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Abstract: The integrals
∫ ∞
−∞ tλ−1

+ φ(t)dt and
∫ t

0 (t − s)λ−1b(s)ds are considered, λ 6= 0,−1,−2..., where φ ∈
C∞

0 (R) and 0 ≤ b(s) ∈ L2
loc(R). These integrals are defined in this paper for λ ≤ 0, λ 6= 0,−1,−2, ...,

although they diverge classically for λ ≤ 0. Integral equations and inequalities are considered with the
kernel (t− s)λ−1

+ .
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1. Introduction

I n [1] the following integral equation is of interest;

b(t) = b0(t) +
∫ t

0
(t− s)λ−1b(s)ds, (1)

where b0 is a smooth functions rapidly decaying with all its derivatives as t → ∞, b0(t) = 0 if t < 0. We are
especially interested in the value λ = − 1

4 , because of its importance for the Navier-Stokes theory, [1], Chapter
5, [2,3]. The integral in (1) diverges in the classical sense for λ ≤ 0. Our aim is to define this hyper-singular
integral. There is a regularization method to define singular integrals J :=

∫
R tλ

+φ(t)dt, λ < −1, in distribution
theory, [4]. However, the integral in (1) is a convolution, which is defined in [4], p.135, as a direct product
of two distributions. This definition is not suitable for our purposes because although tλ−1

+ for λ ≤ 0, λ 6=
0,−1,−2, ... is a distribution on the space C∞

0 (R+) of the test functions, but it is not a distribution in the space
K = C∞

0 (R) of the test functions used in [4]. Indeed, one can find φ ∈ K such that limn→∞ φn = φ in K, but
limn→∞

∫
R tλ−1

+ φ(t)dt = ∞ for λ ≤ 0, so that tλ−1
+ is not a linear bounded functional in K, i.e., not a distribution.

On the other hand, one can check that tλ−1
+ for λ ∈ R is a distribution (a bounded linear functional) in the space

K = C∞
0 (R+) with the convergence φn → φ in K defined by the requirements: a) the supports of all φn belong

to an interval [a, b], 0 < a ≤ b < ∞, b) φ
(j)
n → φ(j) in C([a, b]) for all j = 0, 1, 2, ..... Indeed, the functional∫ ∞

0 tλ
+φ(t)dt is linear and bounded in K:∣∣∣∣∫ ∞

0
tλ
+φn(t)dt

∣∣∣∣ ≤ (aλ + bλ)
∫ b

a
|φn(t)|dt.

A similar estimate holds for the derivatives of φn. Although t−
5
4

+ is a distribution in K, the convolution

h :=
∫ t

0
(t− s)−

5
4 b(s)ds := t−

5
4

+ ? b (2)

cannot be defined similarly to the definition in [4] because the function
∫ ∞

0 φ(u + s)b(s)ds does not, in general,
belong to K even if φ ∈ K.

Let us define the convolution h using the Laplace transform

L(b) :=
∫ ∞

0
e−ptb(t)dt, Rep > 0.
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Laplace transform for distributions is studied in [5]. One has L(t−
5
4

+ ? b) = L(t−
5
4

+ )L(b). To define L(tλ−1)

for λ ≤ 0, note that for Reλ > 0 the classical definition∫ ∞

0
e−pttλ−1dt =

Γ(λ)
pλ

(3)

holds. The right-side of (3) admits analytic continuation to the complex plane of λ, λ 6= 0,−1,−2, ..... This
allows one to define integral (3) for any λ 6= 0,−1,−2, .... Recall that the gamma function Γ(λ) has its only
singular points, the simple poles, at λ = −n, n = 0, 1, 2, ... with the residue at λ = −n equal to (−1)n

n! . It is
known that Γ(z + 1) = zΓ(z), so

Γ(−1
4
) = −4Γ(3/4) := −c1, c1 > 0. (4)

Therefore, we define h by defining L(h) as follows:

L(h) = −c1 p
1
4 L(b), λ = −1

4
, (5)

and assume that L(b) can be defined. That L(b) is well defined in the Navier-Stokes theory follows from the a
priori estimates proved in [1], Chapter 5. From (5) one gets

L(b) = −c−1
1 p−

1
4 L(h). (6)

2. Convolution of special functions

Define Φλ =
tλ−1
+

Γ(λ) .

Lemma 1. For any λ, µ ∈ R the following formulas hold;

Φλ ? Φµ = Φλ+µ, Φλ+0 ? Φ−λ = δ(t). (7)

Proof. For Reλ > 0, Reµ > 0 one has

Φλ ? Φµ =
1

Γ(λ)Γ(µ)

∫ t

0
(t− s)λ−1sµ−1ds =

tλ+µ−1
+

Γ(λ)Γ(µ)

∫ 1

0
(1− u)λ−1uµ−1du =

tλ+µ−1
+

Γ(λ + µ)
, (8)

where we used the known formula for beta function:

B(λ, µ) :=
∫ 1

0
uλ−1(1− u)µ−1du =

Γ(λ)Γ(µ)
Γ(λ + µ)

.

Analytic properties of beta function follow from these of Gamma function. The function 1
Γ(z) is entire

function of z.
Let us now prove the second formula (7). We have Γ(ε) ∼ ε as ε→ 0. Therefore

tλ+ε−λ−1
+

Γ(ε)
∼ εtε−1

+ . (9)

If f is any continuous rapidly decaying function then

lim
ε→0

ε
∫ ∞

0
tε−1 f (t)dt = f (0). (10)

Indeed, fix a small δ > 0, such that f (t) ∼ f (0) for t ∈ [0, δ] as δ→ 0. Then, as ε→ 0, one has

lim
ε→+0

ε
∫ δ

0
tε−1 f (t)dt = lim

ε→+0
ε f (0)

tε

ε
|δ0 = f (0) lim

ε→+0
δε = f (0). (11)
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Note that
lim
ε→0

ε
∫ ∞

δ
tε−1 f (t)dt = 0, δ > 0, (12)

because |
∫ ∞

δ tε−1 f (t)dt| ≤ c and ε → 0. From (11) and (12) one obtains (10). So, the second formula (7) is
proved. Lemma 1 is proved.

Remark 1. The first formula (7) of Lemma 1 is proved in [4], pp.150–151. Our proof of the second formula (7)
differs from the proof in [4] considerably.

Remark 2. A different proof of Lemma 1 can be given: L(Φλ ? Φµ) =
1

pλ+µ by formula (3), and L−1( 1
pλ+µ ) =

Φλ+µ(t). If λ = −µ, then 1
pλ+µ = 1 and L−1(1) = δ(t).

3. Integral equation and inequality

Consider equation (1) and the following inequality:

q(t) ≤ b0(t) + tλ−1
+ ? q, q ≥ 0. (13)

Theorem 1. Equation (1) has a unique solution. This solution can be obtained by iterations by solving the Volterra
equation

bn+1 = −c−1
1 Φ1/4 ? bn + c−1

1 Φ1/4 ? b0, bn=0 = c−1
1 Φ1/4 ? b0, b = lim

n→∞
bn. (14)

Proof. Applying to (1) the operator Φ1/4? and using the second equation (7) one gets a Volterra equation

Φ1/4 ? b = Φ1/4 ? b0 − c1b, c1 = |Γ(−1
4
)|,

or
b = −c−1

1 Φ1/4 ? b + c−1
1 Φ1/4 ? b0, c1 = 4Γ(3/4). (15)

The operator Φλ with λ > 0 is a Volterra-type equation which can be solved by iterations, see [1], p.53,
Lemmas 5.10, 5.11. If b0 ≥ 0 then the solution to (1) is non-negative, b ≥ 0. Theorem 1 is proved.

For convenience of the reader let us prove the results mentioned above.

Lemma 2. The operator A f :=
∫ t

0 (t− s)p f (s)ds in the space X := C(0, T) for any fixed T ∈ [0, ∞) and p > −1 has
spectral radius r(A) equal to zero, r(A) = 0. The equation f = A f + g is uniquely solvable in X. Its solution can be
obtained by iterations

fn+1 = A fn + g, f0 = g; lim
n→∞

fn = f , (16)

for any g ∈ X and the convergence holds in X.

Proof. The spectral radius of a linear operator A is defined by the formula r(A) = limn→∞ ‖An‖1/n. By
induction one proves that

|An f | ≤ tn(p+1) Γn(p + 1)
Γ(n(p + 1) + 1)

‖ f ‖X , n ≥ 1. (17)

From this formula and the known asymptotic of the gamma function the conclusion r(A) = 0 follows.
The convergence result (16) is analogous to the well known statement for the assumption ‖A‖ < 1. Lemma 2
is proved.

If q ≥ 0 then inequality (13) implies

q ≤ −c−1
1 Φ1/4 ? q + c−1

1 Φ1/4 ? b0. (18)

Inequality (18) can be solved by iterations with the initial term c−1
1 Φ1/4 ? b0. This yields

q ≤ b, (19)
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where b solves (1). See also [6,7].

Conflicts of Interest: “The author declares no conflict of interest.”

References

[1] Ramm, A. G. (2019). Symmetry Problems. The Navier-Stokes Problem, Morgan & Claypool Publishers, San Rafael, CA.
[2] Ramm, A. G. (2019). Solution of the Navier-Stokes problem. Applied Mathematics Letters, 87, 160-164.
[3] Ramm, A. G. (2020). Concerning the Navier-Stokes problem. Open Journal of Mathematical Analysis, 4(2), 89-92.
[4] Gel’fand, I. & Shilov, G. (1959). Generalized functions, Vol.1, GIFML, Moscow. (in Russian)
[5] Brychkov, Y. A., & Prudnikov, A. P. (1986). Integral transforms of generalized functions. Journal of Soviet Mathematics,

34(3), 1630-1655.
[6] Ramm, A. G. (2018). Existence of the solutions to convolution equations with distributional kernels. Global Journal of

Mathematical Analysis, 6(1), 1-2.
[7] Ramm, A. G. (2020). On a hyper-singular equation. Open Journal of Mathematical Analysis, 4(1), 8-10.

c© 2020 by the author; licensee PSRP, Lahore, Pakistan. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Convolution of special functions
	Integral equation and inequality 

