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1. Introduction

T he dynamics of evolution processes is often subjected to abrupt changes such as shocks, harvesting, and
natural disasters. Often these short-term perturbations are treated as having acted instantaneously or

in the form of impulses [1]. The study of dynamical systems with impulsive effects is of great importance.
Impulsive differential equations have become more important in recent years in some mathematical models
of real processes and phenomena studied in control, physics, chemistry, population dynamics, aero- nautics
and engineering. The concept of controllability plays an important role in many areas of applied mathematics.
In recent years, significant progress has been made in the controllability of linear and nonlinear deterministic
infinite dimensional systems, see for instance [2–11] and the references therein. Many authors studied the
controllability problem of nonlinear systems with delay in infinite dimensional Banach spaces; see for instance
[2,6,9–11] etc and the references contained in them.

The controllability problem for nonlinear impulsive systems in infinite dimensional Banach spaces has
been studied by several authors, see e.g., [6,7,11]. In [11], Selvi and Arjunan considered the following impulsive
differential systems with finite delay

x′(t) = A(t)x(t) + f (t, xt) + Cu(t), for t ∈ J = [0, b], t 6= tk, k = 1, 2, · · · , m,

∆x(tk) = Ik(xtk ), k = 1, 2, · · · , m,

x(t) = ϕ(t), t ∈ [−r, 0].

(1)

Using the Hausdorff measure of noncompactness and the Mönch fixed-point theorem and under some
sufficient conditions, they obtained a controllability result for Equation (1), without assuming the compactness
of the semigroup. In [6], Machado et al., considered the following impulsive mixed-type functional
integro-differential system with finite delay and nonlocal conditions of the form
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x′(t) = A(t)x(t) + f

(
t, xt,

∫ s

0
h(s, t, xs)ds,

∫ b

0
k(t, s, xs)ds

)
+ Cu(t) for t ∈ J = [0, b], t 6= tk, k = 1, 2, · · · , m

∆x(tk) = Ik(xtk ), k = 1, 2, · · · , m

x0 = φ + g(x), t ∈ [−r, 0].
(2)

Using the Mönch fixed-point theorem via measures of noncompactness and semigroup theory, they
obtained a controllability result for Equation (2) without assuming the compactness of the evolution system.
However, the result obtained in [11] and [6] are only in connection with finite delay and the impulsive functions
Ik (k = 1, · · · , m) are assumed to be bounded. But since most often many systems arising from realistic models
can be described as functional differential and integrodifferential systems with infinite delay [12], it would be
natural and interesting to discuss this kind of problems. In an attempt to address this kind of problems, Chang
[13] considered the following impulsive functional differential systems with infinite delay;

x′(t) = Ax(t) + f (t, xt) + Cu(t) for t ∈ J = [0, b], t 6= tk, k = 1, 2, · · · , m,

∆x(tk) = Ik(xtk ), k = 1, 2, · · · , m,

x(t) = φ ∈ BMh,

(3)

where BMh is an abstract phase space. Assuming the compactness of the C0-semigroup generated by A
and using Schauder’s fixed point theorem together with some sufficient conditions, the author obtained a
controllability result for Equation (3).

Motivated by the above works, we study in this paper the controllability for some systems that take the
form of the following abstract model of impulsive partial functional integrodifferential equation with infinite
delay in a Banach space (X, ‖ · ‖);

x′(t) = Ax(t) +
∫ t

0
γ(t− s)x(s)ds + f (t, xt) + Cu(t) for t ∈ J = [0, b], t 6= tk, k = 1, 2, · · · , m,

∆x(tk) = Ik(xtk ), k = 1, 2, · · · , m

x0 = ϕ ∈ P ,

(4)

where A : D(A) → X is the infinitesimal generator of a C0-semigroup
(
T(t)

)
t≥0 on a Banach space X; for

t ≥ 0, γ(t) is a closed linear operator with domain D(γ(t)) ⊃ D(A). The control u belongs to L2(J, U) which
is a Banach space of admissible controls, where U is a Banach space. The operator C ∈ L(U, X), where L(U, X)

denotes the Banach space of bounded linear operators from U into X, and the phase space P is a linear space of
functions mapping ]−∞, 0] into X satisfying axioms which will be described later, for every t ≥ 0, xt denotes
the history function of P defined by xt(θ) = x(t + θ) for −∞ ≤ θ ≤ 0. Here 0 < t1 < · · · < tm < tm+1 < b
are prefixed numbers, f : J ×P → X, Ik : P → X are appropriate functions satisfying some conditions, and
the symbol ∆ξ(t) represent the jump of the function ξ at t, which is defined by ∆ξ(t) = ξ(t+) − ξ(t−). In
the literature devoted to equations with finite delay, the phase space is the space of continuous functions on
[−r, 0], for some r > 0, endowed with the uniform norm topology. But when the delay is unbounded, the
selection of the phase space P plays an important role in both qualitative and quantitative theories. A usual
choice is a normed space satisfying some suitable axioms, which was introduced by Hino et al., [14]. In this
work, we use resolvent operators for integral equations, the Mönch fixed-point theorem and the measure of
noncompactness, without any compactness assumption on the resolvent operators.

In [15], Grimmer proved the existence and uniqueness of resolvent operators for this type of functional
integrodifferential equations that give the variation of parameters formula for the solution. In [16], Desch,
Grimmer and Schappacher proved the equivalence of the compactness of the resolvent operator and that
of the operator semigroup. In this work, we use the equivalence between the operator-norm continuity of
the associated resolvent operator and that of the operator semigroup. This property allows us to drop the
compactness assumption on the operator semigroup, considered by the authors in [2,10], and prove that the
operator solution satisfies the Mönch condition. The variation of parameters formula for the mild solutions
of Equation (4) is given by the resolvent operator, and we prove the controllability result using the Mönch
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fixed-point theorem and the measure of noncompactness. This method enables us overcome the resolvent
operator case considered in this work. In contrary to the evolution semigroup case considered in [6,11], here
the semigroup property can not be used because resolvent operators in general do not form semigroups.

To the best of our knowledge, up to now no work has reported on controllability of impulsive partial
functional integrodifferential Equation (4) with infinite delay. It has been an untreated topic in the literature,
and this fact is the main aim and motivation of the present work.

The work is organized as follows; Section 2 is devoted to preliminary results. In this Section, we give the
definition of resolvent operator. This allows us to define the mild solution of Equation (4). In Section 3, we
study the controllability of Equation (4). In Section 4, we give an example to illustrate this work.

2. Integrodifferential equations, measure of noncompactness and Mönch’s theorem

In this Section, we introduce some definitions and lemmas that will be used throughout the paper. Let
J = [0, b], b > 0 and let X be a Banach space. A measurable function x : J → X is Bochner integrable if and
only if ‖x‖ is Lebesgue integrable. We denote by L1(J, X) the Banach space of Bochner integrable functions
x : J → X normed by

‖x‖L1 =
∫ b

0
‖x(t)‖dt.

In considering the impulsive condition, it is important to introduce some additional concepts and
notations. We say that a function x : [µ, η] → X is a normalized piecewise continuous function on [µ, η] if
x is piecewise continuous, and left continuous on (µ, η]. Let PC([µ, η], X) denote the space of normalized
piecewise continuous functions from [µ, η] to X. The notation PC stands for the space of all functions
x : [µ, η] → X such that x is continuous at t 6= tk, x(t−k ) = x(tk) and x(t+k ) exists for all k = 1, 2, · · · , m.
In this Section, (PC, ‖ · ‖PC) is a Banach space endowed with the norm ‖x‖PC = sups∈J ‖x(s)‖.

In this work, we will employ an axiomatic definition of the phase space P introduced by Hino et al., in
[14]. Thus, (P , ‖ · ‖P ) will be a normed linear space of functions mapping ]−∞, 0] into X and satisfying the
following axioms;

(A1) For σ > 0, if x : ]−∞, µ + σ] → X is such that xµ ∈ P and x|[µ,µ+σ] ∈ PC([µ, µ + σ]; X) then, for every
t ∈ [µ, µ + σ], the following conditions hold;

There exist positive constant H and functions K : R+ → [1, ∞) continuous and M : R+ → [1, ∞) locally
bounded, and all independent of x, such that

(i) xt ∈ P ,
(ii) ‖x(t)‖ ≤ H‖xt‖P , which is equivalent to ‖ϕ(0)‖ ≤ H‖ϕ‖P for every ϕ ∈ P ,

(iii) ‖xt‖P ≤ K(t− µ) sup
µ≤s≤t

‖x(s)‖+ M(t− µ)‖xµ‖P .

(A2) For the function x in A1, t→ xt is a P-valued continuous function for t ∈ [µ, µ + σ].
(A3) The space P is complete.

Consider the following linear homogeneous equation; x′(t) = Ax(t) +
∫ t

0
γ(t− s)x(s)ds for t ≥ 0,

x(0) = x0 ∈ X.
(5)

where A and γ(t) are closed linear operators on a Banach space X. In the sequel, we assume A and
(
γ(t)

)
t≥0

satisfy the following conditions;

(H1) A is a densely defined closed linear operator in X, hence D(A) is a Banach space equipped with the
graph norm defined by, |y| = ‖Ay‖+ ‖y‖ which will be denoted by (X1, | · |).

(H2)
(
γ(t)

)
t≥0 is a family of linear operators on X such that γ(t) is continuous when regarded as a linear map

from (X1, | · |) into (X, ‖ · ‖) for almost all t ≥ 0 and the map t 7→ γ(t)y is measurable for all y ∈ X1 and
t ≥ 0, and belongs to W1,1(R+, X). Moreover there is a locally integrable function b : R+ → R+ such
that ‖γ(t)y‖ ≤ b(t)|y| and

∥∥∥ d
dt γ(t)y

∥∥∥ ≤ b(t)|y| .
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Remark 1. Note that (H2) is satisfied in the modelling of Heat Conduction in materials with memory and
viscosity. More details can be found in [17].

Let L(X) be the Banach space of bounded linear operators on X.

Definition 1. [18] A resolvent operator
(

R(t)
)

t≥0 for Equation (5) is a bounded operator valued function

R : [0,+∞) −→ L(X)

such that

(i) R(0) = IdX and ‖R(t)‖ ≤ Neβt for some constants N and β.
(ii) For all x ∈ X, the map t 7→ R(t)x is continuous for t ≥ 0.

(iii) Moreover for x ∈ X1, R(·)x ∈ C1(R+; X) ∩ C(R+; X1) and R′(t)x = AR(t)x +
∫ t

0 γ(t− s)R(s)xds =

R(t)Ax +
∫ t

0 R(t− s)γ(s)xds.

Observe that the map defined on R+ by t 7→ R(t)x0 solves Equation (5) for x0 ∈ D(A).

Theorem 1. [15] Assume that (H1) and (H2) hold. Then, the linear Equation (5) has a unique resolvent operator(
R(t)

)
t≥0.

Remark 2. In general, the resolvent operator
(

R(t)
)

t≥0 for Equation (5) does not satisfy the semigroup law,
namely, R(t + s) 6= R(t)R(s) for some t, s > 0 .

We have the following theorem that establishes the equivalence between the operator-norm continuity of
the C0-semigroup and the resolvent operator for integral equations.

Theorem 2. [5] Let A be the infinitesimal generator of a C0-semigroup
(
T(t)

)
t≥0 and let

(
γ(t)

)
t≥0 satisfy (H2). Then

the resolvent operator
(

R(t)
)

t≥0 for Equation (5) is operator-norm continuous (or continuous in the uniform operator
topology) for t > 0 if and only if

(
T(t)

)
t≥0 is operator-norm continuous for t > 0.

Definition 2. Let u ∈ L2(J, U) and ϕ ∈ P . A function x : ]−∞, b] → X is called a mild solution of equation
(4) if x(t) = ϕ(t) for t ∈ (−∞, 0], ∆x(tk) = Ik(xtk ), k = 1, 2, · · · , m, the restriction of x to intervals Jk =

(tk, tk+1] (k = 0, · · · , m) is continuous and the following integral equation is satisfied

x(t) = R(t)ϕ(0) +
∫ t

0
R(t− s) [ f (s, xs) + Cu(s)] ds + ∑

0<tk<t
R(t− tk)Ik(xtk ) for t ∈ J . (6)

Definition 3. Equation (4) is said to be controllable on the interval J if for every ϕ ∈ P and x1 ∈ X, there exists
a control u ∈ L2(J, U) such that a mild solution x of Equation (4) satisfies the condition x(b) = x1.

For proving the main result of the paper we recall some properties of the measure of noncompactness and
the Mönch fixed-point theorem.

Definition 4. [19] Let D be a bounded subset of a normed space Y. The Hausdorff measure of noncompactness
( shortly MNC) is defined by

β(D) = inf
{

ε > 0 : D has a f inite cover by balls o f radius less than ε
}

.

Theorem 3. [19] Let D, D1, D2 be bounded subsets of a Banach space Y. The Hausdorff MNC has the following
properties:

(i) If D1 ⊂ D2, then β(D1) ≤ β(D2), (monotonicity).
(ii) β(D) = β(D).

(iii) β(D) = 0 if and only if D is relatively compact.
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(iv) β(λD) = |λ|β(D) for any λ ∈ R, (Homogeneity).
(v) β(D1 + D2) ≤ β(D1) + β(D2), where D1 + D2 = {d1 + d2 : d1 ∈ D1, d2 ∈ D2}, (subadditivity).

(vi) β({a} ∪ D) = β(D) for every a ∈ Y.
(vii) β(D) = β(co(D)), where co(D) is the closed convex hull of D.

(viii) For any map G : D(G) ⊆ X → Y which is Lipschitz continuous with a Lipschitz constant k, we have β(G(D)) ≤
kβ(D), for any subset D ⊆ D(G).

Let Rb = sup
t∈[0,b]

‖R(t)‖, Kb = sup
t∈[0,b]

‖K(t)‖, Mb = sup
t∈[0,b]

‖M(t)‖. We now state the following useful result

for equicontinuous subsets of C([a, b]; X), where X is a Banach space.

Lemma 1. [19] Let M ⊂ PC([a, b]; X) be bounded and piecewise equicontinuous on [a, b]. Then β(M(t)) is piecewise
continuous for t ∈ [a, b] and β(M) = sup{β(M(t)); t ∈ [a, b]}, where M(t) = {x(t); x ∈ M}.

Lemma 2. [19] Let M ⊂ C([a, b]; X) be bounded and equicontinuous. Then the set co(M) is also bounded and
equicontinuous.

To prove the controllability for Equation (4), we need the following results.

Lemma 3. [4] If (un)n≥1 is a sequence of Bochner integrable functions from J into a Banach space Y with the estimation
‖un(t)‖ ≤ µ(t) for almost all t ∈ J and every n ≥ 1, where µ ∈ L1(J,R), then the function ψ(t) = β({un(t) : n ≥
1}) belongs to L1(J,R+) and satisfies the following estimation β

({∫ t
0 un(s)ds : n ≥ 1

})
≤ 2

∫ t
0 ψ(s)ds.

We now state the following nonlinear alternative of Mönch’s type for selfmaps, which we shall use in the
proof of the controllability of Equation (4).

Theorem 4. [20](Mönch, 1980) Let K be a closed and convex subset of a Banach space Z and 0 ∈ K. Assume that
F : K → K is a continuous map satisfying Mönch’s condition, namely, D ⊆ K be countable and D ⊆ co({0} ∪ F(D))

implies D is compact. Then F has a fixed point.

3. Controllability result

In this Section, we give sufficient conditions ensuring the controllability of Equation (4). For that goal, we
need to assume that;

(H3) (i) The following linear operator W : L2(J, U) → X defined by Wu =
∫ b

0 R(b − s)Cu(s) ds, is
surjective so that it induces an isomorphism between L2(J, U) /KerW and X again denoted by W
with inverse W−1 taking values in L2(J, U) /KerW [21].

(ii) There exists a function LW ∈ L1(J,R+) such that for any bounded set Q ⊂ X we have
β((W−1Q)(t)) ≤ LW(t)β(Q), where β is the Hausdorff MNC.

(H4) The function f : J ×P −→ X satisfies the following two conditions;

(i) f (·, ϕ) is measurable for ϕ ∈ P and f (t, ·) is continuous for a.e t ∈ J,
(ii) for every positive integer q, there exists a function lq ∈ L1(J,R+) such that sup

‖ϕ‖P≤q
‖ f (t, ϕ)‖ ≤ lq(t)

for a.e. t ∈ J and lim infq→+∞
∫ b

0
lq(t)

q dt = l < +∞,
(iii) there exists a function h ∈ L1(J,R+) such that for any bounded set D ⊂ P , β( f (t, D)) ≤

h(t) sup−∞<θ≤0 β(D(θ)) for a.e. t ∈ J, where D(θ) = {φ(θ) : φ ∈ D}.
(H5) Ik : P → X, k = 1, 2, · · · , m are continuous such that;

(i) There are nondecreasing functions Lk : R+ → R+ such that ‖Ik(x)‖ ≤ Lk(‖x‖P ), k =

1, 2, · · · , m, x ∈ P , and lim infρ→+∞
Lk(ρ)

ρ = λk < +∞, k = 1, 2, · · · , m.
(ii) There exist constants αk ≥ 0 such that, β(Ik(D)) ≤ αk sup−∞<θ≤0 β(D(θ)), k = 1, 2, · · · , m, for

every bounded subset D of P . τ =
(

1 + 2Rb M2‖LW‖L1

)
(2Rb‖h‖L1 + Rb ∑m

k=0 αk) < 1, where

Rb = sup
0≤t≤b

‖R(t)‖ and M2 is such that M2 = ‖C‖.
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Theorem 5. Suppose that hypotheses (H3) − (H5) hold and Equation (5) has a resolvent operator
(

R(t)
)

t≥0 that is
continuous in the operator-norm topology for t > 0. Then Equation (4) is controllable on J provided that

Rb(1 + Rb M2M3b)Kb

(
l +

m

∑
k=1

λk

)
< 1, (7)

where M3 is such that M3 = ‖W−1‖.

Proof. Using (H3) and given an arbitrary function x, we define the control as usual by the following formula;

ux(t) = W−1

{
x1 − R(b)ϕ(0)−

∫ b

0
R(b− s) f (s, xs) ds− ∑

0<tk<t
R(b− tk)Ik(xtk )

}
(t) for t ∈ I.

For each x ∈ PC such that x(0) = ϕ(0), we define its extension x̃ from ]−∞, b] to X as follows

x̃(t) =

{
x(t) if t ∈ [0, b],
ϕ(t) if t ∈]−∞, 0].

We define the space Eb =
{

x :] −∞, b] → X such that x|J ∈ PC and x0 ∈ P
}

, where where x|J is the
restriction of x to J. We show, by using this control that the operator P : Eb → Eb defined by

(Px)(t) = R(t)ϕ(0) +
∫ t

0
R(t− s)

[
f (s, x̃s) + Cux(s)

]
ds + ∑

0<tk<t
R(t− tk)Ik(xtk ) for t ∈ I = [0, b]

has a fixed-point. This fixed point is then a mild solution of Equation (4). Observe that (Px)(b) = x1. This
means that the control ux steers the integrodifferential equation from ϕ to x1 in time b which implies that the
Equation (4) is controllable on J.

For each ϕ ∈ P , we define the function y ∈ PC by y(t) = R(t)ϕ(0) and its extension ỹ on ]−∞, 0] by

ỹ(t) =

{
y(t) if t ∈ [0, b],
ϕ(t) if t ∈]−∞, 0].

For each z ∈ PC, set x̃(t) = z̃(t) + ỹ(t), where z̃ is the extension by zero of the function z on ]−∞, 0].
Observe that x satifies (6) if and only if z(0) = 0 and

z(t) =
∫ t

0
R(t− s)

[
f (s, z̃s + ỹs) + Cuz(s)

]
ds + ∑

0<tk<t
R(t− tk)Ik(ztk + ỹtk ) for t ∈ [0, b],

where uz(t) = W−1
{

x1 − R(b)ϕ(0)−
∫ b

0 R(b− s) f (s, z̃s + ỹs) ds−∑0<tk<t R(b− tk)Ik(ztk + ỹtk )
}
(t).

Now let E0
b =

{
z ∈ Eb such that z0 = 0

}
. Thus E0

b is a Banach space provided with the supremum norm.

Define the operator Γ : E0
b → E0

b by

(Γz)(t) =
∫ t

0
R(t− s)

[
f (s, z̃s + ỹs) + Cuz(s)

]
ds + ∑

0<tk<t
R(t− tk)Ik(ztk + ỹtk ) for t ∈ [0, b].

Note that the operator P has a fixed point if and only if Γ has one. So to prove that P has a fixed point,
we only need to prove that Γ has one. For each positive number q, let Bq = {z ∈ E0

b : ‖z‖ ≤ q}. Then, for any
z ∈ Bq, we have by axiom (A1) that
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‖zs + ys‖ ≤ ‖zs‖P + ‖ys‖P
≤ K(s)‖z(s)‖+ M(s)‖z0‖P + K(s)‖y(s)‖+ M(s)‖y0‖P
≤ Kb‖z(s)‖+ Kb‖R(t)‖‖ϕ(0)‖+ Mb‖ϕ‖P
≤ Kb‖z(s)‖+ KbRb H‖ϕ‖P + Mb‖ϕ‖P
≤ Kb‖z(s)‖+

(
KbRb H + Mb

)
‖ϕ‖P

≤ Kb q +
(

KbRb H + Mb

)
‖ϕ‖P .

Thus, ‖zs + ys‖ ≤ Kb q +
(

KbRbH + Mb

)
‖ϕ‖P =: q′. We shall prove the theorem in the following steps;

Step 1. We claim that there exists q > 0 such that Γ(Bq) ⊂ Bq. We proceed by contradiction. Assume
that it is not true. Then for each positive number q, there exists a function zq ∈ Bq, such that Γ(zq) /∈
Bq, i.e., ‖(Γzq)(t)‖ > q for some t ∈ [0, b]. Now we have that

q <
∥∥∥(Γzq)(t)

∥∥∥
≤ Rb

∫ b

0

∥∥∥ f (s, z̃q
s + ỹs)

∥∥∥ ds + Rb

∫ b

0
‖Cuzq(s)‖ ds + Rb

m

∑
k=0

Lk(‖ztk + ỹtk‖)

≤ Rb

∫ b

0

∥∥∥ f (s, z̃q
s + ỹs)

∥∥∥ ds + Rb

m

∑
k=0

Lk(q′)

+Rb

∫ b

0

∥∥∥BW−1
[

x1 − R(b)ϕ(0)−
∫ b

0
R(b− s) f (s, z̃q

s ) ds− ∑
0<tk<t

R(b− tk)Ik(ztk + ỹtk )
]∥∥∥ ds

≤ bRb M2M3

(
‖x1‖+ Rb‖ϕ(0)‖+ Rb

∫ b

0
‖ f (s, z̃q

s )‖ ds + Rb

m

∑
k=0

Lk(q′)

)

+Rb

∫ b

0

∥∥∥ f (s, z̃q
s + ỹs)

∥∥∥ ds + Rb

m

∑
k=0

Lk(q′)

≤ bRb M2M3

(
‖x1‖+ RbH‖ϕ‖B + Rb

∫ b

0
lq′(s) ds + Rb

m

∑
k=0

Lk(q′)

)
+ Rb

∫ b

0
lq′(s) ds + Rb

m

∑
k=0

Lk(q′),

where q′ := Kb q + q0, with q0 :=
(

KbRbH + Mb

)
‖ϕ‖B . Hence

q ≤
(

1 + Rb M2M3b
)(

Rb

∫ b

0
lq′(s) ds + Rb

m

∑
k=0

Lk(q′)

)
+ Rb M2M3b

(
‖x1‖+ Rb H‖ϕ‖B

)
.

Dividing both sides by q and noting that q′ = Kbq + q0 → +∞ as q→ +∞, we obtain that

1 ≤
(

1 + Rb M2M3b
)

Rb


∫ b

0
lq′(s) ds +

m

∑
k=0

Lk(q′)

q

+
Rb M2M3b

(
‖x1‖+ Rb H‖ϕ‖B

)
q

and

lim inf
q→+∞


∫ b

0
lq′(s) ds +

m

∑
k=0

Lk(q′)

q

 = lim inf
q→+∞


∫ b

0
lq′(s) ds

q′
+

∑m
k=0 Lk(q′)

q′

 q′

q
=

(
l +

m

∑
k=0

λk

)
Kb.
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Thus we have, 1 ≤
(

1+ Rb M2M3b
)

Rb (l + ∑m
k=0 λk)Kb, and this contradicts (7). Hence for some positive

number q, we must have Γ(Bq) ⊂ Bq.
Step 2. Γ : E0

b → E0
b is continuous. In fact let Γ := Γ1 + Γ2, where

(Γ1z)(t) =
∫ t

0
R(t− s) f (s, z̃s + ỹs) ds +

m

∑
k=0

R(t− tk)Ik(ztk + ỹtk ) and (Γ2z)(t) =
∫ t

0
R(t− s)Cuz(s) ds.

Let {zn}n≥1 ⊂ E0
b with zn → z in E0

b . Then there exists a number q > 1 such that ‖zn(t)‖ ≤ q for all
n and a.e. t ∈ J. So zn, z ∈ Bq. By (H4) − (i), f (t, z̃n

t + ỹt) → f (t, z̃t + ỹt) for each t ∈ [0, b]. Also, by
(H5)− (i), Ik(zn

tk
+ ỹtk ) → Ik(ztk + ỹtk ) for each t ∈ [0, b]. And by (H4)− (ii), ‖ f (t, z̃n

t + ỹt)− f (t, z̃t + ỹt)‖ ≤
2lq′(t). Then we have

‖Γ1zn−Γ1z‖P ≤ Rb

∫ b

0
‖ f (s, z̃n

s + ỹs)− f (s, z̃s + ỹs)‖ ds+Rb

m

∑
k=0
‖Ik(zn

tk
+ ỹtk )− Ik(ztk + ỹtk )‖ −→ 0, as n→ +∞

by dominated convergence Theorem. Also we have that

‖Γ2zn − Γ2z‖P ≤ R2
b M2M3b

(∫ b

0
‖ f (s, z̃n

s + ỹs)− f (s, z̃s + ỹs)‖ ds +
m

∑
k=0
‖Ik(zn

tk
+ ỹtk )− Ik(ztk + ỹtk )

)
−→ 0,

by dominated convergence Theorem. Thus ‖Γzn − Γz‖ ≤ ‖Γ1zn − Γ1z‖+ ‖Γ2zn − Γ2z‖ −→ 0, as n → +∞.
Hence Γ is continuous on E0

b .
Step 3. Γ(Bq) is equicontinuous on [0, b]. In fact let t1, t2 ∈ Jk, t1 < t2 and z ∈ Bq, we have

‖(Γz)(t2)− (Γz)(t1)‖ ≤
∫ t1

0
‖R(t2 − s)− R(t1 − s)‖‖ f (s, z̃s + ỹs) + Cuz(s)‖ ds

+ ∑
0<tk<t1

‖R(t2 − tk)− R(t1 − tk)‖‖Ik(ztk + ỹtk )‖+ ∑
t1≤tk<t2

‖R(t1 − tk)‖‖Ik(ztk + ỹtk )‖

+
∫ t2

t1

‖R(t2 − s)‖‖ f (s, z̃s + ỹs) + Cuz(s)‖ ds

≤
∫ t1

0
‖R(t2 − s)− R(t1 − s)‖lq′(s) ds

+
∫ t1

0
‖R(t2 − s)− R(t1 − s)‖M2M3

(
‖x1‖+ RbH‖ϕ‖B + Rb

∫ b

0
lq′(τ) dτ +

m

∑
k=0

Lk(q′)

)
ds

+ ∑
0<tk<t1

‖R(t2 − tk)− R(t1 − tk)‖Lk(q′) + Rb ∑
t1≤tk<t2

Lk(q′) +
∫ t2

t1

‖R(t2 − s)‖lq′(s) ds

+
∫ t2

t1

‖R(t2 − s)‖M2M3

(
‖x1‖+ Rb H‖ϕ‖B + Rb

∫ b

0
lq′(τ) dτ +

m

∑
k=0

Lk(q′)

)
ds.

By the continuity of
(

R(t)
)

t≥0 in the operator-norm toplogy, the dominated convergence Theorem, we
conclude that the right hand side of the above inequality tends to zero and independent of z as t2 → t1. Hence
Γ(Bq) is equicontinuous on J.
Step 4. We show that the Mönch’s condition holds. Suppose that D ⊆ Bq is countable and D ⊆ co({0}∪ Γ(D)).
We shall show that β(D) = 0, where β is the Hausdorff MNC. Without loss of generality, we may assume that
D = {zn}n≥1. Since Γ maps Bq into an equicontinuous family, Γ(D) is also equicontinuous on J. By (H3)− (ii),
(H4)− (iii) and Lemma 3, we have that

β
(
{uzn(t)}n≥1

)
= β

(
W−1

{
x1 − R(b)ϕ(0)−

∫ b

0
R(t− b) f

(
s, {z̃n

s + ỹs}n≥1

)
ds− ∑

0<tk<t
R(b− tk)Ik(zn

tk
+ ỹtk )

})

≤ LW(t)β ({x1 − R(b)ϕ(0)}) + LW(t)β

({∫ b

0
R(t− b) f

(
s, {z̃n

s + ỹs}n≥1

)
ds
}

n≥1

)
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+ LW(t)β

{ ∑
0<tk<t

R(b− tk)Ik(zn
tk
+ ỹtk )

}
n≥1


≤ 2RbLW(t)

(∫ b

0
h(s)β

(
{z̃n

s }n≥1 + {ỹs}
)

ds
)
+ RbLW(t)

m

∑
k=0

β

({
Ik(zn

tk
+ ỹtk )

}
n≥1

)
≤ 2RbLW(t)

(∫ b

0
h(s)

[
β
(
{z̃n

s }n≥1
)
+ β

(
{ỹs}

)]
ds
)
+ RbLW(t)

m

∑
k=0

αk sup
−∞<θ≤0

β

({
zn

tk
+ ỹtk

}
n≥1

)
≤ 2RbLW(t)

(∫ b

0
h(s)β

(
{z̃n

s }n≥1
)

ds
)
+ RbLW(t)

m

∑
k=0

αk sup
−∞<θ≤0

β

({
zn

tk

}
n≥1

)
,

since
{

ỹs : s ∈ [0, b]
}

is compact, so

≤ 2RbLW(t)

(∫ b

0
h(s) sup

−∞<θ≤0
β
(
{z̃n

s (θ)}n≥1
)

ds

)
+ RbLW(t)

m

∑
k=0

αk sup
−∞<θ≤0

β

({
zn

tk

}
n≥1

)
,

by Lemma 1, since D = {zn}n≥1 is equicontinuous, we obtain

≤ 2RbLW(t)
(∫ b

0
h(s) ds

)
sup

0≤t≤b
β
(
{zn(t)}n≥1

)
+ RbLW(t)

m

∑
k=0

αk sup
0≤τk≤tk

β
(
{zn(τk)}n≥1

)
.

This implies that

β
(
{(Γzn)(t)}n≥1

)
≤ β

({∫ t

0
R(t− s) f (s, {z̃n

s + ỹs}n≥1) ds
}

n≥1

)
+ β

({∫ t

0
R(t− s)uzn(s) ds

}
n≥1

)

+ β

{ ∑
0<tk<t

R(b− tk)Ik(zn
tk
+ ỹtk )

}
n≥1


≤ 2Rb

(∫ b

0
h(s) ds

)
sup

0≤t≤b
β
(
{zn(t)}n≥1

)
+ Rb

m

∑
k=0

αk sup
0≤τk≤tk

β
(
{zn(τk)}n≥1

)
+ 2Rb M2

(∫ b

0
LW(s) ds

)
2Rb

(∫ b

0
h(s) ds

)
sup

0≤t≤b
β
(
{zn(t)}n≥1

)
+ 2R2

b M2

(∫ b

0
LW(s) ds

) m

∑
k=0

αk sup
0≤τk≤tk

β
(
{zn(τk)}n≥1

)
≤ 2Rb‖h‖L1 sup

0≤t≤b
β
(
{zn(t)}n≥1

)
+ Rb

m

∑
k=0

αk sup
0≤τk≤tk

β
(
{zn(τk)}n≥1

)
+ 2Rb M2‖LW‖L12Rb‖h‖L1 sup

0≤t≤b
β
(
{zn(t)}n≥1

)
+ 2R2

b M2‖LW‖L1

m

∑
k=0

αk sup
0≤τk≤tk

β
(
{zn(τk)}n≥1

)
.

It follows that

β
(

Γ(D)(t)
)
≤ 2Rb‖h‖L1 sup

0≤t≤b
β (D(t)) + Rb

m

∑
k=0

αk sup
0≤t≤b

β (D(t)) + 2Rb M2‖LW‖L12Rb‖h‖L1 sup
0≤t≤b

β (D(t))

+ 2R2
b M2‖LW‖L1

m

∑
k=0

αk sup
0≤t≤b

β (D(t))

≤
(

2Rb‖h‖L1 + Rb

m

∑
k=0

αk + 2Rb M2‖LW‖L12Rb‖h‖L1 + 2R2
b M2‖LW‖L1

m

∑
k=0

αk

)
sup

0≤t≤b
β (D(t))

≤
(

1 + 2Rb M2‖LW‖L1

)(
2Rb‖h‖L1 + Rb

m

∑
k=0

αk

)
sup

0≤t≤b
β (D(t)) .
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Since D and Γ(D) are equicontinuous on [0, b] and D is bounded, it follows by Lemma 1 that β
(

Γ(D)
)
≤

τβ
(

D
)

, where τ is as defined in (H5). Thus from the Mönch condition, we get that β
(

D
)
≤ β

(
co({0} ∪

Γ(D)
)

= β
(

Γ(D)
)
≤ τβ

(
D
)

, and since τ < 1, this implies β
(

D
)

= 0, which implies that D is relatively
compact as desired in Bq and the Mönch condition is satisfied. We conclude by Theorem 4, that Γ has a fixed
point z in Bq. Then x = z + y is a fixed point of P in Eb and thus equation (4) is controllable on [0, b].

4. Numerical example

Now, we illustrate our main result by the following example.

Example 1. Consider the partial functional integrodifferential system of the form

∂v
∂t

(t, ξ) =
∂2v
∂ξ2 (t, ξ) +

∫ t

0
ζ ′(t− s)

∂2v
∂ξ2 (s, ξ) ds

+
∫ 0

−∞
α(θ)g(t, v(t + θ, ξ)) dθ + ηu(t, ξ) for t ∈ J = [0, b] and ξ ∈ (0, π)

v(t, 0) = 0 = v(t, π) for t ∈ [0, b],

v(t+k , ξ)− v(t−k , ξ) =
∫ tk

−∞
µk(tk − s)v(s, ξ)ds, ξ ∈ (0, π), k = 1, 2, · · · , m,

v(θ, ξ) = φ(θ, ξ) for θ ∈]−∞, 0]and ξ ∈ (0, π),

(8)

where η > 0, φ ∈ P , Ik > 0, k = 1, 2, · · · , m, u ∈ L2((0, π)), g : [0, 1]×R→ R is continuous and Lipschitzian
with respect to the second variable, the initial data function φ : R− ×Ω → R is a given function, α : R− → R
is continuous, α ∈ L1(R−,R) and ζ ∈ C2([0, b]) and ζ(0) > 0.

Let X = L2(0, π), and the phase space P = PC0 × L2(h̃, X) (h̃ :]−∞,−r] → R be a positive function), as
introduced in [22]. We define A : D(A) ⊂ X → X by{

D(A) =
{

v ∈ X : v and v′ are absolutely continuous, v′′ ∈ X, v(0) = v(π) = 0
}

Av = v′′ for each v ∈ D(A).

Then, Av = ∑∞
n=1 n2〈v, vn〉v, v ∈ D(A), where vn(s) =

√
2/π sin(ns), n = 1, 2, 3, · · · is the orthogonal

set of eigenvectors of A. It is well known that A is the infinitesimal generator of an analytic semigroup(
T(t)

)
t≥0 in X as is given by T(t)v = ∑∞

n=1 exp(−n2t)〈v, vn〉v, v ∈ X. Moreover,
(
T(t)

)
t≥0 generated by

A above, is compact for t > 0 and operator-norm continuous for t > 0. Then by Theorem 2, the corresponding
resolvent operator is operator-norm continuous. Now define

x(t)(ξ) = v(t, ξ), x′(t)(ξ) =
∂v(t, ξ)

∂t
, u(t, ξ) = u(t)(ξ), ϕ(θ)(ξ) = φ(θ, ξ) for θ ∈]−∞, 0] and ξ ∈ (0, π).

Ik(ϕ)(ξ) =
∫ 0

−∞
µk(−s)ϕ(s, ξ)ds, ξ ∈ (0, π), k = 1, 2, · · · , m.

f (t, ψ)(ξ) =
∫ 0

−∞
α(θ)g(t, ψ(θ)(ξ)) dθ for θ ∈]−∞, 0] and ξ ∈ (0, π).

Now C : X → X be defined by
(

Cu(t)
)
(ξ) = Cu(t)(ξ) = ηu1Γ(t, ξ).

(γ(t)x)(ξ) = ζ(t)∆v(t, ξ) for t ∈ [0, b], x ∈ D(A) and ξ ∈ (0, π).

We suppose that ϕ ∈ P . Then, Equation (8) is then transformed into the following form
x′(t) = Ax(t) +

∫ t

0
γ(t− s)x(s)ds + f (t, xt) + Cu(t) for t ∈ J = [0, b],

∆x(tk) = Ik(xtk ), k = 1, 2, · · · , m,

x0 = ϕ ∈ P .

(9)
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Suppose there exists a continuous function p ∈ L1(J;R+) such that |g(t, y1) − g(t, y2)| ≤ p(t)|y1 −
y2| for t ∈ J and y1, y2 ∈ R and g(t, 0) = 0 for t ∈ J. One can see that f is Lipschitz continuous with respect

to the second variable and moreover for ϕ ∈ P , we have we have sup
‖ϕ‖B≤q

∥∥∥ f (t, ϕ)
∥∥∥ ≤ q ‖α‖ p(t). So f satisfies

(H4)− (i) and (H4)− (ii) with lq(t) = q ‖α‖ p(t). Also f satisfies (H4)− (iii) by condition (viii) of Theorem

3, since f is Lipschitz. Now for ξ ∈ (0, π), the operator W is given by (Wu)(ξ) = η
∫ b

0 R(b − s)u(s, ξ) ds.
Assuming that W satisfies (H3), then all the conditions of Theorem 5 hold and Equation (9) is controllable.

5. Conclusion

In this work, we have shown the controllability of some impulsive partial functional integrodifferential
differential equation with infinite delay in Banach spaces by using the Hausdorff Measure of Noncompactness
and the Mönch fixed point theorem. We achieved this without assuming the compactness of the resolvent
operator for the associated undelayed part.
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