Article

On hyper-singular integrals

Alexander G. Ramm
Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA.; ramm@math.ksu.edu

Received: 28 July 2020; Accepted: 6 October 2020; Published: 22 October 2020.
Abstract: The integrals $\int_{-\infty}^{\infty} t_{+}^{\lambda-1} \phi(t) d t$ and $\int_{0}^{t}(t-s)^{\lambda-1} b(s) d s$ are considered, $\lambda \neq 0,-1,-2 \ldots$, where $\phi \in$ $C_{0}^{\infty}(\mathbb{R})$ and $0 \leq b(s) \in L_{l o c}^{2}(\mathbb{R})$. These integrals are defined in this paper for $\lambda \leq 0, \lambda \neq 0,-1,-2, \ldots$, although they diverge classically for $\lambda \leq 0$. Integral equations and inequalities are considered with the kernel $(t-s)_{+}^{\lambda-1}$.

Keywords: Hyper-singular integrals.
MSC: 44A10, 45A05, 45H05.

1. Introduction

I n [1] the following integral equation is of interest;

$$
\begin{equation*}
b(t)=b_{0}(t)+\int_{0}^{t}(t-s)^{\lambda-1} b(s) d s, \tag{1}
\end{equation*}
$$

where b_{0} is a smooth functions rapidly decaying with all its derivatives as $t \rightarrow \infty, b_{0}(t)=0$ if $t<0$. We are especially interested in the value $\lambda=-\frac{1}{4}$, because of its importance for the Navier-Stokes theory, [1], Chapter $5,[2,3]$. The integral in (1) diverges in the classical sense for $\lambda \leq 0$. Our aim is to define this hyper-singular integral. There is a regularization method to define singular integrals $J:=\int_{\mathbb{R}} t_{+}^{\lambda} \phi(t) d t, \lambda<-1$, in distribution theory, [4]. However, the integral in (1) is a convolution, which is defined in [4], p.135, as a direct product of two distributions. This definition is not suitable for our purposes because although $t_{+}^{\lambda-1}$ for $\lambda \leq 0, \lambda \neq$ $0,-1,-2, \ldots$ is a distribution on the space $C_{0}^{\infty}\left(\mathbb{R}_{+}\right)$of the test functions, but it is not a distribution in the space $K=C_{0}^{\infty}(\mathbb{R})$ of the test functions used in [4]. Indeed, one can find $\phi \in K$ such that $\lim _{n \rightarrow \infty} \phi_{n}=\phi$ in K, but $\lim _{n \rightarrow \infty} \int_{\mathbb{R}} t_{+}^{\lambda-1} \phi(t) d t=\infty$ for $\lambda \leq 0$, so that $t_{+}^{\lambda-1}$ is not a linear bounded functional in K, i.e., not a distribution. On the other hand, one can check that $t_{+}^{\lambda-1}$ for $\lambda \in R$ is a distribution (a bounded linear functional) in the space $\mathcal{K}=C_{0}^{\infty}\left(\mathbb{R}_{+}\right)$with the convergence $\phi_{n} \rightarrow \phi$ in \mathcal{K} defined by the requirements: a) the supports of all ϕ_{n} belong to an interval $[a, b], 0<a \leq b<\infty, \mathrm{b}) \phi_{n}^{(j)} \rightarrow \phi^{(j)}$ in $C([a, b])$ for all $j=0,1,2, \ldots$. . Indeed, the functional $\int_{0}^{\infty} t_{+}^{\lambda} \phi(t) d t$ is linear and bounded in \mathcal{K} :

$$
\left|\int_{0}^{\infty} t_{+}^{\lambda} \phi_{n}(t) d t\right| \leq\left(a^{\lambda}+b^{\lambda}\right) \int_{a}^{b}\left|\phi_{n}(t)\right| d t .
$$

A similar estimate holds for the derivatives of ϕ_{n}. Although $t_{+}^{-\frac{5}{4}}$ is a distribution in \mathcal{K}, the convolution

$$
\begin{equation*}
h:=\int_{0}^{t}(t-s)^{-\frac{5}{4}} b(s) d s:=t_{+}^{-\frac{5}{4}} \star b \tag{2}
\end{equation*}
$$

cannot be defined similarly to the definition in [4] because the function $\int_{0}^{\infty} \phi(u+s) b(s) d s$ does not, in general, belong to \mathcal{K} even if $\phi \in \mathcal{K}$.

Let us define the convolution h using the Laplace transform

$$
L(b):=\int_{0}^{\infty} e^{-p t} b(t) d t, \quad \operatorname{Re} p>0
$$

Laplace transform for distributions is studied in [5]. One has $L\left(t_{+}^{-\frac{5}{4}} \star b\right)=L\left(t_{+}^{-\frac{5}{4}}\right) L(b)$. To define $L\left(t^{\lambda-1}\right)$ for $\lambda \leq 0$, note that for $\operatorname{Re} \lambda>0$ the classical definition

$$
\begin{equation*}
\int_{0}^{\infty} e^{-p t} t^{\lambda-1} d t=\frac{\Gamma(\lambda)}{p^{\lambda}} \tag{3}
\end{equation*}
$$

holds. The right-side of (3) admits analytic continuation to the complex plane of $\lambda, \lambda \neq 0,-1,-2, \ldots .$. This allows one to define integral (3) for any $\lambda \neq 0,-1,-2, \ldots$. Recall that the gamma function $\Gamma(\lambda)$ has its only singular points, the simple poles, at $\lambda=-n, n=0,1,2, \ldots$ with the residue at $\lambda=-n$ equal to $\frac{(-1)^{n}}{n!}$. It is known that $\Gamma(z+1)=z \Gamma(z)$, so

$$
\begin{equation*}
\Gamma\left(-\frac{1}{4}\right)=-4 \Gamma(3 / 4):=-c_{1}, \quad c_{1}>0 \tag{4}
\end{equation*}
$$

Therefore, we define h by defining $L(h)$ as follows:

$$
\begin{equation*}
L(h)=-c_{1} p^{\frac{1}{4}} L(b), \quad \lambda=-\frac{1}{4} \tag{5}
\end{equation*}
$$

and assume that $L(b)$ can be defined. That $L(b)$ is well defined in the Navier-Stokes theory follows from the a priori estimates proved in [1], Chapter 5. From (5) one gets

$$
\begin{equation*}
L(b)=-c_{1}^{-1} p^{-\frac{1}{4}} L(h) \tag{6}
\end{equation*}
$$

2. Convolution of special functions

Define $\Phi_{\lambda}=\frac{t_{+}^{\lambda-1}}{\Gamma(\lambda)}$.
Lemma 1. For any $\lambda, \mu \in \mathbb{R}$ the following formulas hold;

$$
\begin{equation*}
\Phi_{\lambda} \star \Phi_{\mu}=\Phi_{\lambda+\mu}, \quad \Phi_{\lambda+0} \star \Phi_{-\lambda}=\delta(t) \tag{7}
\end{equation*}
$$

Proof. For $\operatorname{Re} \lambda>0, \operatorname{Re} \mu>0$ one has

$$
\begin{equation*}
\Phi_{\lambda} \star \Phi_{\mu}=\frac{1}{\Gamma(\lambda) \Gamma(\mu)} \int_{0}^{t}(t-s)^{\lambda-1} s^{\mu-1} d s=\frac{t_{+}^{\lambda+\mu-1}}{\Gamma(\lambda) \Gamma(\mu)} \int_{0}^{1}(1-u)^{\lambda-1} u^{\mu-1} d u=\frac{t_{+}^{\lambda+\mu-1}}{\Gamma(\lambda+\mu)^{\prime}} \tag{8}
\end{equation*}
$$

where we used the known formula for beta function:

$$
B(\lambda, \mu):=\int_{0}^{1} u^{\lambda-1}(1-u)^{\mu-1} d u=\frac{\Gamma(\lambda) \Gamma(\mu)}{\Gamma(\lambda+\mu)}
$$

Analytic properties of beta function follow from these of Gamma function. The function $\frac{1}{\Gamma(z)}$ is entire function of z.

Let us now prove the second formula (7). We have $\Gamma(\epsilon) \sim \epsilon$ as $\epsilon \rightarrow 0$. Therefore

$$
\begin{equation*}
\frac{t_{+}^{\lambda+\epsilon-\lambda-1}}{\Gamma(\epsilon)} \sim \epsilon t_{+}^{\epsilon-1} \tag{9}
\end{equation*}
$$

If f is any continuous rapidly decaying function then

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \epsilon \int_{0}^{\infty} t^{\epsilon-1} f(t) d t=f(0) \tag{10}
\end{equation*}
$$

Indeed, fix a small $\delta>0$, such that $f(t) \sim f(0)$ for $t \in[0, \delta]$ as $\delta \rightarrow 0$. Then, as $\epsilon \rightarrow 0$, one has

$$
\begin{equation*}
\lim _{\epsilon \rightarrow+0} \epsilon \int_{0}^{\delta} t^{\epsilon-1} f(t) d t=\left.\lim _{\epsilon \rightarrow+0} \epsilon f(0) \frac{t^{\epsilon}}{\epsilon}\right|_{0} ^{\delta}=f(0) \lim _{\epsilon \rightarrow+0} \delta^{\epsilon}=f(0) \tag{11}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \epsilon \int_{\delta}^{\infty} t^{\epsilon-1} f(t) d t=0, \quad \delta>0 \tag{12}
\end{equation*}
$$

because $\left|\int_{\delta}^{\infty} t^{\epsilon-1} f(t) d t\right| \leq c$ and $\epsilon \rightarrow 0$. From (11) and (12) one obtains (10). So, the second formula (7) is proved. Lemma 1 is proved.

Remark 1. The first formula (7) of Lemma 1 is proved in [4], pp.150-151. Our proof of the second formula (7) differs from the proof in [4] considerably.

Remark 2. A different proof of Lemma 1 can be given: $L\left(\Phi_{\lambda} \star \Phi_{\mu}\right)=\frac{1}{p^{\lambda+\mu}}$ by formula (3), and $L^{-1}\left(\frac{1}{p^{\lambda+\mu}}\right)=$ $\Phi_{\lambda+\mu}(t)$. If $\lambda=-\mu$, then $\frac{1}{p^{\lambda+\mu}}=1$ and $L^{-1}(1)=\delta(t)$.

3. Integral equation and inequality

Consider equation (1) and the following inequality:

$$
\begin{equation*}
q(t) \leq b_{0}(t)+t_{+}^{\lambda-1} \star q, \quad q \geq 0 \tag{13}
\end{equation*}
$$

Theorem 1. Equation (1) has a unique solution. This solution can be obtained by iterations by solving the Volterra equation

$$
\begin{equation*}
b_{n+1}=-c_{1}^{-1} \Phi_{1 / 4} \star b_{n}+c_{1}^{-1} \Phi_{1 / 4} \star b_{0}, \quad b_{n=0}=c_{1}^{-1} \Phi_{1 / 4} \star b_{0}, \quad b=\lim _{n \rightarrow \infty} b_{n} \tag{14}
\end{equation*}
$$

Proof. Applying to (1) the operator $\Phi_{1 / 4} \star$ and using the second equation (7) one gets a Volterra equation

$$
\Phi_{1 / 4} \star b=\Phi_{1 / 4} \star b_{0}-c_{1} b, \quad c_{1}=\left|\Gamma\left(-\frac{1}{4}\right)\right|
$$

or

$$
\begin{equation*}
b=-c_{1}^{-1} \Phi_{1 / 4} \star b+c_{1}^{-1} \Phi_{1 / 4} \star b_{0}, \quad c_{1}=4 \Gamma(3 / 4) \tag{15}
\end{equation*}
$$

The operator Φ_{λ} with $\lambda>0$ is a Volterra-type equation which can be solved by iterations, see [1], p.53, Lemmas $5.10,5.11$. If $b_{0} \geq 0$ then the solution to (1) is non-negative, $b \geq 0$. Theorem 1 is proved.

For convenience of the reader let us prove the results mentioned above.
Lemma 2. The operator $A f:=\int_{0}^{t}(t-s)^{p} f(s) d s$ in the space $X:=C(0, T)$ for any fixed $T \in[0, \infty)$ and $p>-1$ has spectral radius $r(A)$ equal to zero, $r(A)=0$. The equation $f=A f+g$ is uniquely solvable in X. Its solution can be obtained by iterations

$$
\begin{equation*}
f_{n+1}=A f_{n}+g, \quad f_{0}=g ; \quad \lim _{n \rightarrow \infty} f_{n}=f \tag{16}
\end{equation*}
$$

for any $g \in X$ and the convergence holds in X.
Proof. The spectral radius of a linear operator A is defined by the formula $r(A)=\lim _{n \rightarrow \infty}\left\|A^{n}\right\|^{1 / n}$. By induction one proves that

$$
\begin{equation*}
\left|A^{n} f\right| \leq t^{n(p+1)} \frac{\Gamma^{n}(p+1)}{\Gamma(n(p+1)+1)}\|f\|_{X}, \quad n \geq 1 \tag{17}
\end{equation*}
$$

From this formula and the known asymptotic of the gamma function the conclusion $r(A)=0$ follows. The convergence result (16) is analogous to the well known statement for the assumption $\|A\|<1$. Lemma 2 is proved.

If $q \geq 0$ then inequality (13) implies

$$
\begin{equation*}
q \leq-c_{1}^{-1} \Phi_{1 / 4} \star q+c_{1}^{-1} \Phi_{1 / 4} \star b_{0} \tag{18}
\end{equation*}
$$

Inequality (18) can be solved by iterations with the initial term $c_{1}^{-1} \Phi_{1 / 4} \star b_{0}$. This yields

$$
\begin{equation*}
q \leq b \tag{19}
\end{equation*}
$$

where b solves (1). See also [6,7].
Conflicts of Interest: "The author declares no conflict of interest."

References

[1] Ramm, A. G. (2019). Symmetry Problems. The Navier-Stokes Problem, Morgan \& Claypool Publishers, San Rafael, CA.
[2] Ramm, A. G. (2019). Solution of the Navier-Stokes problem. Applied Mathematics Letters, 87, 160-164.
[3] Ramm, A. G. (2020). Concerning the Navier-Stokes problem. Open Journal of Mathematical Analysis, 4(2), 89-92.
[4] Gel'fand, I. \& Shilov, G. (1959). Generalized functions, Vol.1, GIFML, Moscow. (in Russian)
[5] Brychkov, Y. A., \& Prudnikov, A. P. (1986). Integral transforms of generalized functions. Journal of Soviet Mathematics, 34(3), 1630-1655.
[6] Ramm, A. G. (2018). Existence of the solutions to convolution equations with distributional kernels. Global Journal of Mathematical Analysis, 6(1), 1-2.
[7] Ramm, A. G. (2020). On a hyper-singular equation. Open Journal of Mathematical Analysis, 4(1), 8-10.
© 2020 by the author; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

