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Abstract: The integrals [ tA*(p(t)dt and fot(t —5)*1b(s)ds are considered, A # 0, —1, —2..., where ¢ €

Cy(R)and 0 < b(s) € LIOC(R). These integrals are defined in this paper for A < 0, A # 0,—-1,-2,...,

although they diverge classically for A < 0. Integral equations and inequalities are considered with the
)/\71‘

kernel (t —s)%
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1. Introduction

m n [1] the following integral equation is of interest;

)+ / 5)1b(s) (m)
where by is a smooth functions rapidly decaying with all its derivatives as t — oo, by(t) = 0if t < 0. We are
especially interested in the value A = — %, because of its importance for the Navier-Stokes theory, [1], Chapter

5, [2,3]. The integral in (1) diverges in the classical sense for A < 0. Our aim is to define this hyper-singular
integral. There is a regularization method to define singular integrals ] := [, tA¢(t)dt, A < —1,in distribution
theory, [4]. However, the integral in (1) is a convolution, which is defined in [4], p.135, as a direct product
of two distributions. This definition is not suitable for our purposes because although tf‘[l forA <0, A #
0,—1, -2, ... is a distribution on the space C§’ (Ry) of the test functions, but it is not a distribution in the space
K =Cy (R) of the test functions used in [4]. Indeed, one can find ¢ € K such that lim,_,« ¢ = ¢ in K, but
limy, 00 [ tf‘r_lq)(t)dt = cofor A <0, so that tf‘;l isnot a linear bounded functional in K, i.e., not a distribution.
On the other hand, one can check that tf,‘r_l for A € Ris a distribution (a bounded linear functional) in the space
K = C§°(R4) with the convergence ¢, — ¢ in K defined by the requirements: a) the supports of all ¢, belong
to an interval [4,b],0 < a < b < oo, b) (/),(1] ) — gb(j) in C([a,b]) forallj = 0,1,2,..... Indeed, the functional
fo t)dt is linear and bounded in K:

[ i < @) [ gniola

_5
A similar estimate holds for the derivatives of ¢,. Although ¢ * is a distribution in K, the convolution

t 5
h::/ (t—s)fgb(s)ds =t b ()
0
cannot be defined similarly to the definition in [4] because the function [;° ¢ (u + s)b(s)ds does not, in general,

belong to K even if ¢ € K.
Let us define the convolution & using the Laplace transform

L(b) := /0 Y e Pb(t)dt, Rep > 0.
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s 5
Laplace transform for distributions is studied in [5]. One has L(t, * xb) = L(¢,*)L(b). To define L(+*"!)
for A < 0, note that for ReA > 0 the classical definition

i r
| e tar— i) 3
0 p
holds. The right-side of (3) admits analytic continuation to the complex plane of A, A # 0, -1, -2, ..... This
allows one to define integral (3) for any A # 0, —1, —2,.... Recall that the gamma function I'(A) has its only

singular points, the simple poles, at A = —n, n = 0,1, 2, ... with the residue at A = —n equal to (;ll!)n. It is
known that T'(z + 1) = zI'(z), so

r(—%) — _4T(3/4) = —c1, o > 0. @)

Therefore, we define h by defining L(h) as follows:
L(k) = —a1piL(b), A=-7, ©)

and assume that L(b) can be defined. That L(b) is well defined in the Navier-Stokes theory follows from the a
priori estimates proved in [1], Chapter 5. From (5) one gets

L(b) = —c; ' p 4 L(h). ©6)
2. Convolution of special functions
. -1
Define &, = -
Lemma 1. Forany A, u € R the following formulas hold;
Oy x @y =Dy, Prpox®_y =0(1). )

Proof. For ReA > 0, Rey > 0 one has

1 ! A1 -1 et A1 p—1 e
(DA*q)V:W/O(t_S) st dS:W/o(l_u) ut du:m, 8)

where we used the known formula for beta function:

B(A, ) := /01 w1 = u) N du = m

Analytic properties of beta function follow from these of Gamma function. The function ﬁ is entire
function of z.
Let us now prove the second formula (7). We have I'(¢) ~ € as € — 0. Therefore

pAre—A-1
i
I'(e)

If f is any continuous rapidly decaying function then

~ et 9)

1ime/O°° €1 ()dt = £(0). (10)

e—0

Indeed, fix a small 6 > 0, such that f(t) ~ f(0) for t € [0,5] as & — 0. Then, as € — 0, one has

) €
Jim e [T ()t = lim ef(0) 1§ = £(0) lim 5° = £(0). (a1
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Note that -
lime/ €1 (Ddt =0, §>0, (12)

e—0 k)

because | f;c t=1f(t)dt| < cand € — 0. From (11) and (12) one obtains (10). So, the second formula (7) is
proved. Lemma 1 is proved. 0O

Remark 1. The first formula (7) of Lemma 1 is proved in [4], pp.150-151. Our proof of the second formula (7)
differs from the proof in [4] considerably.

Remark 2. A different proof of Lemma 1 can be given: L(®) x ®,) = ﬁ by formula (3), and L’l(p,\l—ﬂ) =
D) y(t). If A = —p, then ﬁ =1land L7I(1) = 4(¢t).
3. Integral equation and inequality

Consider equation (1) and the following inequality:

q(t) <bo(t) + 1t xq, g>0. (13)

Theorem 1. Equation (1) has a unique solution. This solution can be obtained by iterations by solving the Volterra
equation
bus1 = —c] @y yg* by + 1@y x b, bu—o =] ®yjykby, b= lim b, (14)

Proof. Applying to (1) the operator ®; /4% and using the second equation (7) one gets a Volterra equation

1
Dy xb=Dyyuxbyp—c1b, c1 = |F(*E)|r
or
b= —c '@y yxb+c ' ®yyxby, ¢ =4T(3/4). (15)

The operator &, with A > 0 is a Volterra-type equation which can be solved by iterations, see [1], p.53,
Lemmas 5.10, 5.11. If by > 0 then the solution to (1) is non-negative, b > 0. Theorem 1 is proved. O

For convenience of the reader let us prove the results mentioned above.

Lemma 2. The operator Af := fot(t —s)Pf(s)ds in the space X := C(0, T) for any fixed T € [0,c0) and p > —1 has
spectral radius r(A) equal to zero, ¥(A) = 0. The equation f = Af + g is uniquely solvable in X. Its solution can be
obtained by iterations

for1=Afutg fo=g lim fu=f, (16)
forany g € X and the convergence holds in X.

Proof. The spectral radius of a linear operator A is defined by the formula r(A) = lim,_,« ||A"||*/". By
induction one proves that

T(p+1
arf| < ey _ TP ))Ilfllx, ">l a7)

ITn(p+1)+1

From this formula and the known asymptotic of the gamma function the conclusion r(A) = 0 follows.
The convergence result (16) is analogous to the well known statement for the assumption ||A|| < 1. Lemma 2
is proved. O

If ¢ > 0 then inequality (13) implies
q S —Cf1®1/4*q+C;lq>1/4*bo. (18)
Inequality (18) can be solved by iterations with the initial term c;° 1o, 74 * by. This yields

qg<b, (19)
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where b solves (1). See also [6,7].
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