1630-1655.
- [6] Ramm, A. G. (2018). Existence of the solutions to convolution equations with distributional kernels. *Global Journal of Mathematical Analysis*, 6(1), 1-2.
- [7] Ramm, A. G. (2020). On a hyper-singular equation. Open Journal of Mathematical Analysis, 4(1), 8-10.

© 2020 by the author; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).